E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l486zgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32L486xx devices are the ultra-low-power microcontrollers based on the highperformance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32L486xx devices embed high-speed memories (1 Mbyte of Flash memory, 128 Kbyte of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The STM32L486xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.

The devices offer up to three fast 12-bit ADCs (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM).

In addition, up to 24 capacitive sensing channels are available. The devices also embed an integrated LCD driver 8x40 or 4x44, with internal step-up converter.

They also feature standard and advanced communication interfaces.

- Three I2Cs
- Three SPIs
- Three USARTs, two UARTs and one Low-Power UART.
- Two SAIs (Serial Audio Interfaces)
- One SDMMC
- One CAN
- One USB OTG full-speed
- One SWPMI (Single Wire Protocol Master Interface)

The STM32L486xx devices embed AES hardware accelerator.

The STM32L486xx operates in the -40 to +85 $^{\circ}$ C (+105 $^{\circ}$ C junction), -40 to +105 $^{\circ}$ C (+125 $^{\circ}$ C junction) and -40 to +125 $^{\circ}$ C (+130 $^{\circ}$ C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMPs and comparators, 3.3 V dedicated supply input for USB and up to 14 I/Os can be supplied independently down to 1.08V. A VBAT input allows to backup the RTC and backup registers.

The STM32L486xx family offers five packages from 64-pin to 144-pin packages.

Peripheral	STM32L486Zx	STM32L486Qx	STM32L486Vx	STM32L486Jx	STM32L486Rx
GPIOs	114	109	82	57	51
Wakeup pins	5	5	5	4	4
Nb of I/Os down to 1.08 V	14	14	0	6	0
Capacitive sensing Number of channels	24	24	21	12	12
12-bit ADCs	3	3	3	3	3
Number of channels	24	19	16	16	16
12-bit DAC channels			2		
Internal voltage reference buffer		Ŷ	⁄es		No
Analog comparator			2		
Operational amplifiers			2		
Max. CPU frequency			80 MHz		
Operating voltage			1.71 to 3.6 V		
Operating temperature				/ -40 to 105 °C / -4 0 to 125 °C / -40 to	
Packages	LQFP144	UFBGA132	LQFP100	WLCSP72	LQFP64

Table 2. STM32L486xx family device features and peripheral counts (continued)

1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 core with FPU

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32L486xx family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32L486xx family devices.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

DocID025977 Rev 5

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address		
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), $V_{DDA} = V_{REF+} = 3.0 V (\pm 10 mV)$	0x1FFF 75A8 - 0x1FFF 75A9		
TS_CAL2	TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), $V_{DDA} = V_{REF+} = 3.0 V (\pm 10 mV)$	0x1FFF 75CA - 0x1FFF 75CB		

 Table 8. Temperature sensor calibration values

3.15.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address
VREFINT	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = V _{REF+} = 3.0 V (± 10 mV)	0x1FFF 75AA - 0x1FFF 75AB

Table 9. Internal voltage reference calibration values

3.15.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the V_{BAT} voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third the V_{BAT} voltage.

3.16 Digital to analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- Up to two DAC output channels
- 8-bit or 12-bit output mode
- Buffer offset calibration (factory and user trimming)
- Left or right data alignment in 12-bit mode
- Synchronized update capability

	Pi	n Nur	nber						Pin functions		
LQFP64	WLCSP72	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
55	A6	89	A8	133	PB3 (JTDO- TRACESWO)	I/O	FT_la	(3)	JTDO-TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK, USART1_RTS_DE, LCD_SEG7, SAI1_SCK_B, EVENTOUT	COMP2_INM	
56	C6	90	A7	134	PB4 (NJTRST)	I/O	FT_la	(3)	NJTRST, TIM3_CH1, SPI1_MISO, SPI3_MISO, USART1_CTS, UART5_RTS_DE, TSC_G2_IO1,LCD_SEG8, SAI1_MCLK_B, TIM17_BKIN, EVENTOUT	COMP2_INP	
57	C7	91	C5	135	PB5	I/O	FT_la	-	LPTIM1_IN1, TIM3_CH2, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI, USART1_CK, UART5_CTS, TSC_G2_IO2, LCD_SEG9, COMP2_OUT, SAI1_SD_B, TIM16_BKIN, EVENTOUT	-	
58	В7	92	В5	136	PB6	I/O	FT_fa	-	LPTIM1_ETR, TIM4_CH1, TIM8_BKIN2, I2C1_SCL, DFSDM1_DATIN5, USART1_TX, TSC_G2_IO3, TIM8_BKIN2_COMP2, SAI1_FS_B, TIM16_CH1N, EVENTOUT	COMP2_INP	
59	A7	93	B4	137	PB7	I/O	FT_fla	-	LPTIM1_IN2, TIM4_CH2, TIM8_BKIN, I2C1_SDA, DFSDM1_CKIN5, USART1_RX, UART4_CTS, TSC_G2_IO4, LCD_SEG21, FMC_NL, TIM8_BKIN_COMP1, TIM17_CH1N, EVENTOUT	COMP2_INM, PVD_IN	
60	D7	94	A4	138	BOOT0	I	-	-	-	-	
61	E7	95	A3	139	PB8	I/O	FT_fl	-	TIM4_CH3, I2C1_SCL, DFSDM1_DATIN6, CAN1_RX, LCD_SEG16, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT	-	

Table 15. STM32L486xx pin definitions (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

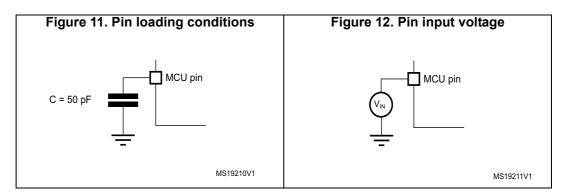
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 11.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

		Table 37. Curre		isump		Stanub	y moue	(Contin	ueu)					
Symbol	Parameter	Conditions		ТҮР				MAX ⁽¹⁾				Unit		
Symbol	Farameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
	Supply current		1.8 V	235	641	2293	5192	11213	588	1603	5733	12980	28033	
I _{DD} (SRAM2)	to be added in		2.4 V	237	645	2303	5213	11246	593	1613	5758	13033	28115	nA
(4)	Standby mode when SRAM2	-	3 V	236	647	2306	5221	11333	593	1618	5765	13053	28333	
	is retained		3.6 V	235	646	2308	5200	11327	595	1620	5770	13075	28350	
I _{DD} (wakeup from Standby)	Supply current during wakeup from Standby mode	Wakeup clock is MSI = 4 MHz. See ⁽⁵⁾ .	3 V	1.7	-	-	-	-			-			mA

Table 27 Convent concurrentian in Standby mode (continued)

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

The supply current in Standby with SRAM2 mode is: I_{DD}(Standby) + I_{DD}(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: I_{DD}(Standby + RTC) + I_{DD}(SRAM2).

5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 41: Low-power mode wakeup timings.

Table 38. Current consumption in Shutdown mode

Symbol	Parameter	Conditions				ТҮР					MAX ⁽¹⁾			Unit
		-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
	Supply current		1.8 V	29.8	194	1110	3250	9093	75	485	2775	8125	22733	
	in Shutdown mode		2.4 V	44.3	237	1310	3798	10473	111	593	3275	9495	26183	
I _{DD} (Shutdown)		-	3 V	64.1	293	1554	4461	12082	160	733	3885	11153	30205	nA
	(backup registers retained) RTC disabled		3.6 V	112	420	2041	5689	15186	280	1050	5103	14223	37965	

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 40*. The MCU is placed under the following conditions:

- All I/O pins are in Analog mode
- The given value is calculated by measuring the difference of the current consumptions:
 - when the peripheral is clocked on
 - when the peripheral is clocked off
- Ambient operating temperature and supply voltage conditions summarized in *Table 19: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 40*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	Bus Matrix ⁽¹⁾	4.5	3.7	4.1	
	ADC independent clock domain	0.4	0.1	0.2	
	ADC AHB clock domain	5.5	4.7	5.5	
	AES	1.7	1.5	1.6	
	CRC	0.4	0.2	0.3	
	DMA1	1.4	1.3	1.4	
	DMA2	1.5	1.3	1.4	
	FLASH	6.2	5.2	5.8	
	FMC	8.9	7.5	8.4	
	GPIOA ⁽²⁾	4.8	3.8	4.4	7
	GPIOB ⁽²⁾	4.8	4.0	4.6	
AHB	GPIOC ⁽²⁾	4.5	3.8	4.3	µA/MHz
	GPIOD ⁽²⁾	4.6	3.9	4.4	P
	GPIOE ⁽²⁾	5.2	4.5	4.9	
	GPIOF ⁽²⁾	5.9	4.9	5.7	
	GPIOG ⁽²⁾	4.3	3.8	4.2	
	GPIOH ⁽²⁾	0.7	0.6	0.8	
	OTG_FS independent clock domain	23.2	NA	NA	
	OTG_FS AHB clock domain	16.4	NA	NA	
	QUADSPI	7.8	6.7	7.3	
	RNG independent clock domain	2.2	NA	NA	
	RNG AHB clock domain	0.6	NA	NA	
	SRAM1	0.9	0.8	0.9	

Table 40. Peripheral current consumption

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 54*. They are based on the EMS levels and classes defined in application note AN1709.

,	Symbol	Parameter	Conditions	Level/ Class
	V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ f _{HCLK} = 80 MHz, conforming to IEC 61000-4-2	3B
	V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_{A} = +25 °C, f _{HCLK} = 80 MHz, conforming to IEC 61000-4-4	4A

Table 54. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

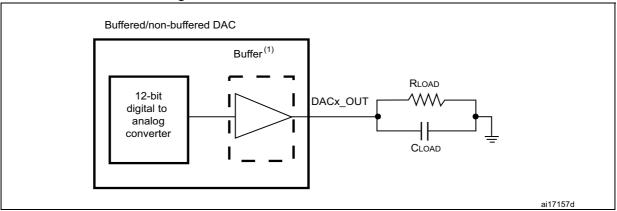
Software recommendations

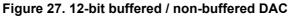
The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

	Tun	ne 05. Abo accuracy - In				,			
Sym- bol	Parameter	(Conditions ⁽⁴⁾					Unit	
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-71	-69		
THD	Total harmonic		ended	Slow channel (max speed)	-	-71	-69	9 dB	
	distortion	3.6 V,	Differential	Fast channel (max speed)	-	-73	-72	uв	
	Voltage scaling Range 2	Differential	Slow channel (max speed)	-	-73	-72			

Table 69. ADC accuracy - limited test c	conditions 4 ⁽¹⁾⁽²⁾⁽³⁾ (continued)	
---	---	--


1. Guaranteed by design.


2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0351 reference manual for more details.

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit
DNI	Differential non	DAC output buffer ON		-	-	±2	
DNL	linearity ⁽²⁾	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits		ę	guarantee	d	
INL	Integral non	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4	
INL	linearity ⁽³⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4	
	Offset error at code 0x800 ⁽³⁾	DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±12	
Offset		CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB
		DAC output buffer OFF CL ≤ 50 pF, no RL	·	-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5	
OffsetCal	Offset Error at code 0x800	DAC output buffer ON	V _{REF+} = 3.6 V	_	-	±5	
Unselual	after calibration	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	
Gain	DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω			-	-	±0.5	%
Gain	Gain error ⁽⁵⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±0.5	70

Table 71. DAC accuracy⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Unit	
t _{res(TIM)}	Timer resolution time	-	1	-	t _{TIMxCLK}	
		f _{TIMxCLK} = 80 MHz	12.5	-	ns	
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz	
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 80 MHz	0	40	MHz	
Res _{TIM}	Timer resolution	TIMx (except TIM2 and TIM5)	-	16	bit	
		TIM2 and TIM5	-	32		
+	16-bit counter clock	-	1	65536	t _{TIMxCLK}	
^t COUNTER	period	f _{TIMxCLK} = 80 MHz	0.0125	819.2	μs	
t _{MAX_COUNT}	Maximum possible count with 32-bit counter	-	-	65536 × 65536	t _{TIMxCLK}	
		f _{TIMxCLK} = 80 MHz	-	53.68	S	

Table 80. TIMx⁽¹⁾ characteristics

1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 81. IWDG min/max timeout	period at 32 kHz (LSI) ⁽¹	I)
--------------------------------	--------------------------------------	----

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there
is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit	
1	0	0.0512	3.2768		
2	1	0.1024	6.5536	ms	
4	2	0.2048	13.1072	ms	
8	3	0.4096	26.2144		

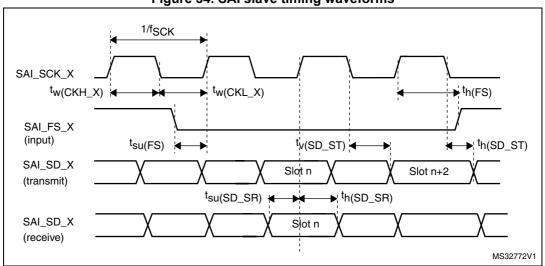
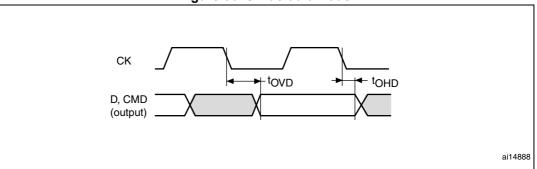


Figure 34. SAI slave timing waveforms

SDMMC characteristics

Unless otherwise specified, the parameters given in *Table 88* for SDIO are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}


Refer to Section 6.3.14: I/O port characteristics for more details on the input/output characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz	
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	4/3	-	
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns	
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns	
CMD, D input	ts (referenced to CK) in MMC and SD H	S mode					
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	2	-	-	ns	
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	4.5	-	-	ns	
CMD, D outp	uts (referenced to CK) in MMC and SD	HS mode					
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	12	14	ns	
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	9	-	-	ns	
CMD, D inputs (referenced to CK) in SD default mode							
t _{ISUD}	Input setup time SD	f _{PP} = 50 MHz	2	-	-	ns	
t _{IHD}	Input hold time SD	f _{PP} = 50 MHz	4.5	-	-	ns	

Table 88. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 V⁽¹⁾

Figure 36. SD default mode

USB characteristics

The STM32L486xx USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDUSB}	USB transceiver operating voltage		3.0 ⁽¹⁾	-	3.6	V
R _{PUI}	Embedded USB_DP pull-up value during idle		900	1250	1600	
R _{PUR}	Embedded USB_DP pull-up value during reception		1400	2300	3200	Ω
Z _{DRV} ⁽²⁾	Output driver impedance ⁽³⁾	Driving high and low	28	36	44	Ω

Table 90. USB electrical characteristics

1. The STM32L486xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range.

2. Guaranteed by design.

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

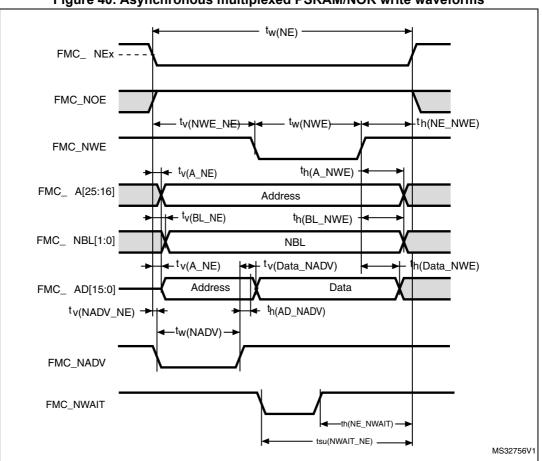


Figure 40. Asynchronous multiplexed PSRAM/NOR write waveforms

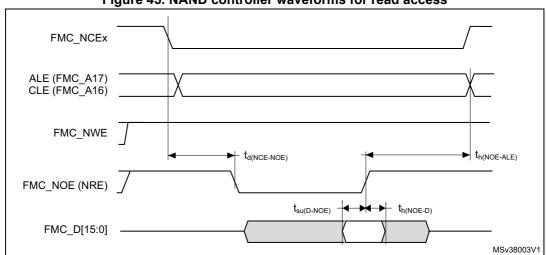


Figure 45. NAND controller waveforms for read access

Figure 46. NAND controller waveforms for write access

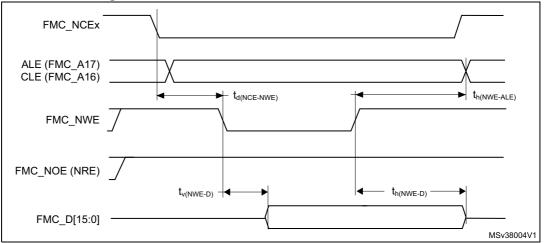
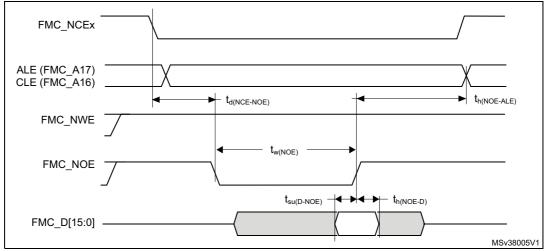
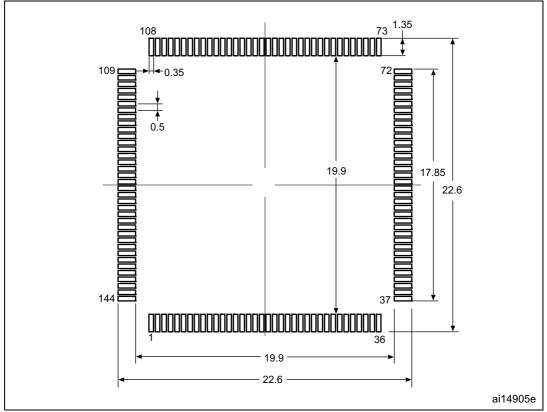
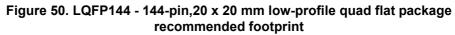





Figure 47. NAND controller waveforms for common memory read access

1. Dimensions are expressed in millimeters.

As applications do not commonly use the STM32L486xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in Table 113 T_{Jmax} is calculated as follows:

– For LQFP64, 45 °C/W

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$) see Section 8: Part numbering.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Part numbering).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885 ^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885 ^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 100 \degree C$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}, V_{DD} = 3.5 \text{ V}, \text{ maximum } 20 \text{ I/Os used at the same time in output at low level with } I_{OL} = 8 \text{ mA}, V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Using the values obtained in *Table 113* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W
- T_{Jmax} = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Part numbering*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 64* to select the required temperature range (suffix 6 or 7) according to your ambient temperature or power requirements.

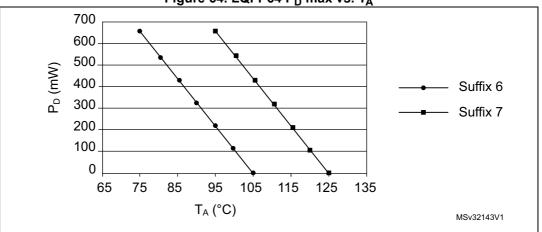


Figure 64. LQFP64 P_D max vs. T_A

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID025977 Rev 5