

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12dj256ccpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MC9S12DP256B Device User Guide 9512DP256BDG V2/D V02.14

Table 0-3 shows the defects fixed on maskset 2K79X (MC9S12DP256C)

Defect	Headline
MUCts00510	SCI interrupt asserts only if odd number of interrupts active
MUCts00604	Security in Normal Single Chip mode
MUCts00603	Security in Normal Single Chip mode

Table 0-3 Defects fixed on Maskset 2K79X

This document is part of the customer documentation. A complete set of device manuals also includes the HCS12 Core User Guide and all the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block User Guide. If applicable, special implementation details of the module are given in the block description sections of this document.

Figure 0-1 Order Part Number Example

See **Table 0-4** for names and versions of the referenced documents throughout the Device User Guide.

lable	Table 0-4 Document References										
User Guide	Version	Document Order Number									
HCS12 V1.5 Core User Guide	1.2	HCS12COREUG									
CRG Block User Guide	V02	S12CRGV2/D									
ECT_16B8C Block User Guide	V01	S12ECT16B8CV1/D									
ATD_10B8C Block User Guide	V02	S12ATD10B8CV2/D									
IIC Block User Guide	V02	S12IICV2/D									
SCI Block User Guide	V02	S12SCIV2/D									
SPI Block User Guide	V02	S12SPIV2/D									
PWM_8B8C Block User Guide	V01	S12PWM8B8CV1/D									
FTS256K Block User Guide	V02	S12FTS256KV2/D									
EETS4K Block User Guide	V02	S12EETS4KV2/D									
BDLC Block User Guide	V01	S12BDLCV1/D									
MSCAN Block User Guide	V02	S12MSCANV2/D									
VREG Block User Guide	V01	S12VREGV1/D									
PIM_9DP256 Block User Guide	V02	S12PIM9DP256V2/D									

able 0-4 Document References

Freescale Semiconductor, Inc. MC9S12DP256B Device User Guide — V02.14

\$0034 - \$003F

CRG (Clock and Reset Generator)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢000D	FORBYP	Read:	סעמודמ		0		0	0	FOM	0
\$003D	TEST ONLY	Write:	RIIBIP	COPRIP		PLLBYP			FCM	
¢000Б	CTCTL	Read:	TCTL7	TCTL6	TCTL5	TCTL4	TCLT3	TCTL2	TCTL1	TCTL0
\$003E	TEST ONLY	Write:								
¢002E		Read:	0	0	0	0	0	0	0	0
ф003F	ARIVICOP	Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0040 - \$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0040	TIOS	Read: Write:	IOS7	IOS6	IOS5	IOS4	IOS3	IOS2	IOS1	IOS0
¢00/1	OFORO	Read:	0	0	0	0	0	0	0	0
ФО 4Т	CFORC	Write:	FOC7	FOC6	FOC5	FOC4	FOC3	FOC2	FOC1	FOC0
\$0042	OC7M	Read: Write:	OC7M7	OC7M6	OC7M5	OC7M4	OC7M3	OC7M2	OC7M1	OC7M0
\$0043	OC7D	Read: Write:	OC7D7	OC7D6	OC7D5	OC7D4	OC7D3	OC7D2	OC7D1	OC7D0
\$0044	TCNT (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
QOO 11		Write:								
\$0045	TCNT (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:					-			
\$0046	TSCR1	Read:	TEN	TSWAI	TSFRZ	TFFCA	0	0	0	0
		Write:								
\$0047	TTOV	Read: Write:	TOV7	TOV6	TOV5	TOV4	TOV3	TOV2	TOV1	TOV0
\$0048	TCTL1	Read: Write:	OM7	OL7	OM6	OL6	OM5	OL5	OM4	OL4
\$0049	TCTL2	Read: Write:	OM3	OL3	OM2	OL2	OM1	OL1	OM0	OL0
\$004A	TCTL3	Read: Write:	EDG7B	EDG7A	EDG6B	EDG6A	EDG5B	EDG5A	EDG4B	EDG4A
\$004B	TCTL4	Read: Write:	EDG3B	EDG3A	EDG2B	EDG2A	EDG1B	EDG1A	EDG0B	EDG0A
\$004C	TIE	Read: Write:	C7I	C6I	C5I	C4I	C3I	C2I	C1I	C0I
¢004D	TECDO	Read:	TO	0	0	0	TOPE	002	DD1	DDO
9004D	13CKZ	Write:	101				TORE	FNZ	FNI	FNU
\$004E	TFLG1	Read: Write:	C7F	C6F	C5F	C4F	C3F	C2F	C1F	C0F
\$004E		Read:	TOF	0	0	0	0	0	0	0
φ004F	TFLG2	Write:	IOF							
\$0050	TC0 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0051	TC0 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0052	TC1 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8

\$0180 - \$01BF

CAN1 (Motorola Scalable CAN - MSCAN)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0199	CAN1IDAR5	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$019A	CAN1IDAR6	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$019B	CAN1IDAR7	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$019C	CAN1IDMR4	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$019D	CAN1IDMR5	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$019E	CAN1IDMR6	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$019F	CAN1IDMR7	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01A0 -		Read:		FOF	REGROUN	D RECEIV	E BUFFER	see Table	1-2	
\$01AF	GANTRAFG	Write:								
\$01B0 - \$01BF	CAN1TXFG	Read: Write:		FOR	EGROUNI	D TRANSM	IT BUFFEF	R see Table	e 1-2	

\$01C0 - \$01FF

CAN2 (Motorola Scalable CAN - MSCAN)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$01C0	CAN2CTL0	Read: Write:	RXFRM	RXACT	CSWAI	SYNCH	TIME	WUPE	SLPRQ	INITRQ
¢0404		Read:					0		SLPAK	INITAK
\$01C1	CANZUTET	Write:	CANE	CLKSKC	LOOPD	LISTEN		WUPIVI		
\$0102		Read:	S I\//1	S 11/10	BDD5	BDD/	BDD3	BDD2	RDD1	BDDO
φ0102	CANZETRU	Write:	5500	5300	DIVE 2		DIXI 3			
\$0103	CAN2BTR1	Read:	SAMP	TSEG22	TSEG21	TSEG20	TSEG13	TSEG12	TSEG11	TSEG10
φ0100	UANZDINI	Write:	0/101	102022	102021	102020	102010	102012	102011	102010
\$01C4	CAN2RELG	Read:	WUPIF	CSCIE	RSTAT1	RSTAT0	TSTAT1	TSTAT0	OVRIF	RXF
WOIGI		Write:							0010	100
\$01C5	CAN2RIER	Read:	WUPIE	CSCIE	RSTATE1	RSTATE0	TSTATE1	TSTATE0	OVRIE	RXFIE
\$0100	O/ WEIGER	Write:		00012				10 // 1 20	01112	
\$01C6	CAN2TELG	Read:	0	0	0	0	0	TXE2	TXE1	TXE0
	0/11/20/20	Write:								
\$01C7	CAN2TIER	Read:	0	0	0	0	0	TXEIE2	TXEIE1	TXEIE0
v o.o.	0,	Write:								
\$01C8	CAN2TARO	Read:	0	0	0	0	0	ABTRQ2	ABTRQ1	ABTRQ0
\$0.00	0, 112 1, 110	Write:								
\$01C9	CAN2TAAK	Read:	0	0	0	0	0	ABTAK2	ABTAK1	ABTAK0
\$0.00	0/ 112 // 0 11	Write:								
\$01CA	CAN2TBSEI	Read:	0	0	0	0	0	ТХ2	TX1	тхо
φ010/1	O/ WZI DOLL	Write:								17.0
\$01CB		Read:	0	0	IDAM1		0	IDHIT2	IDHIT1	IDHIT0
φ010D	0/11/212/10	Write:				127 1110				
\$01CC	Reserved	Read:	0	0	0	0	0	0	0	0
40100		Write:								

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc. MC9S12DP256B Device User Guide — V02.14

\$0240 - \$027F

PIM (Port Integration Module PIM_9DP256)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0267	PIFH	Read: Write:	PIFH7	PIFH6	PIFH5	PIFH4	PIFH3	PIFH2	PIFH1	PIFH0
\$0268	PT.I	Read:	PTJ7	PTJ6	0	0	0	0	PTJ1	PTJ0
+		Write:								
\$0269	DTU	Read:	PTIJ7	PTIJ6	0	0	0	0	PTIJ1	PTIJ0
Ψ0203	1 115	Write:								
¢0264	ו חחח	Read:	דו מחח	דו פחח	0	0	0	0		
9020A	DDRJ	Write:	DDRJI	DDRJI					DURJI	DDKJU
¢006D		Read:	דו חחח		0	0	0	0		
9020D	RDRJ	Write:	KDKJ/	KDKJ0					RDRJI	KDKJU
\$0000		Read:			0	0	0	0		
\$U26C	PERJ	Write:	PERJ/	PERJO					PERJI	PERJU
¢000D		Read:			0	0	0	0		
\$026D	PPSJ	Write:	PPSJ/	PPSJ6					PPSJ1	PPSJ0
\$000		Read:			0	0	0	0		
\$026E	PIEJ	Write:	PIEJ/	PIEJO					PIEJI	PIEJU
ФООО Б		Read:			0	0	0	0		
\$026F	PIFJ	Write:	PIFJ/	PIFJ6					PIFJ1	PIFJU
\$0270 - \$027F	Reserved	Read:								

\$0280 - \$02BF

CAN4 (Motorola Scalable CAN - MSCAN)

Address	Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/ 1001000	Hamo	Read [.]	BRT	RXACT	Diro	SYNCH	Bito	DICE	BRT	BRO
\$0280	CAN4CTL0	Write:	RXFRM	100101	CSWAI		TIME	WUPE	SLPRQ	INITRQ
A A A A A		Read:	<u> </u>				0		SLPAK	INITAK
\$0281	CAN4CTL1	Write:	CANE	CLKSRC	LOOPB	LISTEN	-	WUPM	-	
¢opop		Read:		C 114/0			2002	000	וחחח	
Ф 0202	CAN4B1R0	Write:	22001	5300	DKPO	DKP4	DKP3	DKPZ	DRPI	DKPU
¢0.283		Read:	SVWD	TSEC22	TSEC21	TSEC 20		TSEC12	TSEC11	
ψ0205	CAN4DIRI	Write:	SAM	132022	132621	132020	196013	132012	192011	132010
\$0284		Read:	WUPIF	CSCIE	RSTAT1	RSTAT0	TSTAT1	TSTAT0	0\/RIF	RXF
ψ020 +		Write:	wor ii							
\$0285	CAN4RIER	Read:	WUPIE	CSCIE	RSTATE1	RSTATEO	TSTATE1	TSTATE0	OVRIE	RXFIF
\$0200		Write:		00012				10 // 11 20		
\$0286	CAN4TELG	Read:	0	0	0	0	0	TXE2	TXE1	TXE0
+	0, 1111 20	Write:								
\$0287	CAN4TIER	Read:	0	0	0	0	0	TXEIE2	TXEIE1	TXEIE0
\$020 .	O/ WITHER	Write:								
\$0288	CAN4TARO	Read:	0	0	0	0	0	ABTRQ2	ABTRQ1	ABTRQ0
\$0100	0/11/1/11/02	Write:								
\$0289	CAN4TAAK	Read:	0	0	0	0	0	ABTAK2	ABTAK1	ABTAK0
\$0200	0/ 11 4 1/ 0/ 11	Write:								
\$028A	CANATRSEI	Read:	0	0	0	0	0	ТХ2	TX1	тхо
\$0_0 /1	ONTINDOLL	Write:								
\$028B		Read:	0	0	IDAM1		0	IDHIT2	IDHIT1	IDHIT0
\$020B	0/11410/10	Write:								
\$028C	Reserved	Read:	0	0	0	0	0	0	0	0
<i>~~~~</i>	10001100	Write:								

\$0280 - \$02BF

CAN4 (Motorola Scalable CAN - MSCAN)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$028D	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$028E		Read:	RXERR7	RXERR6	RXERR5	RXERR4	RXERR3	RXERR2	RXERR1	RXERR0
9020E		Write:	TYEDDZ	TYEDDO	TYEDDE	TYPDDA	TYEDDO	TYEDDO	TYPDDA	TYERRO
\$028F	CAN4TXERR	Read: Write:	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0
\$0290	CAN4IDAR0	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0291	CAN4IDAR1	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0292	CAN4IDAR2	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0293	CAN4IDAR3	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0294	CAN4IDMR0	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0295	CAN4IDMR1	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0296	CAN4IDMR2	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0297	CAN4IDMR3	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0298	CAN4IDAR4	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0299	CAN4IDAR5	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$029A	CAN4IDAR6	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$029B	CAN4IDAR7	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$029C	CAN4IDMR4	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$029D	CAN4IDMR5	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$029E	CAN4IDMR6	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$029F	CAN4IDMR7	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$02A0 -	CAN4RXEG	Read:		FO	REGROUN	D RECEIV	E BUFFER	see Table	1-2	
\$02AF		Write:								
\$02B0 - \$02BF	CAN4TXFG	Read: Write:		FOREGROUND TRANSMIT BUFFER see Table 1-2						

\$02C0 - \$03FF

Reserved space

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$02C0	Beconvod	Read:	0	0	0	0	0	0	0	0
- \$03FF	Reserved	Write:								

For More Information On This Product, Go to: www.freescale.com

1.7 Part ID Assignments

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset). The read-only value is a unique part ID for each revision of the chip. **Table 1-3** shows the assigned part ID number.

Device	Mask Set Number	Part ID ¹
MC9S12DP256	0K79X	\$0010
MC9S12DP256	1K79X	\$0011
MC9S12DP256	2K79X	\$0012

Table 1-3 Assigned Part ID Numbers

NOTES:

1. The coding is as follows:

Bit 15-12: Major family identifier

Bit 11-8: Minor family identifier

Bit 7-4: Major mask set revision number including FAB transfers

Bit 3-0: Minor - non full - mask set revision

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-4** shows the read-only values of these registers. Refer to section Module Mapping and Control (MMC) of HCS12 Core User Guide for further details.

Table 1-4 Memory size registers

Register name	Value
MEMSIZ0	\$25
MEMSIZ1	\$81

Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12DG256

2.3.23 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5

PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2).

2.3.24 PH4 / KWH4 / MISO2 — Port H I/O Pin 2

PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2).

2.3.25 PH3 / KWH3 / SS1 — Port H I/O Pin 3

PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as slave select pin \overline{SS} of the Serial Peripheral Interface 1 (SPI1).

2.3.26 PH2 / KWH2 / SCK1 — Port H I/O Pin 2

PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).

2.3.27 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1

PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).

2.3.28 PH0 / KWH0 / MISO1 — Port H I/O Pin 0

PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).

2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL - PORT J I/O Pin 7

PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module.

2.3.30 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6

PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial data pin SDA of the IIC module.

2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]

PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode .

2.3.32 PK7 / ECS / ROMONE — Port K I/O Pin 7

PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output (ECS). During MCU normal expanded wide and narrow modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMONE). At the rising edge of RESET, the state of this pin is latched to the ROMON bit.

2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]

PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address XADDR[19:14] for the external bus.

2.3.34 PM7 / TXCAN3 / TXCAN4 — Port M I/O Pin 7

PM7 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 3 or 4 (CAN3 or CAN4).

2.3.35 PM6 / RXCAN3 / RXCAN4 — Port M I/O Pin 6

PM6 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 3 or 4 (CAN3 or CAN4).

2.3.36 PM5 / TXCAN2 / TXCAN0 / TXCAN4 / SCK0 - Port M I/O Pin 5

PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 2, 0 or 4 (CAN2, CAN0 or CAN4). It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

2.3.37 PM4 / RXCAN2 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4

PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 2, 0 or 4 (CAN2, CAN0 or CAN4). It can be configured as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0).

2.3.38 PM3 / TXCAN1 / TXCAN0 / SS0 - Port M I/O Pin 3

PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the slave select pin \overline{SS} of the Serial Peripheral Interface 0 (SPI0).

2.3.39 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2

PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0).

2.3.40 PM1 / TXCAN0 / TXB - Port M I/O Pin 1

PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin TXB of the BDLC.

2.3.41 PM0 / RXCAN0 / RXB — Port M I/O Pin 0

PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin RXB of the BDLC.

2.3.42 PP7 / KWP7 / PWM7 / SCK2 - Port P I/O Pin 7

PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2).

2.3.43 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6

PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. It can be configured as slave select pin \overline{SS} of the Serial Peripheral Interface 2 (SPI2).

2.3.44 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5

PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2).

2.3.45 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4

PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2).

2.3.46 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3

PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It can be configured as slave select pin \overline{SS} of the Serial Peripheral Interface 1 (SPI1).

2.3.47 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2

PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).

2.3.48 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1

PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).

2.3.49 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0

PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).

2.3.50 PS7 / SS0 - Port S I/O Pin 7

PS6 is a general purpose input or output pin. It can be configured as the slave select pin \overline{SS} of the Serial Peripheral Interface 0 (SPI0).

2.3.51 PS6 / SCK0 - Port S I/O Pin 6

PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

Section 4 Modes of Operation

4.1 Overview

Eight possible modes determine the operating configuration of the MC9S12DP256B. Each mode has an associated default memory map and external bus configuration controlled by a further pin.

Three low power modes exist for the device.

4.2 Chip Configuration Summary

The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset (**Table 4-1**). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.

BKGD = MODC	PE6 = MODB	PE5 = MODA	PK7 = ROMCTL	ROMON Bit	Mode Description
0	0	0	x	1	Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active.
0	0	1	Х	0	Emulation Expanded Narrow, BDM allowed
0	1	0	Х	0	Special Test (Expanded Wide), BDM allowed
0	1	1	Х	0	Emulation Expanded Wide, BDM allowed
1	0	0	Х	1	Normal Single Chip, BDM allowed
1	0	1	0	0	Normal Expanded Narrow, BDM allowed
	0	1	1	1	Normal Expanded Narrow, DDM allowed
1	1	0	X	1	Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used)
1	1	1	0	0	Normal Expanded Wide, RDM allowed
			1	1	- Normal Expanded Wide, BDW allowed

Table	4-1	Mode	Selection
10010	•••	mouo	0010011011

For further explanation on the modes refer to the Core User Guide.

Table 4-2 Clock Selection Based on PE	7
---------------------------------------	---

PE7 = XCLKS	Description		
1	Colpitts Oscillator selected		
0	External clock selected		

- Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins(C1 C6).
- Central point of the ground star should be the VSSR pin.
- Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
- VSSPLL must be directly connected to VSSR.
- Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible.
- Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU.
- Central power input should be fed in at the VDDA/VSSA pins.

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS5} or V_{DD5}).

Num	Rating	Symbol	Min	Max	Unit
1	I/O, Regulator and Analog Supply Voltage	V _{DD5}	-0.3	6.0	V
2	Digital Logic Supply Voltage ²	V _{DD}	-0.3	3.0	V
3	PLL Supply Voltage ²	V _{DDPLL}	-0.3	3.0	V
4	Voltage difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.3	0.3	V
5	Voltage difference VSSX to VSSR and VSSA	Δ_{VSSX}	-0.3	0.3	V
6	Digital I/O Input Voltage	V _{IN}	-0.3	6.0	V
7	Analog Reference	$V_{RH,} V_{RL}$	-0.3	6.0	V
8	XFC, EXTAL, XTAL inputs	V _{ILV}	-0.3	3.0	V
9	TEST input	V _{TEST}	-0.3	10.0	V
10	Instantaneous Maximum Current Single pin limit for all digital I/O pins ³	I _D	-25	+25	mA
11	Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL ⁴	I _{DL}	-25	+25	mA
12	Instantaneous Maximum Current Single pin limit for TEST ⁵	I _{DT}	-0.25	0	mA
13	Storage Temperature Range	T _{stg}	- 65	155	°C

NOTES:

1. Beyond absolute maximum ratings device might be damaged.

Freescale Semiconductor, Inc. MC9S12DP256B Device User Guide - V02.14

- 3. Maximum Erase and Programming times are achieved under particular combinations of f_{NVMOP} and bus frequency f_{bus}. Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance.
- 4. urst Programming operations are not applicable to EEPROM
- 5. Minimum Erase times are achieved under maximum NVM operating frequency f_{NVMOP}.
- 6. Minimum time, if first word in the array is not blank
- 7. Maximum time to complete check on an erased block

A.3.2 NVM Reliability

The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures.

The failure rates for data retention and program/erase cycling are specified at the operating conditions noted.

The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed.

NOTE: All values shown in **Table A-12** are target values and subject to further extensive characterization.

		•				
Conditions are shown in Table A-4 unless otherwise noted						
Num	с	Rating	Cycles	Data Retention Lifetime	Unit	
1	С	Flash/EEPROM (-40C to + 125C)	10	15	Years	
2	С	EEPROM (-40C to + 125C)	10,000	5	Years	

Table A-12 NVM Reliability Characteristics

- NOTE: Flash cycling performance is 10 cycles at -40C to + 125C. Data retention is specified for 15 years.
- NOTE: EEPROM cycling performance is 10K cycles at -40C to +125C. Data retention is specified for 5 years on words after cycling 10K times. However if only 10 cycles are executed on a word the data retention is specified for 15 years.

A.5.1.4 Stop Recovery

Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system.

A.5.1.5 Pseudo Stop and Wait Recovery

The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After t_{wrs} the CPU starts fetching the interrupt vector.

A.5.2 Oscillator

The device features an internal Colpitts oscillator. By asserting the $\overline{\text{XCLKS}}$ input during reset this oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. t_{CQOUT} specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time t_{UPOSC} . The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency f_{CMFA} .

Condit	Conditions are shown in Table A-4 unless otherwise noted						
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	С	Crystal oscillator range	f _{OSC}	0.5		16	MHz
2	Р	Startup Current	iosc	100			μA
3	С	Oscillator start-up time	t _{UPOSC}		8 ¹	100 ²	ms
4	D	Clock Quality check time-out	t _{CQOUT}	0.45		2.5	s
5	Р	Clock Monitor Failure Assert Frequency	f _{CMFA}	50	100	200	KHz
6	Р	External square wave input frequency ³	f _{EXT}	0.5		50	MHz
7	D	External square wave pulse width low	t _{EXTL}	9.5			ns
8	D	External square wave pulse width high	t _{EXTH}	9.5			ns
9	D	External square wave rise time	t _{EXTR}			1	ns
10	D	External square wave fall time	t _{EXTF}			1	ns
11	D	Input Capacitance (EXTAL, XTAL pins)	C _{IN}		9		pF
12	с	DC Operating Bias in Colpitts Configuration on EXTAL Pin	V _{DCBIAS}		1.1		V

Table A-15	Oscillator	Characteristics
------------	------------	------------------------

NOTES:

1. $f_{osc} = 4MHz$, C = 22pF.

2. Maximum value is for extreme cases using high Q, low frequency crystals

3. XCLKS =0 during reset

A.5.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

A.5.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

Figure A-2 Basic PLL functional diagram

The following procedure can be used to calculate the resistance and capacitance values using typical values for K_1 , f_1 and i_{ch} from **Table A-16**.

The VCO Gain at the desired VCO output frequency is approximated by:

$$K_{V} = K_{1} \cdot e^{\frac{(f_{1} - f_{vco})}{K_{1} \cdot 1V}}$$

The phase detector relationship is given by:

$$K_{\Phi} = -|i_{ch}| \cdot K_{V}$$

i_{ch} is the current in tracking mode.