E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	72
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str731fv0t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6	Orde	Order codes					
7	Kno	wn limitations					
	7.1	Low power wait for interrupt mode 50					
	7.2	PLL free running mode at high temperature					
8	Revi	sion history					

2 Overview

Features	STR730FZx		STR735FZx		STR731FVx			STR736FVx			
Flash memory - bytes	128K	256K	128K	256K	64K	128K	256K	64K	128K	256K	
RAM - bytes		16	δK	•	16 K						
Peripheral functions	10 32 v	10 TIM timers, 112 I/Os, 6 TIN 32 wake-up lines, 16 ADC					TIM timers, 72 I/Os, 18 wake-up lines, 12 ADC channels				
CAN peripherals		3	(0		3 0					
Operating voltage					4.5 to	5.5 V					
Operating temperature		-40 to +85°C/-40 to +									
Packages	T H	=TQFP1 =LFBGA	44 20 x 2 144 10 x	20 10			F =TQFP1	00 14x1	4		

Table 2. Product overview

Package choice: reduced pin-count TQFP100 or feature-rich 144-pin TQFP or LFBGA

The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on each package.

The family includes versions with and without CAN.

High speed Flash memory

The Flash program memory is organized in 32-bit wide memory cells which can be used for storing both code and data constants. It is accessed by CPU with zero wait states @ 36 MHz.

The STR7 embedded Flash memory can be programmed using in-circuit programming or in-application programming.

The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years @ 85° C.

IAP (in-application programming): IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running.

ICP (in-circuit programming): ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board.

The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection:

- Sector write protection
- Flash debug protection (locks JTAG access)

Flexible power management

To minimize power consumption, you can program the STR73xF to switch to SLOW, WFI LPWFI, STOP or HALT modes depending on the current system activity in the application.

Flexible clock control

Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2 MHz or 32 kHz. The embedded PLL can be configured to generate an internal system clock of up to 36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers and dividers.

Voltage regulators

The STR73xF requires an external 4.5 to 5.5 V power supply. There are two internal Voltage Regulators for generating the 1.8 V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait for Interrupt (LPWFI) mode.

Low voltage detectors

The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8 V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF.

Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly.

2.1 On-chip peripherals

CAN interfaces

The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736.

DMA

4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to peripheral, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity.

16-bit timers (TIM)

Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph).

PWM modules (PWM)

The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor.

Timebase timers (TB)

The three 16-bit timebase timers with 8-bit prescaler for general purpose time triggering operations.

Real-time clock (RTC)

The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or

3 Block diagram

Figure 1. STR730F/STR735F block diagram

Figure 2. STR731F/STR736 block diagram

Table 4.	STR73xF pir	description
----------	-------------	-------------

	Pin n°	I				Inp	out	Ou	tpu	t			
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	QO	РР	Main function (after reset)	Alternate	function
50	J5	36	V _{DD}	S							Supply vo	ltage (5 V)	
51	M6	37	V _{SS}	S							Ground		
52	M7	38	XTAL1	Ι							Oscillator internal cl	amplifier circuit i ock generator inp	nput and out.
53	H5	39	XTAL2	0							Oscillator	amplifier circuit o	output.
54	L6	40	V _{SS}	S							Ground		
55	K6	41	P2.8/TDO1/CA N2RX	I/O	Τ _Τ			2mA	x	x	Port 2.8	UART1: transmit data output	CAN2: receive data input (TQFP100 only)
56	J6	42	P2.9/RDI1/CAN 2TX	I/O	Τ _Τ		WUP14	2mA	x	x	Port 2.9	UART1: receive data input	CAN2: transmit data output (TQFP100 only)
57	H6		P2.10	I/O	Τ _Τ		WUP16	2mA	Х	Х	Port 2.10		
58	G6		P2.11	I/O	Τ _Τ		WUP17	2mA	х	Х	Port 2.11		
59	L7		P2.12	I/O	Τ _Τ		INT14	2mA	Х	Х	Port 2.12		
60	K7		P2.13	I/O	Τ _Τ		INT15	2mA	Х	Х	Port 2.13		
61	J7	43	P2.14/SCL0	I/O	Τ _Τ		WUP15	2mA	Х	Х	Port 2.14	I2C0: serial cloc	k
62	H7	44	P2.15/SDA0	I/O	Τ _Τ			2mA	Х	Х	Port 2.15	I2C0: serial data	a
63	M8	45	Test	Ι		pd					Reserved	pin. Must be tied	I to ground
64	L8	46	V _{BIAS}	S							Internal R external r this pin w frequency	C oscillator bias. esistor has to be hen a 32 kHZ RC r is used.	A 1.3 MΩ connected to coscillator
65	M10	47	V _{SS}	S							Ground		
66	M11	48	V _{DD}	S							Supply vo	ltage (5 V)	
67	K8		P3.0/AIN0	I/O	Τ _Τ			2mA	Х	Х	Port 3.0	ADC: analog inp	out 0
68	J8		P3.1/AIN1	I/O	Τ _Τ			2mA	х	х	Port 3.1	ADC: analog inp	out 1
69	M9		P3.2/AIN2	I/O	Τ _Τ			2mA	Х	Х	Port 3.2	ADC: analog inp	out 2
70	L9		P3.3/AIN3	I/O	Τ _Τ			2mA	Х	Х	Port 3.3	ADC: analog inp	out 3
71	K9	49	P3.4/AIN4	I/O	Τ _Τ			2mA	х	х	Port 3.4	ADC: analog inp (AIN0 in TQFP1	out 4 00)
72	L10	50	P3.5/AIN5	I/O	Τ _Τ			2mA	х	х	Port 3.5	ADC: Analog in (AIN1 in TQFP1	out 5 00)

Table 4.	STR73xF p	oin description
----------	-----------	-----------------

	Pin n°					Inp	out	Ou	tpu	t			
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	OD	РР	Main function (after reset)	Alternate	function
97	F9		P4.3/ICAPB8	I/O	Τ _Τ		WUP27	2mA	Х	Х	Port 4.3	TIM8: input capt	ure B input
98	F8		P4.4/CAN2TX	I/O	Τ _Τ			2mA	Х	Х	Port 4.4	CAN2: transmit	data output
99	E12		P4.5/CAN2RX	I/O	Τ _Τ		WUP18	2mA	Х	Х	Port 4.5	CAN2: receive d	lata input
100	E11	72	P4.6/SCL1	I/O	Τ _Τ		WUP19	2mA	Х	Х	Port 4.6	I2C1: serial cloc	k
101	C12	73	P4.7/SDA1	I/O	Τ _Τ			2mA	Х	Х	Port 4.7	I2C1: serial data	l
102	B12		P4.8/OCMPA8	I/O	Τ _Τ			2mA	Х	Х	Port 4.8	TIM8: output cor	mpare A output
103	E10		P4.9/ICAPB6	I/O	Τ _Τ			2mA	Х	Х	Port 4.9	TIM6: input capt	ure B input
104	E9	74	P4.10/ICAPA6/I CAPB5	I/O	Τ _Τ		WUP20	2mA	х	x	Port 4.10	TIM6: input capture A input (144-pin pkg only)	TIM5: input capture B input (TQFP100 only)
105	D12		P4.11/OCMPB 8	I/O	Τ _Τ			2mA	х	х	Port 4.11	TIM8: output compare B outp	
106	D11		P4.12/ICAPA9	I/O	Τ _Τ		WUP21	2mA	Х	х	Port 4.12	TIM9: input capture A input	
107	D10		P4.13/ICAPB9	I/O	Τ _Τ			2mA	Х	Х	Port 4.13	TIM9: input capture B input	
108	C11	75	P4.14/SS1	I/O	Τ _Τ			2mA	Х	х	Port 4.14	BSPI1: slave se	lect
109	B11	76	P4.15/SCK1	I/O	Τ _Τ		WUP22	2mA	Х	х	Port 4.15	BSPI1: serial clo	ock
110	B10	77	P5.0/MOSI1	I/O	Τ _Τ			2mA	х	х	Port 5.0	BSPI1: master c input	output/slave
111	C10	78	P5.1/MISO1	I/O	Τ _Τ			2mA	х	х	Port 5.1	BSPI1: master in output	nput/Slave
112	A9		P5.2/OCMPA9	I/O	Τ _Τ			2mA	Х	Х	Port 5.2	TIM9: output cor	mpare A output
113	B9		P5.3/OCMPB9	I/O	Τ _Τ			2mA	Х	Х	Port 5.3	TIM9: output cor	mpare B output
114	C9	79	P5.4/ SS 2/PWM 3	I/O	Τ _Τ			2mA	х	x	Port 5.4	BSPI2: slave select	PWM3: PWM output (TQFP100 only)
115	D9	80	P5.5/SCK2	I/O	Τ _Τ		WUP23	2mA	Х	Х	Port 5.5	BSPI2: serial clo	ock
116	A11	81	P5.6/MOSI2	I/O	Τ _Τ			2mA	х	х	Port 5.6	BSPI2: master of input	output/slave
117	A10	82	P5.7/MISO2	I/O	TT			2mA	х	х	Port 5.7	BSPI2: master in output	nput/slave
118	A8	83	P5.8/PWM4	I/O	TT		INT6	2mA	х	x	Port 5.8	PWM4: PWM ou only)	tput (TQFP100

3.3 Memory mapping

Figure 5 shows the various memory configurations of the STR73xF system. The system memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure, the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM addresses can be aliased to Block 0 addresses using the remapping feature

Most reserved memory spaces (gray shaded areas in *Figure 5*) are protected from access by the user code. When an access this memory space is attempted, an ABORT signal is generated. Depending on the type of access, the ARM processor will enter "prefetch abort" state (Exception vector 0x0000_000C) or "data abort" state (Exception vector 0x0000_000C) or "data abort" state (Exception vector 0x0000_000C). It is up to the application software to manage these abort exceptions.

Figure 5. Memory map

57

4.3 Operating conditions

Subject to general operating conditions for $V_{\text{DD}}\!,$ and $T_{\text{A}}\!.$

 Table 8.
 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCLK}	Internal CPU and system clock frequency	Accessing SRAM or Flash (zero wait state Flash access up to 36 MHz)	0	36	MHz
V _{DD}	Standard Operating Voltage		4.5	5.5	V
V _{DDA}	Operating analog reference voltage with respect to ground		4.5	V _{DD} +0.1	V
T _A	Ambient temperature range	6 partnumber suffix 7 partnumber suffix	-40 -40	85 105	°C

Table 9. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{VDD}	V_{DD} rise time rate	Subject to general operating conditions for T_A .	-	20	-	ms/V

57

57

Typical application current consumption

Table 11.	Typical consumption in Run mode at 25°C and 85°C
-----------	--

Conditions	f _{MCLK} (MHz)	f _{ADC} (MHz)	Typical I _{DD} (mA)	
		10	10	20
	Code executing in RAM	20	10	29
PLL on, RTC enabled, 1 Timer		36	9	42
(TIM) running, and ADC		10	10	22
running in scan mode.	Code executing in Flash	20	10	32
		36	9	48

Table 12. Typical consumption in Run and low power modes at 25°C

Mode	Conditions	^f мсlк	Typical I _{DD}
DUN	All paripharals on RAM avagution	36 MHz	76 mA
HUN		24 MHz	56 mA
	Main voltage regulator on, Flash on, EIC on, WIU on,	36 MHz	33 mA
VVITI	GPIOs on.	24 MHz	31 mA
	PLL off, main voltage regulator on	4 MHz	11 mA
	CLOCK2/16, main voltage regulator on	250 kHz	8 mA
SLOW	CLOCK2/16, main voltage regulator off	250 kHz	3 mA
	RC oscillator running in low frequency, main crystal oscillator off, main voltage regulator off	29 kHz	2.5 mA
LPWFI	CLOCK2/16, main voltage regulator off, LP voltage regulator = 2 mA, Flash in power down mode.	250 kHz	528 µA
	Main voltage regulator off, RTC on, RC oscillator off, LP voltage regulator = 6 mA	-	378 µA
STOP	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 6 mA	-	83 µA
STOP	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 4 mA	-	64 µA
	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 2 mA	-	44 µA
HALT	RTC off, LP voltage regulator = 2 mA	-	44 µA

27/52

On-chip peripherals

Symbol	Parameter	Conditions	Тур	Unit
	PC (baskup assillator) supply surrant	High frequency	120	μA
'DD(RC)	ne (backup oscillator) supply current	Low frequency	60	μA
I _{DD(TIM)}	TIM timer supply current 1)		350	μΑ
I _{DD(BSPI)}	BSPI supply current ¹⁾		1.1	mA
I _{DD(UART)}	UART supply current ¹⁾		850	μA
I _{DD(I2C)}	I2C supply current ¹⁾		430	μA
I _{DD(ADC)}	ADC supply current when converting ²⁾		5	mA
I _{DD(EIC)}	EIC supply current		2.88	mA
I _{DD(CAN)}	CAN supply current ¹⁾		2.95	mA
I _{DD(GPIO)}	GPIO supply current	fwour=36 MHz	150	μA
I _{DD(TB)}	TB supply current		250	μA
I _{DD(PWM)}	PWM supply current		240	μA
I _{DD(RTC)}	RTC supply current		370	μA
I _{DD(DMA)}	DMA supply current		2.5	mA
I _{DD(ARB)}	Native arbiter supply current		180	μA
I _{DD(AHB)}	AHB arbiter supply current		570	μA
I _{DD(WUT)}	WUT supply current		300	μA
I _{DD(WIU)}	WIU supply current		460	μA

Table 13. Peripheral current consumption at T_A= 25°C

 Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset, not clocked and the on-chip peripheral when clocked and not kept under reset. This measurement does not include the pad toggling consumption.

2. Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions.

Cumhal	Devenenter	Conditions		Value			11
Symbol	Parameter	Co	Conditions		Тур	Max	Omt
			$C_1^{(3)} = C_2^{(4)} = 10 \text{ pF}$	150	555	-	
		f _{OSC} = 4 MHz	$C_1 = C_2 = 20 \text{ pF}$	490	1035	-	
		Cp ²⁾ = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	490	1030	-	
			$C_1 = C_2 = 40 \text{ pF}$	380	850	-	
			$C_1 = C_2 = 10 \text{ pF}$	160	470	-	
		f _{OSC} = 5 MHz	$C_1 = C_2 = 20 \text{ pF}$	415	800	-	
	Feedback resistor	Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	340	735	-	
			$C_1 = C_2 = 40 \text{ pF}$	260	580	-	
		f _{OSC} = 6 MHz Cp = 10 pF	$C_1 = C_2 = 10 \text{ pF}$	160	415	-	
р 1)			$C_1 = C_2 = 20 \text{ pF}$	325	640	-	0
nF /			$C_1 = C_2 = 30 \text{ pF}$	250	550	-	52
			$C_1 = C_2 = 40 \text{ pF}$	180	420	-	
		f _{OSC} = 7 MHz	$C_1 = C_2 = 10 \text{ pF}$	160	375	-	-
			$C_1 = C_2 = 20 \text{ pF}$	260	525	-	
		Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	185	420	-	
			$C_1 = C_2 = 40 \text{ pF}$	135	315	-	
			$C_1 = C_2 = 10 \text{ pF}$	155	340	-	
		f _{OSC} = 8 MHz	$C_1 = C_2 = 20 \text{ pF}$	210	435	-	
		Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	145	335	-	
			$C_1 = C_2 = 40 \text{ pF}$	100	245	-	

Table 14. Main oscillator characteristics (continued)

1. Min and max values are guaranteed by characterization, not tested in production.

- C_P represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and XTAL2 track.
- C₁ represents the total capacitance between XTAL1 and ground, including the external capacitance tied to XTAL1 pin (C_L) as well as the total parasitic capacitance between XTAL1 track and ground (this includes application board track capacitance to ground and device pin capacitance).
- C₂ represents the total capacitance between XTAL2 and ground, including the external capacitance tied to XTAL1 pin (C_L) as well as the total parasitic capacitance between XTAL2 track and ground (this includes application board track capacitance to ground and device pin capacitance).

PLL electrical characteristics

 V_{DD} = 5 V \pm 10%, T_{A} = -40° C to T_{Amax} , unless otherwise specified

Symbol	Paramotor	Conditions	Value			Unit	
Symbol	Farameter	Conditions	Min	Тур	Max	onit	
f _{PLLIN} ⁽¹⁾	PLL reference clock	FREF_RANGE = '0' FREF_RANGE = '1'	1.5 3.0		3.0 5.0	MHz	
fpllout	PLL output clock	MX = "00" MX = "01" MX = "10" MX = "11"	20 x f _{PLLIN} 12 x f _{PLLIN} 28 x f _{PLLIN} 16 x f _{PLLIN}		N N N	MHz	
f _{MCLK}	System clock	DX = 17	f _{PLLOUT} /DX 3		36	MHz	
f _{FREE} ⁽²⁾	PLL free running frequency	FREF_RANGE = '0', MX0 = '1' FREF_RANGE = '0', MX0 = '0' FREF_RANGE = '1', MX0 = '1' FREF_RANGE = '1', MX0 = '0'		120 240 240 480		kHz	
t _{LOCK} ⁽³⁾	PLL lock time	Stable oscillator (f _{PLLIN} = 4 MHz), stable V _{DD}		100	300	μs	
Δt _{PKJIT}	PLL jitter (pk to pk)	f _{PLLIN} = 4 MHz (pulse generator)			1.5	ns	

Table 16. PLL characteristics

1. $f_{\mbox{PLLIN}}$ is obtained from $f_{\mbox{OSC}}$ directly or through an optional divider by 2.

2. Typical data are based on $T_A=25^{\circ}C$, $V_{DD}=5V$

3. Max value is guaranteed by characterization, not tested in production.

Table 17.	Low-power	mode	wake-up) timing
-----------	-----------	------	---------	----------

Symbol	Parameter	Conditions	Тур	Unit
t _{WUHALT}	Wake-up from HALT mode		200	μs
turiorop	Wake-up from STOP mode	RC high frequency in STOP mode	180	μs
WUSTOP	wake-up from STOP mode	RC low frequency in STOP mode	234	μs
twulpwfi ¹⁾		Main voltage regulator on RC oscillator off f _{OSC} = 4 MHz, f _{MCLK} = f _{OSC} /16 RAM or FLASH execution	27	μs
	Wake-up from LPWFI mode	Main voltage regulator on RC oscillator = high frequency Flash execution	46	μs
		Main voltage regulator on RC oscillator = low frequency Flash execution	3.6	ms

1. Flash memory programmed to enter Power Down mode during LPWFI.

4.3.4 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} =5 V, T _A =+25° C, f _{MCLK} =36 MHz conforms to IEC 1000-4-2	4A
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD}=5$ V, $T_A=+25^{\circ}$ C, $f_{MCLK}=36$ MHz conforms to IEC 1000-4-4	4A

Table 19. EMS data

sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

• **DLU**: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class 1)
LU	Static latch-up class	T_{A} =+25°C T_{A} =+85°C T_{A} =+105°C	A A A
DLU	Dynamic latch-up class	$V_{DD}{=}$ 5.5 V, $f_{OSC4M}{=}$ 4 MHz, $f_{MCLK}{=}$ 32 MHz, $T_{A}{=}$ +25° C	А

Table 22. Electrical sensitivities

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).

NRSTIN pin

The NRSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as R_{PU} (see : *General characteristics on page 38*)

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Table 25. Reset pin characteristics

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRSTIN)}	NRSTIN Input low level voltage 1)				0.3 V _{DD}	V
V _{IH(NRSTIN)}	NRSTIN Input high level voltage 1)		$0.7 \ V_{DD}$			v
V _{hys(NRSTIN)}	NRSTIN Schmitt trigger voltage hysteresis ²⁾			800		mV
V _{F(RSTINn)}	NRSTIN Input filtered pulse ³⁾				500	ns
V _{NF(RSTINn)}	NRSTIN Input not filtered pulse ³⁾		2			μs
V _{RP(RSTINn)}	NRSTIN removal after Power-up ³⁾		100			μs

- 1. Data based on characterization results, not tested in production.
- 2. Hysteresis voltage between Schmitt trigger switching levels.
- 3. Data guaranteed by design, not tested in production.

Figure 19. Recommended NRSTIN pin protection¹⁾

- 1. The R_{PU} pull-up equivalent resistor is based on a resistive transistor.
- 2. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRSTIN pin can go below the V_{IL(NRSTIN)} max. level specified in Table 25. Otherwise the reset will not be taken into account internally.

4.3.6 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MCLK}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
f _{ADC}			0.4		10	MHz
V _{AIN}	Conversion voltage range ²⁾		V _{SSA}		V_{DDA}	V
l _{lkg}	Negative input leakage current on analog pins	V _{IN} <v<sub>SS, I_{IN} < 400 μA on adjacent analog pin</v<sub>		5	6	μA
C _{ADC}	Internal sample and hold capacitor				3.5	pF
to ²⁾	Calibration time	f _{ADC} = 10 MHz	580.2			μs
^I CAL				5802		1/f _{ADC}
t _S ³⁾	Sampling time	f _{ADC} = 10 MHz	1		14	μs
			3			μs
t _{CONV}	Total conversion time (including sampling time)	f _{ADC} = 10 MHz	30 (10 for sampling +20 for successive approximation)		1/f _{ADC}	
lune	Running mode	Normal mode			5	mA
ADC	Power-down mode				1	μA

Table 26.	ADC characteristics
1 abie 20.	ADC CHARACTERISTICS

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$ and $V_{DDA}-V_{SS}=5.0V$. They are given only as design guidelines and are not tested.

2. Calibration is recommended once after each power-up.

3. During the sample time the input capacitance C_{AIN} (6.8 max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

57

Figure 26. 144-ball low profile fine pitch ball grid array package

5.2 Thermal characteristics

The average chip-junction temperature, T_J , in degrees Celsius, may be calculated using the following equation:

(1)

(2)

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JA})$$

Where:

- T_A is the ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$,
- P_{INT} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the chip internal power,
- P_{I/O} represents the power dissipation on input and output pins; user determined.

Most of the time for the applications $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant if the device is configured to drive continuously external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{D} = K / (T_{J} + 273^{\circ}C)$$

Therefore (solving equations 1 and 2):

$$K = P_{D} x (T_{A} + 273^{\circ}C) + \Theta_{JA} x P_{D}^{2}$$
(3)

Where:

K is a constant for the particular part, which may be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A. Using this value of K, the values of P_D and T_J may be obtained by solving equations (1) and (2) iteratively for any value of T_A

Table 28	Thermal	characteristics
	incinai	character istics

Symbol	Description	Package	Value (typical)	Unit
		LFBGA144	50	
Θ_{JA}	Thermal resistance junction-ambient	TQFP144	40	°C/W
		TQFP100	40	

