Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|-------------------------------------------------------------------------| | Product Status | Obsolete | | | | | Core Processor | HCS12 | | Core Size | 16-Bit | | Speed | 25MHz | | Connectivity | CANbus, I <sup>2</sup> C, SCI, SPI | | Peripherals | PWM, WDT | | Number of I/O | 59 | | Program Memory Size | 256KB (256K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 4K x 8 | | RAM Size | 12K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.35V ~ 5.25V | | Data Converters | A/D 16x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 80-QFP | | Supplier Device Package | 80-QFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12dj256ccfu | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | | Freescale Semiconductor, Inc. MC9S12DF256B Device User Guide — V02.14 | |-------------|-----------------------------------------------------------------------------------| | 2.3.57 | PS0 / RXD0 — Port S I/O Pin 0 | | 2.3.58 | PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] | | 2.4 | Power Supply Pins | | 2.4.1 | VDDX,VSSX — Power & Ground Pins for I/O Drivers | | 2.4.2<br>68 | VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator | | 2.4.3 | VDD1, VDD2, VSS1, VSS2 — Core Power Pins68 | | 2.4.4 | VDDA, VSSA — Power Supply Pins for ATD and VREG68 | | 2.4.5 | VRH, VRL — ATD Reference Voltage Input Pins68 | | 2.4.6 | VDDPLL, VSSPLL — Power Supply Pins for PLL | | 2.4.7 | VREGEN — On Chip Voltage Regulator Enable | | Secti | on 3 System Clock Description | | 3.1 | Overview | | Secti | on 4 Modes of Operation | | 4.1 | Overview | | 4.2 | Chip Configuration Summary | | 4.3 | Security74 | | 4.3.1 | Securing the Microcontroller74 | | 4.3.2 | Operation of the Secured Microcontroller | | 4.3.3 | Unsecuring the Microcontroller75 | | 4.4 | Low Power Modes | | 4.4.1 | Stop | | 4.4.2 | Pseudo Stop | | 4.4.3 | Wait | | 4.4.4 | Run | | Secti | on 5 Resets and Interrupts | | 5.1 | Overview | | 5.2 | Vectors | | 5.2.1 | Vector Table77 | | 5.3 | Effects of Reset | | 5.3.1 | I/O pins78 | | 5.3.2 | Memory | | Secti | on 6 HCS12 Core Block Description | # **Preface** The Device User Guide provides information about the MC9S12DP256B device made up of standard HCS12 blocks and the HCS12 processor core. **Table 0-1** and **Table 0-2** show the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386. Table 0-1 Drivative Differences MC9S12D256B | Generic device | MC9S12DP256B | MC9S12DT256B | MC9S12DJ256B | MC9S12DG256B | MC9S12A256B | |-----------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------| | # of CANs | 5 | 3 | 2 | 2 | 0 | | CAN0 | ✓ | ✓ | ✓ | ✓ | | | CAN1 | ✓ | ✓ | | | | | CAN2 | ✓ | | | | | | CAN3 | ✓ | | | | | | CAN4 | ✓ | ✓ | ✓ | ✓ | | | J1850/BDLC | ✓ | | ✓ | | | | Package | 112 LQFP | 112 LQFP | 112 LQFP/80 QFP | 112 LQFP/80 QFP | 112 LQFP/80 QFP | | Mask set | 0/1K79X | 0/1K79X | 0/1K79X | 0/1K79X | 0/1K79X | | Temp Options | M, V, C | M, V, C | M, V, C | M, V, C | С | | package<br>Code | PV | PV | PV/FU | PV | PV/FU | | Notes | An errata exists conntact Sales office | Table 0-2 Derivative Differences MC9S12D256C | Generic<br>device | MC9S12DP256C | MC9S12DT256C | MC9S12DJ256C | MC9S12DG256C | |-------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------| | # of CANs | 5 | 3 | 2 | 2 | | CAN0 | ✓ | ✓ | ✓ | ✓ | | CAN1 | ✓ | ✓ | | | | CAN2 | ✓ | | | | | CAN3 | ✓ | | | | | CAN4 | ✓ | ✓ | ✓ | ✓ | | J1850/BDLC | ✓ | | ✓ | | | Package | 112 LQFP | 112 LQFP | 112 LQFP/80 QFP | 112 LQFP/80 QFP | | Mask set | 2K79X | 2K79X | 2K79X | 2K79X | | Temp Options | M, V, C | M, V, C | M, V, C | M, V, C | | package<br>Code | PV | PV | PV/FU | PV | | Notes | An errata exists conntact Sales office | # 1.5 Device Memory Map **Table 1-1** and **Figure 1-2** show the device memory map of the MC9S12DP256B after reset. Note that after reset the bottom 1k of the EEPROM (\$0000 - \$03FF) are hidden by the register space. **Table 1-1 Device Memory Map** | Address | Module | Size<br>(Bytes) | |-----------------|-----------------------------------------------------------------------------|-----------------| | \$0000 - \$0017 | CORE (Ports A, B, E, Modes, Inits, Test) | 24 | | \$0018 - \$0019 | Reserved | 2 | | \$001A - \$001B | Device ID register (PARTID) | 2 | | \$001C - \$001F | CORE (MEMSIZ, IRQ, HPRIO) | 4 | | \$0020 - \$0027 | Reserved | 8 | | \$0028 - \$002F | CORE (Background Debug Mode) | 8 | | \$0030 - \$0033 | CORE (PPAGE, Port K) | 4 | | \$0034 - \$003F | Clock and Reset Generator (PLL, RTI, COP) | 12 | | \$0040 - \$007F | Enhanced Capture Timer 16-bit 8 channels | 64 | | \$0080 - \$009F | Analog to Digital Converter 10-bit 8 channels (ATD0) | 32 | | \$00A0 - \$00C7 | Pulse Width Modulator 8-bit 8 channels (PWM) | 40 | | \$00C8 - \$00CF | Serial Communications Interface 0 (SCI0) | 8 | | \$00D0 - \$00D7 | Serial Communications Interface 0 (SCI1) | 8 | | \$00D8 - \$00DF | Serial Peripheral Interface (SPI0) | 8 | | \$00E0 - \$00E7 | Inter IC Bus | 8 | | \$00E8 - \$00EF | Byte Data Link Controller (BDLC) | 8 | | \$00F0 - \$00F7 | Serial Peripheral Interface (SPI1) | 8 | | \$00F8 - \$00FF | Serial Peripheral Interface (SPI2) | 8 | | \$0100- \$010F | Flash Control Register | 16 | | \$0110 - \$011B | EEPROM Control Register | 12 | | \$011C - \$011F | Reserved | 4 | | \$0120 - \$013F | Analog to Digital Converter 10-bit 8 channels (ATD1) | 32 | | \$0140 - \$017F | Motorola Scalable Can (CAN0) | 64 | | \$0180 - \$01BF | Motorola Scalable Can (CAN1) | 64 | | \$01C0 - \$01FF | Motorola Scalable Can (CAN2) | 64 | | \$0200 - \$023F | Motorola Scalable Can (CAN3) | 64 | | \$0240 - \$027F | Port Integration Module (PIM) | 64 | | \$0280 - \$02BF | Motorola Scalable Can (CAN4) | 64 | | \$02C0 - \$03FF | Reserved | 320 | | \$0000 - \$0FFF | EEPROM array | 4096 | | \$1000 - \$3FFF | RAM array | 12288 | | \$4000 - \$7FFF | Fixed Flash EEPROM array incl. 0.5K, 1K, 2K or 4K Protected Sector at start | 16384 | | \$8000 - \$BFFF | Flash EEPROM Page Window | 16384 | Figure 1-2 MC9S12DP256B Memory Map <sup>\*</sup> Assuming that a '0' was driven onto port K bit 7 during MCU is reset into normal expanded wide or narrow mode. #### \$0010 - \$0014 #### MMC map 1 of 4 (Core User Guide) | Address | Name | |---------|--------| | \$0012 | INITEE | | \$0013 | MISC | | \$0014 | MTST0 | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|--------|--------|------------|-------| | Read: | EE15 | EE14 | EE13 | EE12 | 0 | 0 | 0 | EEON | | Write: | EEIS | CC14 | LLIS | LLIZ | | | | LLON | | Read: | 0 | 0 | 0 | 0 | EXSTR1 | EXSTR0 | ROMHM | ROMON | | Write: | | | | | EXSIKI | EXSIRU | KOWII IIVI | KOWON | | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | Write: | | | | | | | | | | | | | | | | | | | #### \$0015 - \$0016 # INT map 1 of 2 (Core User Guide) | Address | Name | |---------|-------| | \$0015 | ITCR | | \$0016 | ITEST | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|--------|-------|--------|-------|-------| | Read: | 0 | 0 | 0 | WRINT | ADR3 | ADR2 | ADR1 | ADR0 | | Write: | | | | VVINII | ADNO | ADNZ | ADNI | ADNO | | Read: | INTE | INTC | INTA | INT8 | INT6 | INT4 | INT2 | INT0 | | Write: | IIVIL | INTO | IIIIA | 11110 | 11410 | 111114 | IINIZ | 11110 | ## \$0017 - \$0017 # MMC map 2 of 4 (Core User Guide) | Address | Name | |---------|-------| | \$0017 | MTST1 | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|-------|-------|-------|-------| | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | Write: | | | | | | | | | #### \$0018 - \$001B # Miscellaneous Peripherals (Device User Guide, Table 1-3) | Address | Name | |---------|----------| | \$0018 | Reserved | | \$0019 | Reserved | | \$001A | PARTIDH | | \$001B | PARTIDL | | [ | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|-------|-------|-------|-------| | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | ID15 | ID14 | ID13 | ID12 | ID11 | ID10 | ID9 | ID8 | | Write: | | | | | | | | | | Read: | ID7 | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | | Write: | | | | | | | | | #### \$001C - \$001D Address # MMC map 3 of 4 (Core and Device User Guide, Table 1-4) | \$001C | MEMSIZ0 | |--------|---------| | \$001D | MEMSIZ1 | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|---------|---------|---------|---------|-------|---------|---------|---------| | Read: | reg_sw0 | 0 | eep_sw1 | eep_sw0 | 0 | ram_sw2 | ram_sw1 | ram_sw0 | | Write: | | | | | | | | | | Read: | rom_sw1 | rom_sw0 | 0 | 0 | 0 | 0 | pag_sw1 | pag_sw0 | | Write: | | | | | | | | | # **Section 2 Signal Description** This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block User Guides of the individual IP blocks on the device. # 2.1 Device Pinout The MC9S12DP256B/MC9S12DT256/MC9S12DJ256 and MC9S12DG256 is available in a 112-pin low profile quad flat pack (LQFP) and MC9S12DJ256 is also available in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. **Figure 2-1** and **Figure 2-3** show the pin assignments. #### 2.3.23 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2). ## 2.3.24 PH4 / KWH4 / MISO2 — Port H I/O Pin 2 PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2). # 2.3.25 PH3 / KWH3 / SS1 — Port H I/O Pin 3 PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as slave select pin $\overline{SS}$ of the Serial Peripheral Interface 1 (SPI1). #### 2.3.26 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1). # 2.3.27 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1). ## 2.3.28 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1). #### 2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module. ## 2.3.38 PM3 / TXCAN1 / TXCAN0 / SSO — Port M I/O Pin 3 PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the slave select pin $\overline{SS}$ of the Serial Peripheral Interface 0 (SPI0). ## 2.3.39 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2 PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0). ## 2.3.40 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin TXB of the BDLC. #### 2.3.41 PM0 / RXCAN0 / RXB — Port M I/O Pin 0 PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin RXB of the BDLC. # 2.3.42 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2). # 2.3.43 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6 PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. It can be configured as slave select pin $\overline{SS}$ of the Serial Peripheral Interface 2 (SPI2). ## 2.3.44 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5 PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2). # 2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded. # 2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded. # 2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground. **NOTE:** No load allowed except for bypass capacitors. # 2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to digital converter. It also provides the reference for the internal voltage regulator. This allows the supply voltage to the ATD and the reference voltage to be bypassed independently. # 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins VRH and VRL are the reference voltage input pins for the analog to digital converter. # 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator. **NOTE:** No load allowed except for bypass capacitors. # 4.3.3 Unsecuring the Microcontroller In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be done through an external program in expanded mode. Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again. ## 4.4 Low Power Modes The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG). # 4.4.1 Stop Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts. # 4.4.2 Pseudo Stop This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter. #### 4.4.3 Wait This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks. #### 4.4.4 Run Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power. # **Section 5 Resets and Interrupts** # 5.1 Overview Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and interrupts. # 5.2 Vectors # 5.2.1 Vector Table **Table 5-1** lists interrupt sources and vectors in default order of priority. **Table 5-1 Interrupt Vector Locations** | | Table 3-1 Interrupt | CCR | | HPRIO Value | |----------------|----------------------------------|-------|----------------------------------|-------------| | Vector Address | Interrupt Source | Mask | Local Enable | to Elevate | | \$FFFE, \$FFFF | Reset | None | None | _ | | \$FFFC, \$FFFD | Clock Monitor fail reset | None | PLLCTL (CME, SCME) | _ | | \$FFFA, \$FFFB | COP failure reset | None | COP rate select | _ | | \$FFF8, \$FFF9 | Unimplemented instruction trap | None | None | _ | | \$FFF6, \$FFF7 | SWI | None | None | _ | | \$FFF4, \$FFF5 | XIRQ | X-Bit | None | _ | | \$FFF2, \$FFF3 | IRQ | I-Bit | IRQCR (IRQEN) | \$F2 | | \$FFF0, \$FFF1 | Real Time Interrupt | I-Bit | CRGINT (RTIE) | \$F0 | | \$FFEE, \$FFEF | Enhanced Capture Timer channel 0 | I-Bit | TIE (C0I) | \$EE | | \$FFEC, \$FFED | Enhanced Capture Timer channel 1 | I-Bit | TIE (C1I) | \$EC | | \$FFEA, \$FFEB | Enhanced Capture Timer channel 2 | I-Bit | TIE (C2I) | \$EA | | \$FFE8, \$FFE9 | Enhanced Capture Timer channel 3 | I-Bit | TIE (C3I) | \$E8 | | \$FFE6, \$FFE7 | Enhanced Capture Timer channel 4 | I-Bit | TIE (C4I) | \$E6 | | \$FFE4, \$FFE5 | Enhanced Capture Timer channel 5 | I-Bit | TIE (C5I) | \$E4 | | \$FFE2, \$FFE3 | Enhanced Capture Timer channel 6 | I-Bit | TIE (C6I) | \$E2 | | \$FFE0, \$FFE1 | Enhanced Capture Timer channel 7 | I-Bit | TIE (C7I) | \$E0 | | \$FFDE, \$FFDF | Enhanced Capture Timer overflow | I-Bit | TSRC2 (TOF) | \$DE | | \$FFDC, \$FFDD | Pulse accumulator A overflow | I-Bit | PACTL (PAOVI) | \$DC | | \$FFDA, \$FFDB | Pulse accumulator input edge | I-Bit | PACTL (PAI) | \$DA | | \$FFD8, \$FFD9 | SPI0 | I-Bit | SP0CR1 (SPIE, SPTIE) | \$D8 | | \$FFD6, \$FFD7 | SCI0 | I-Bit | SC0CR2<br>(TIE, TCIE, RIE, ILIE) | \$D6 | | \$FFD4, \$FFD5 | SCI1 | I-Bit | SC1CR2<br>(TIE, TCIE, RIE, ILIE) | \$D4 | | \$FFD2, \$FFD3 | ATD0 | I-Bit | ATD0CTL2 (ASCIE) | \$D2 | | \$FFD0, \$FFD1 | ATD1 | I-Bit | ATD1CTL2 (ASCIE) | \$D0 | | \$FFCE, \$FFCF | Port J | I-Bit | PTJIF (PTJIE) | \$CE | | \$FFCC, \$FFCD | Port H | I-Bit | PTHIF(PTHIE) | \$CC | | \$FFCA, \$FFCB | Modulus Down Counter underflow | I-Bit | MCCTL(MCZI) | \$CA | $$T_J = T_A + (P_D \bullet \Theta_{JA})$$ T<sub>I</sub> = Junction Temperature, [°C] $T_{\Delta}$ = Ambient Temperature, [°C] P<sub>D</sub> = Total Chip Power Dissipation, [W] $\Theta_{\mathsf{IA}}$ = Package Thermal Resistance, [°C/W] The total power dissipation can be calculated from: $$P_D = P_{INT} + P_{IO}$$ P<sub>INT</sub> = Chip Internal Power Dissipation, [W] Two cases with internal voltage regulator enabled and disabled must be considered: 1. Internal Voltage Regulator disabled $$P_{INT} = I_{DD} \cdot V_{DD} + I_{DDPLL} \cdot V_{DDPLL} + I_{DDA} \cdot V_{DDA}$$ $$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_{i}}^{2}$$ P<sub>IO</sub> is the sum of all output currents on I/O ports associated with VDDX and VDDR. For R<sub>DSON</sub> is valid: $$R_{DSON} = \frac{V_{OL}}{I_{OL}}$$ ; for outputs driven low respectively $$R_{DSON} = \frac{V_{DD5} - V_{OH}}{I_{OH}}$$ ; for outputs driven high 2. Internal voltage regulator enabled $$P_{INT} = I_{DDR} \cdot V_{DDR} + I_{DDA} \cdot V_{DDA}$$ I<sub>DDR</sub> is the current shown in **Table A-7** and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high. $$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_i}^2$$ $P_{IO}$ is the sum of all output currents on I/O ports associated with VDDX and VDDR. Table A-6 5V I/O Characteristics | С | Rating | Symbol | Min | Тур | Max | Unit | |---|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Р | Input High Voltage | V <sub>IH</sub> | 0.65*V <sub>DD5</sub> | - | - | V | | Т | Input High Voltage | V <sub>IH</sub> | - | - | VDD5 + 0.3 | V | | Р | Input Low Voltage | V <sub>IL</sub> | - | - | 0.35*V <sub>DD5</sub> | V | | Т | Input Low Voltage | V <sub>IL</sub> | VSS5 - 0.3 | - | - | V | | С | Input Hysteresis | V <sub>HYS</sub> | | 250 | | mV | | Р | Input Leakage Current (pins in high impedance input mode) <sup>1</sup> $V_{in} = V_{DD5}$ or $V_{SS5}$ | I <sub>in</sub> | -2.5 | - | 2.5 | μΑ | | Р | Output High Voltage (pins in output mode) Partial Drive $I_{OH} = -2mA$ Full Drive $I_{OH} = -10mA$ | V <sub>OH</sub> | V <sub>DD5</sub> – 0.8 | - | - | V | | Р | Output Low Voltage (pins in output mode) Partial Drive I <sub>OL</sub> = +2mA Full Drive I <sub>OL</sub> = +10mA | V <sub>OL</sub> | - | - | 0.8 | V | | Р | Internal Pull Up Device Current, tested at V <sub>IL</sub> Max. | I <sub>PUL</sub> | - | - | -130 | μΑ | | Р | Internal Pull Up Device Current, tested at V <sub>IH</sub> Min. | I <sub>PUH</sub> | -10 | - | - | μΑ | | Р | Internal Pull Down Device Current, tested at V <sub>IH</sub> Min. | I <sub>PDH</sub> | - | - | 130 | μΑ | | Р | Internal Pull Down Device Current, tested at V <sub>IL</sub> Max. | I <sub>PDL</sub> | 10 | - | - | μΑ | | D | Input Capacitance | C <sub>in</sub> | | 6 | - | pF | | Т | Injection current <sup>2</sup> Single Pin limit Total Device Limit. Sum of all injected currents | I <sub>ICS</sub><br>I <sub>ICP</sub> | -2.5<br>-25 | - | 2.5<br>25 | mA | | Р | Port H, J, P Interrupt Input Pulse filtered <sup>3</sup> | t <sub>PULSE</sub> | | | 3 | μs | | Р | Port H, J, P Interrupt Input Pulse passed <sup>3</sup> | t <sub>PULSE</sub> | 10 | | | μs | | | P T P T C P P P P P P P P D T P | P Input High Voltage T Input High Voltage P Input Low Voltage T Input Low Voltage C Input Hysteresis Input Leakage Current (pins in high impedance input mode)¹ V <sub>in</sub> = V <sub>DD5</sub> or V <sub>SS5</sub> Output High Voltage (pins in output mode) Partial Drive I <sub>OH</sub> = -2mA Full Drive I <sub>OH</sub> = -10mA Output Low Voltage (pins in output mode) Partial Drive I <sub>OL</sub> = +2mA Full Drive I <sub>OL</sub> = +10mA P Internal Pull Up Device Current, tested at V <sub>IL</sub> Max. P Internal Pull Up Device Current, tested at V <sub>IH</sub> Min. P Internal Pull Down Device Current, tested at V <sub>IH</sub> Min. P Internal Pull Down Device Current, tested at V <sub>IL</sub> Max. D Input Capacitance T Injection current² Single Pin limit Total Device Limit. Sum of all injected currents P Port H, J, P Interrupt Input Pulse filtered³ | P Input High Voltage V IH T Input High Voltage V IL T Input Low Voltage V IL T Input Low Voltage V IL T Input Low Voltage V IL C Input Hysteresis V IN Input Leakage Current (pins in high impedance input mode) V IN V IN Output High Voltage (pins in output mode) Partial Drive IOH = -2mA Full Drive IOH = -10mA Output Low Voltage (pins in output mode) Partial Drive IOL = +2mA Full Drive IOL = +10mA P Internal Pull Up Device Current, tested at V IN Internal Pull Up Device Current, tested at V IN Internal Pull Down Device Current, tested at V IN Internal Pull Down Device Current, tested at V IN Internal Pull Down Device Current, tested at V IN Internal Pull Down Device Current, tested at V IN Internal Pull Down Device Current, tested at V IN Internal Pull Down Device Current, tested at V IN Internal Pull Down Device Current, tested at V IN Internal Pull Down Device Current, tested at V IN Internal Pull Down Device Current, C | P Input High Voltage T Input High Voltage VIH P Input Low Voltage VIL T Input Low Voltage VIL T Input Low Voltage VIL VSS5 - 0.3 C Input Hysteresis VHYS Input Leakage Current (pins in high impedance input mode) VIL VOBS5 - 0.3 VOHUTHIGH Voltage (pins in output mode) Partial Drive IoH = -2mA Full Drive IoH = -10mA VOL VOL VOL Full Drive IoL = +2mA Full Drive IoL = +2mA Full Drive IoL = +10mA P Internal Pull Up Device Current, tested at VIL Max. P Internal Pull Up Device Current, tested at VIL Min. P Internal Pull Down Device Current, tested at VIL Min. P Internal Pull Down Device Current, tested at VIL Min. P Internal Pull Down Device Current, tested at VIL Min. P Internal Pull Down Device Current, tested at VIL Min. P Internal Pull Down Device Current, tested at VIL Min. P Internal Pull Down Device Current, tested at VIL Min. I Input Internal Pull Down Device Current, tested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intested at VIL Min. I Internal Pull Down Device Current, Intes | Input High Voltage | P Input High Voltage V <sub>IH</sub> 0.65°V <sub>DD5</sub> - - T Input High Voltage V <sub>IH</sub> - - VDD5 + 0.3 P Input Low Voltage V <sub>IL</sub> - - 0.35°V <sub>DD5</sub> T Input Low Voltage V <sub>IL</sub> VSS5 - 0.3 - - C Input Leakage Current (pins in high impedance input mode) <sup>1</sup> Input Leakage Current (pins in high impedance input mode) <sup>1</sup> Input Leakage Current (pins in output mode) - - 250 - P Input High Voltage (pins in output mode) V <sub>OL</sub> V <sub>OB5</sub> - 0.8 - - - Partial Drive Io <sub>OH</sub> = -2mA V <sub>OH</sub> V <sub>OL</sub> - - - - Partial Drive Io <sub>OH</sub> = -2mA V <sub>OH</sub> V <sub>OH</sub> V <sub>OD5</sub> - 0.8 - - - Partial Drive Io <sub>OH</sub> = -2mA V <sub>OL</sub> - - 0.8 - Output Low Voltage (pins in output mode) V <sub>OL</sub> - - 0.8 - - - 0.8 - - 0.8 - | #### NOTES: - 1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C. - 2. Refer to Section A.1.4 Current Injection, for more details - 3. Parameter only applies in STOP or Pseudo STOP mode. # A.2 ATD Characteristics This section describes the characteristics of the analog to digital converter. # A.2.1 ATD Operating Characteristics The **Table A-8** shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results: $V_{SSA} \le V_{RL} \le V_{IN} \le V_{RH} \le V_{DDA}$ . This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped. **Table A-8 ATD Operating Characteristics** | Condit | Conditions are shown in <b>Table A-4</b> unless otherwise noted | | | | | | | | | |--------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|------|-----------------------------------------|--------------|--|--| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | | | 1 | D | Reference Potential Low High | V <sub>RL</sub><br>V <sub>RH</sub> | V <sub>SSA</sub><br>V <sub>DDA</sub> /2 | | V <sub>DDA</sub> /2<br>V <sub>DDA</sub> | V | | | | 2 | С | Differential Reference Voltage <sup>1</sup> | $V_{RH}-V_{RL}$ | 4.50 | 5.00 | 5.25 | V | | | | 3 | D | ATD Clock Frequency | f <sub>ATDCLK</sub> | 0.5 | | 2.0 | MHz | | | | 4 | D | ATD 10-Bit Conversion Period Clock Cycles <sup>2</sup> Conv, Time at 2.0MHz ATD Clock f <sub>ATDCLK</sub> | N <sub>CONV10</sub><br>T <sub>CONV10</sub> | 14<br>7 | | 28<br>14 | Cycles<br>μs | | | | 5 | D | ATD 8-Bit Conversion Period Clock Cycles <sup>2</sup> Conv, Time at 2.0MHz ATD Clock f <sub>ATDCLK</sub> | N <sub>CONV8</sub><br>T <sub>CONV8</sub> | 12<br>6 | | 26<br>13 | Cycles<br>μs | | | | 6 | D | Recovery Time (V <sub>DDA</sub> =5.0 Volts) | t <sub>REC</sub> | | | 20 | μs | | | | 7 | Р | Reference Supply current 2 ATD blocks on | I <sub>REF</sub> | | | 0.750 | mA | | | | 8 | Р | Reference Supply current 1 ATD block on | I <sub>REF</sub> | | | 0.375 | mA | | | #### NOTES: - 1. Full accuracy is not guaranteed when differential voltage is less than 4.50V - The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks. # A.2.2 Factors influencing accuracy Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD. #### A.2.2.1 Source Resistance: Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R<sub>S</sub> The loop bandwidth $f_C$ should be chosen to fulfill the Gardner's stability criteria by <u>at least</u> a factor of 10, typical values are 50. $\zeta = 0.9$ ensures a good transient response. $$f_C < \frac{2 \cdot \zeta \cdot f_{ref}}{\pi \cdot \left(\zeta + \sqrt{1 + \zeta^2}\right)} \frac{1}{50} \rightarrow f_C < \frac{f_{ref}}{4 \cdot 50}; (\zeta = 0.9)$$ And finally the frequency relationship is defined as $$n = \frac{f_{VCO}}{f_{ref}} = 2 \cdot (synr + 1)$$ With the above inputs the resistance can be calculated as: $$R = \frac{2 \cdot \pi \cdot n \cdot f_C}{K_{\Phi}}$$ The capacitance $C_s$ can now be calculated as: $$C_s = \frac{2 \cdot \zeta^2}{\pi \cdot f_C \cdot R} \approx \frac{0.516}{f_C \cdot R}; (\zeta = 0.9)$$ The capacitance C<sub>p</sub> should be chosen in the range of: $$C_s/20 \le C_p \le C_s/10$$ The stabilization delays shown in **Table A-16** are dependant on PLL operational settings and external component selection (e.g. crystal, XFC filter). #### A.5.3.2 Jitter Information The basic functionality of the PLL is shown in **Figure A-2**. With each transition of the clock $f_{cmp}$ , the deviation from the reference clock $f_{ref}$ is measured and input voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in **Figure A-3**. Figure A-3 Jitter Definitions The relative deviation of $t_{nom}$ is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N). Defining the jitter as: $$J(N) = \max \left( \left| 1 - \frac{t_{max}(N)}{N \cdot t_{nom}} \right|, \left| 1 - \frac{t_{min}(N)}{N \cdot t_{nom}} \right| \right)$$ For N < 100, the following equation is a good fit for the maximum jitter: $$J(N) = \frac{j_1}{\sqrt{N}} + j_2$$ Figure A-4 Maximum bus clock jitter approximation # A.6 MSCAN # Table A-17 MSCAN Wake-up Pulse Characteristics | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | |----------------------------------------------------------|---|---------------------------------------|------------------|-----|-----|-----|------| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | 1 | Р | MSCAN Wake-up dominant pulse filtered | t <sub>WUP</sub> | | | 2 | μs | | 2 | Р | MSCAN Wake-up dominant pulse pass | t <sub>WUP</sub> | 5 | | | μs | # A.7 SPI #### A.7.1 Master Mode Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18. <sup>1.</sup> If configured as output. Figure A-5 SPI Master Timing (CPHA = 0) <sup>2.</sup> LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. # A.8 External Bus Timing A timing diagram of the external multiplexed-bus is illustrated in **Figure A-9** with the actual timing values shown on table **Table A-20**. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle. # A.8.1 General Muxed Bus Timing The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.