E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l486vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					Stop	o 0/1	Sto	op 2	Star	dby	Shut	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CPU	Y	-	Y	-	-	-	-	-	-	-	-	-	-
Flash memory (1 MB)	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	-	-	-	-	-	-	-	-	-
SRAM1 (96 KB)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Υ	-	Υ	-	-	-	-	-	-
SRAM2 (32 KB)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Y	-	Y	-	O ⁽⁴⁾	-	-	-	-
FSMC	0	0	0	0	-	-	-	-	-	-	-	-	-
Quad SPI	0	0	0	0	-	-	-	-	-	-	-	-	-
Backup Registers	Y	Y	Y	Y	Y	-	Y	-	Y	-	Y	-	Y
Brown-out reset (BOR)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	-	-
Programmable Voltage Detector (PVD)	0	0	0	0	0	0	0	0	-	-	-	-	-
Peripheral Voltage Monitor (PVMx; x=1,2,3,4)	0	0	0	0	0	0	0	0	-	-	-	-	-
DMA	0	0	0	0	-	-	-	-	-	-	-	-	-
High Speed Internal (HSI16)	0	0	0	0	(5)	-	(5)	-	-	-	-	-	-
High Speed External (HSE)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low Speed Internal (LSI)	0	0	0	0	0	-	0	-	0	-	-	-	-
Low Speed External (LSE)	0	0	0	0	0	-	0	-	0	-	0	-	0
Multi-Speed Internal (MSI)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System (CSS)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System on LSE	0	0	0	0	0	0	0	0	0	0	-	-	-
RTC / Auto wakeup	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of RTC Tamper pins	3	3	3	3	3	0	3	0	3	0	3	0	3
LCD	0	0	0	0	0	0	0	0	-	-	-	-	-

Table 5	Functionalities	depending	on the v	working	mode ⁽¹⁾
Table J.	i unclionanties	uepenung		working	moue

Figure 3. Clock tree

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.19 Operational amplifier (OPAMP)

The STM32L486xx embeds two operational amplifiers with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.20 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 24 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library
- Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

- start-of-conversion triggered by:
 - software trigger
 - internal timers
 - external events
 - start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
- analog watchdog feature:
 - low value and high value data threshold registers
 - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - input from final output data or from selected input digital serial channels
 - continuous monitoring independently from standard conversion
- short circuit detector to detect saturated analog input values (bottom and top range):
 - up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
 - monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event
- extremes detector:
 - storage of minimum and maximum values of final conversion data
 - refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
 - "injected" conversions for precise timing and with high conversion priority

3.23 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.24 Advanced encryption standard hardware accelerator (AES)

The devices embed an AES hardware accelerator can be used to both encipher and decipher data using AES algorithm.

3.38 Development support

3.38.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.38.2 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L486xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

	Pi	n Nur	nber				0		Pin function	ns
LQFP64	WLCSP72	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
25	J6	34	L5	45	PC5	I/O	FT_la	-	USART3_RX, LCD_SEG23, EVENTOUT	COMP1_INP, ADC12_IN14, WKUP5
26	J5	35	M5	46	PB0	I/O	TT_la	-	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, USART3_CK, QUADSPI_BK1_IO1, LCD_SEG5,COMP1_OUT, EVENTOUT	OPAMP2_ VOUT, ADC12_IN15
27	J4	36	M6	47	PB1	I/O	FT_la	-	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM1_DATIN0, USART3_RTS_DE, QUADSPI_BK1_IO0, LCD_SEG6, LPTIM2_IN1, EVENTOUT	COMP1_INM, ADC12_IN16
28	J3	37	L6	48	PB2	I/O	FT_a	-	RTC_OUT, LPTIM1_OUT, I2C3_SMBA, DFSDM1_CKIN0, EVENTOUT	COMP1_INP
-	-	-	K6	49	PF11	I/O	FT	-	EVENTOUT	-
-	-	-	J7	50	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	-	-	-	51	VSS	S	-	-	-	-
-	-	-	-	52	VDD	S	-	-	-	-
-	-	-	K7	53	PF13	I/O	FT	-	DFSDM1_DATIN6, FMC_A7, EVENTOUT	-
-	-	-	J8	54	PF14	I/O	FT	-	DFSDM1_CKIN6, TSC_G8_IO1, FMC_A8, EVENTOUT	-
-	-	-	J9	55	PF15	I/O	FT	-	TSC_G8_IO2, FMC_A9, EVENTOUT	-
-	-	-	H9	56	PG0	I/O	FT	-	TSC_G8_IO3, FMC_A10, EVENTOUT	-
-	-	-	G9	57	PG1	I/O	FT	-	TSC_G8_IO4, FMC_A11, EVENTOUT	-
-	-	38	M7	58	PE7	I/O	FT	-	TIM1_ETR, DFSDM1_DATIN2, FMC_D4, SAI1_SD_B, EVENTOUT	-

Table 15. STM32L486xx pin definitions (continued)

	Pi	n Nun	nber				0		Pin function	ns
LQFP64	WLCSP72	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
62	E8	96	В3	140	PB9	I/O	FT_fl	-	IR_OUT, TIM4_CH4, I2C1_SDA, SPI2_NSS, DFSDM1_CKIN6, CAN1_TX, LCD_COM3, SDMMC1_D5, SAI1_FS_A, TIM17_CH1, EVENTOUT	-
-	-	97	C3	141	PE0	I/O	FT_I	-	TIM4_ETR, LCD_SEG36, FMC_NBL0, TIM16_CH1, EVENTOUT	-
-	-	98	A2	142	PE1	I/O	FT_I	-	LCD_SEG37, FMC_NBL1, TIM17_CH1, EVENTOUT	-
63	A8	99	D3	143	VSS	S	-	-	-	-
64	A9	100	C4	144	VDD	S	-	-	-	-

Table 15. STM32L486xx pin definitions (continued)

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED). 1.

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0351 reference manual.

3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
APB1	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	LCD
	0x4000 1800 - 0x4000 23FF	3 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0C00- 0x4000 0FFF	1 KB	TIM5
	0x4000 0800 - 0x4000 0BFF	1 KB	TIM4
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 18. STM32L486xx memory map and peripheral register bour	Idary
addresses ⁽¹⁾ (continued)	-

1. The gray color is used for reserved boundary addresses.

6.1.6 Power supply scheme

Figure 13. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

STM32L486xx

Electrical characteristics

				Table 35.	Curren	t cons	umptio	n in St	op 1 mo	ode						
	Cumhal	Devenuetor	Сог	nditions				TYP					MAX ⁽¹)		11
	Бутвої	Parameter	-	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
					1.8 V	6.59	24.7	92.7	208	437	16	62	232	520	1093	
			LCD	2.4 V	6.65	24.8	92.9	209	439	17	62	232	523	1098		
		Supply current	-	disabled	3 V	6.65	24.9	93.3	210	442	17	62	233	525	1105	
	Inn (Stop 1)	in Stop 1			3.6 V	6.70	25.1	93.8	212	447	17	63	235	530	1118	ıιΔ
		mode,		LCD	1.8 V	7.00	25.2	97.2	219	461	18	63	243	548	1153	μΛ
		RTC disabled	_	enabled ⁽²⁾	2.4 V	7.14	25.4	97.5	220	463	18	64	244	550	1158	
			-	clocked by	3 V	7.24	25.7	97.7	221	465	18	64	244	553	1163	
		LSI	3.6 V	7.36	26.1	98.7	223	471	18	65	247	558	1178			
				1.8 V	6.88	25.0	93.1	209	439	17	63	233	523	1098		
			RTC clocked by LSI	LCD disabled	2.4 V	7.02	25.2	93.7	210	441	18	63	234	525	1103	
					3 V	7.12	25.4	94.2	212	444	18	64	236	530	1110	
					3.6 V	7.25	25.7	95.2	214	449	18	64	238	535	1123	
					1.8 V	7.01	26.1	99.0	223	467	18	65	248	558	1168	
				LCD	2.4 V	7.14	26.3	99.6	225	470	18	66	249	563	1175	
		Supply current		enabled ⁽²⁾	3 V	7.31	26.6	100.0	226	474	18	67	250	565	1185	
	I _{DD} (Stop 1	in stop 1			3.6 V	7.41	26.9	102.0	229	480	19	67	255	573	1200	μА
	with RTC)	mode,	DTC alcoled by		1.8 V	6.91	25.2	93.4	210	440	17	63	234	525	1100	μ. ι
		RTC enabled	I SE bypassed	LCD	2.4 V	7.04	25.3	94.2	211	443	18	63	236	528	1108	
			at 32768 Hz	disabled	3 V	7.19	25.7	95.0	212	446	18	64	238	530	1115	
					3.6 V	7.97	26.0	96.1	215	451	20	65	240	538	1128	
			DTC alcoled by		1.8 V	6.85	25.0	93.0	208.3	-	17	63	233	521	-	
			$I SE quartz^{(3)}$ in	LCD	2.4 V	6.94	25.1	93.2	209.3	-	17	63	233	523	-	
			low drive mode	disabled	3 V	7.10	25.2	93.6	210.3	-	18	63	234	526	-	
					3.6 V	7.34	25.4	94.1	212.3	-	18	64	235	531	-	

115/233

Figure 20. HSI16 frequency versus temperature

						,		
Sym- bol	Parameter	C	Conditions ⁽⁴)	Min	Тур	Max	Unit
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-73	
Total THD harmonic distortion	Total	tal 80 MHZ, irmonic Sampling rate \leq 5.33 Msps, stortion $V_{DDA} = V_{REE+} = 3 V$,	ended	Slow channel (max speed)	-	-74	-73	dB
	distortion		Differential	Fast channel (max speed)	-	-79	-76	uВ
		TA = 25 °C	Dinerential	Slow channel (max speed)	-	-79	-76	

Table 66. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

6.3.18 Digital-to-Analog converter characteristics

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for DAC ON		-	1.8	-	3.6	
V _{REF+}	Positive reference voltage		-	1.8	-	V_{DDA}	V
V _{REF-}	Negative reference voltage		-		V_{SSA}		
R	Resistive load	DAC output connected to V _{SSA}		5	-	-	kΩ
		buffer ON connected to V _{DDA}		25	-	-	
R _O	Output Impedance	DAC output bu	ffer OFF	9.6	11.7	13.8	kΩ
_	Output impedance sample	V _{DD} = 2.7 V		-	-	2	
R _{BON}	and hold mode, output buffer ON	V _{DD} = 2.0 V		-	-	3.5	kΩ
_	Output impedance sample	V _{DD} = 2.7 V		-	-	16.5	
R _{BOFF}	and hold mode, output buffer OFF	V _{DD} = 2.0 V		-	-	18.0	kΩ
CL		DAC output buffer ON		-	-	50	pF
C _{SH}		Sample and hold mode		-	0.1	1	μF
V _{DAC OUT}	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{REF+} – 0.2	v
-	σαιραί	DAC output bu	ffer OFF	0	-	V_{REF+}	
			±0.5 LSB	-	1.7	3	
	Settling time (full scale: for	Normal mode	±1 LSB	-	1.6	2.9	
	a 12-bit code transition between the lowest and the	buffer ON	±2 LSB	-	1.55	2.85	
t _{SETTLING}	highest input codes when	CL ≤ 50 pF, RL ≥ 5 kO	±4 LSB	-	1.48	2.8	μs
	value ±0.5LSB, ±1 LSB,		±8 LSB	-	1.4	2.75	
	±2 LSB, ±4 LSB, ±8 LSB)	Normal mode DAC output buffer OFF, ±1LSB, CL = 10 pF		-	2	2.5	
	Wakeup time from off state (setting the ENx bit in the	Normal mode DAC output buffer ON $CL \le 50 \text{ pF}, \text{RL} \ge 5 \text{ k}\Omega$		-	4.2	7.5	
⁽ WAKEUP ^{,-7}	DAC Control register) until final value ±1 LSB	Normal mode I OFF, CL ≤ 10 p	Normal mode DAC output buffer OFF, CL ≤ 10 pF		2	5	μs
PSRR	V _{DDA} supply rejection ratio	Normal mode I CL ≤ 50 pF, RL	DAC output buffer ON = 5 kΩ, DC	-	-80	-28	dB

Table 70. DAC characteristics⁽¹⁾

6.3.24 LCD controller characteristics

The devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the VLCD pin to decouple this converter.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{LCD}	LCD external voltage		-	-	3.6	
V _{LCD0}	LCD internal reference volta	ge 0	-	2.62	-	
V _{LCD1}	LCD internal reference volta	ge 1	-	2.76	-	
V _{LCD2}	LCD internal reference volta	ge 2	-	2.89	-	
V _{LCD3}	LCD internal reference volta	ge 3	-	3.04	-	V
V _{LCD4}	LCD internal reference volta	ge 4	-	3.19	-	
V _{LCD5}	LCD internal reference volta	ge 5	-	3.32	-	
V _{LCD6}	LCD internal reference volta	ge 6	-	3.46	-	
V _{LCD7}	LCD internal reference volta	ge 7	-	3.62	-	
6		Buffer OFF (BUFEN=0 is LCD_CR register)	0.2	-	2	E
Cext		Buffer ON (BUFEN=1 is LCD_CR register)	1	-	2	μr
. (2)	Supply current from V_{DD} at V_{DD} = 2.2 V	Buffer OFF (BUFEN=0 is LCD_CR register)	-	3	-	
LCD, ,	Supply current from V_{DD} at V_{DD} = 3.0 V	Buffer OFF (BUFEN=0 is LCD_CR register)	-	1.5	-	μΑ
		Buffer OFF (BUFFEN = 0, PON = 0)	-	0.5	-	
	Supply current from VICD	Buffer ON (BUFFEN = 1, 1/2 Bias)	-	0.6	-	
IVLCD	$(V_{LCD} = 3 V)$	Buffer ON (BUFFEN = 1, 1/3 Bias)	-	0.8	-	μΑ
		Buffer ON (BUFFEN = 1, 1/4 Bias)	-	1	-	
R _{HN}	Total High Resistor value for	Low drive resistive network	-	5.5	-	MΩ
R _{LN}	Total Low Resistor value for	High drive resistive network	-	240	-	kΩ
V ₄₄	Segment/Common highest l	evel voltage	-	V _{LCD}	-	
V ₃₄	Segment/Common 3/4 level	voltage	-	3/4 V _{LCD}	-	
V ₂₃	Segment/Common 2/3 level	voltage	-	2/3 V _{LCD}	-	
V ₁₂	Segment/Common 1/2 level	voltage	-	1/2 V _{LCD}	-	V
V ₁₃	Segment/Common 1/3 level	voltage	-	1/3 V _{LCD}	-	
V ₁₄	Segment/Common 1/4 level	voltage	-	1/4 V _{LCD}	-	
V ₀	Segment/Common lowest le	vel voltage	-	0	-	

Table 78.	LCD	controller	characteristics ⁽¹⁾
-----------	-----	------------	--------------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
CMD, D outp	CMD, D outputs (referenced to CK) in SD default mode								
t _{OVD}	Output valid default time SD	f _{PP} = 50 MHz	-	4.5	5	ns			
t _{OHD}	Output hold default time SD	f _{PP} = 50 MHz	0	-	-	ns			

Table 88. SD / MMC	dynamic characteristics	, V _{DD} =2.7 V t	to 3.6 \	/ ⁽¹⁾ (cc	ontinue	d)
						-

1. Guaranteed by characterization results.

Table 89. eMMC dynamic characteristics, V_{DD} = 1.71 V to 1.9 V ⁽¹⁾⁽²⁾
--

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz		
-	SDIO_CK/f _{PCLK2} frequency ratio	-	-	-	4/3	-		
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns		
t _{W(CKH)}	Clock high time $f_{PP} = \xi$		8	10	-	ns		
CMD, D inputs (referenced to CK) in eMMC mode								
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	0	-	-	ns		
t _{IH}	Input hold time HS $f_{PP} = 50$		5	-	-	ns		
CMD, D outputs (referenced to CK) in eMMC mode								
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	13.5	15.5	ns		
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	9	-	-	ns		

1. Guaranteed by characterization results.

2. C_{LOAD} = 20pF.

Figure	35.	SDIO	high-speed	mode
inguic	00.	0010	ingii spece	moue

DocID025977 Rev 5

- 1. CL = 30 pF.
- 2. Guaranteed by characterization results.

Figure 44. Synchronous non-multiplexed PSRAM write timings

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP144 package information

Figure 49. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

DocID025977 Rev 5

7.3 LQFP100 package information

Figure 55. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 109. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	

DocID025977 Rev 5

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 109. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 56. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 63. LQFP64 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

