

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	112
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str735fz1h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6	Orde	er codes
7	Kno	wn limitations
	7.1	Low power wait for interrupt mode 50
	7.2	PLL free running mode at high temperature
8	Revi	sion history

1 Scope

This datasheet provides the STR73x ordering information, mechanical and electrical device characteristics.

For complete information on the STR73xF microcontroller memory, registers and peripherals. please refer to the STR73x reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash programming reference manual.

For information on the ARM7TDMI core please refer to the ARM7TDMI technical reference manual.

1.1 Description

ARM core with embedded Flash & RAM

STR73xF family combines the high performance ARM7TDMI[™] CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage Flash memory and high-speed RAM. The STR73xF family has an embedded ARM core and is therefore compatible with all ARM tools and software.

Extensive tools support

STMicroelectronics' 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST's ARM core-based MCUs.

The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available.

For more information, please refer to ST MCU site http://www.st.com/mcu

Figure 1 shows the general block diagram of the device family.

Flexible clock control

Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2 MHz or 32 kHz. The embedded PLL can be configured to generate an internal system clock of up to 36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers and dividers.

Voltage regulators

The STR73xF requires an external 4.5 to 5.5 V power supply. There are two internal Voltage Regulators for generating the 1.8 V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait for Interrupt (LPWFI) mode.

Low voltage detectors

The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8 V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF.

Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly.

2.1 On-chip peripherals

CAN interfaces

The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736.

DMA

4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to peripheral, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity.

16-bit timers (TIM)

Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph).

PWM modules (PWM)

The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor.

Timebase timers (TB)

The three 16-bit timebase timers with 8-bit prescaler for general purpose time triggering operations.

Real-time clock (RTC)

The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or

clock/calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps running, powered by the low power voltage regulator.

UARTs

The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 625 Kbaud.

Buffered serial peripheral interfaces (BSPI)

Each of the three BSPIs allow full duplex, synchronous communications with external devices, master or slave communication at up to 6 Mb/s in master mode and up to 4.5 Mb/s in slave mode (@36 MHz system clock).

I²C interfaces

The two I^2C Interfaces provide multi-master and slave functions, support normal and fast I^2C mode (400 kHz) and 7 or 10-bit addressing modes.

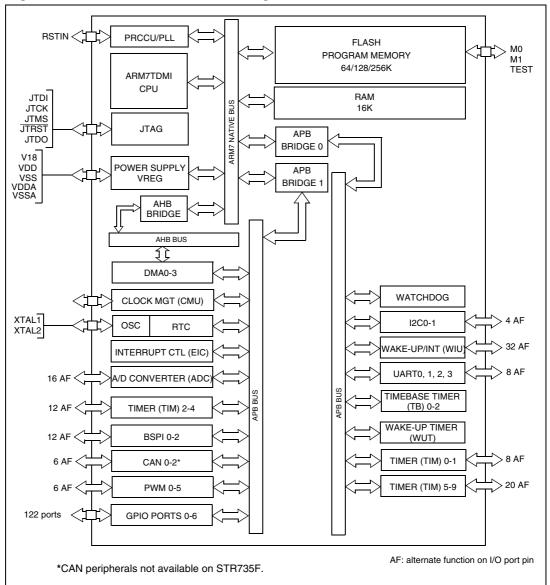
A/D converter

The 10-bit analog to digital converter, converts up to 16 channels in single-shot or continuous conversion modes (12 channels in 100-pin devices). The minimum conversion time is 3 μ s.

Watchdog

The 16-bit watchdog timer protects the application against hardware or software failures and ensures recovery by generating a reset.

I/O ports


Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose input/output or alternate function.

External interrupts and wake-up lines

16 external interrupts lines are available for application use. In addition, up to 32 external Wake-up lines (18 in 100-pin devices) can be used as general purpose interrupts or to wake-up the application from STOP mode.

3 Block diagram

Figure 1. STR730F/STR735F block diagram

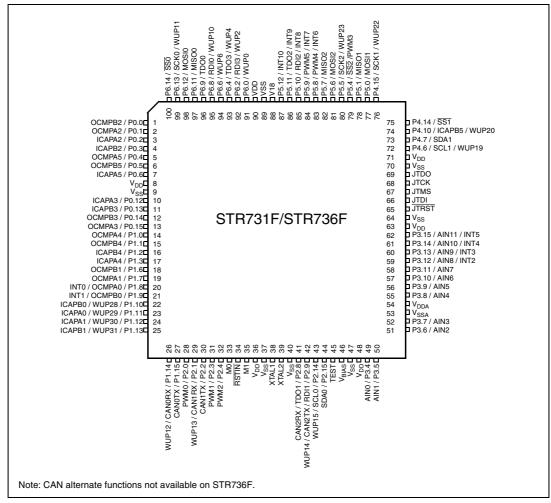
3.1 Related documentation

Available from www.arm.com:

ARM7TDMI technical reference manual

Available from http://www.st.com:

STR73x reference manual (RM0001)


STR7 Flash programming reference manual

STR73x software library user manual

For a list of related application notes refer to http://www.st.com.

3.2.3 STR731F/STR736F (TQFP100)

Figure 4. STR731F/STR736F pin configuration (top view)

57

Table 4.	STR73xF	pin description
----------	---------	-----------------

	Pin n°			-		Inp	out	Ou	tpu	t			
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	OD	ЪР	Main function (after reset)	Alternate function	
19	F3	12	P0.14/OCMPB 3	I/O	Τ _Τ			2mA	х	х	Port 0.14	TIM3: output compare B output	
20	F4	13	P0.15/OCMPA3	I/O	Τ _Τ			2mA	Х	Х	Port 0.15	TIM3: output compare A output	
21	F5	14	P1.0/OCMPA4	I/O	Τ _Τ			2mA	Х	Х	Port 1.0	TIM4: output compare A output	
22	F6	15	P1.1/OCMPB4	I/O	Τ _Τ			2mA	Х	Х	Port 1.1	TIM4: output compare B output	
23	G2	16	P1.2/ICAPB4	I/O	Τ _Τ			2mA	Х	Х	Port 1.2	TIM4: input capture B input	
24	G3	17	P1.3/ICAPA4	I/O	Τ _Τ			2mA	Х	Х	Port 1.3	TIM4: input capture A input	
25	G4		V _{SS}	S							Ground		
26	H1		V _{DD}	S							Supply vo	Itage (5 V)	
27	J1		P1.4	I/O	Τ _Τ			2mA	Х	Х	Port 1.4		
28	G5		P1.5	I/O	Τ _Τ			2mA	Х	Х	Port 1.5		
29	K1	18	P1.6/OCMPB1	I/O	Τ _Τ			2mA	Х	Х	Port 1.6	TIM1: output compare B output	
30	L1	19	P1.7/OCMPA1	I/O	Τ _Τ			2mA	Х	Х	Port 1.7	TIM1: output compare A output	
31	H2	20	P1.8/OCMPA0	I/O	Τ _Τ		INT0	2mA	Х	Х	Port 1.8	TIM0: output compare A output	
32	H3	21	P1.9/OCMPB0	I/O	Τ _Τ		INT1	2mA	Х	Х	Port 1.9	TIM0: output compare B output	
33	H4	22	P1.10/ICAPB0	I/O	Τ _Τ		WUP28	2mA	Х	Х	Port 1.10	TIM0: input capture B input	
34	J2	23	P1.11/ICAPA0	I/O	Τ _Τ		WUP29	2mA	Х	Х	Port 1.11	TIM0: input capture A input	
35	J3	24	P1.12/ICAPA1	I/O	Τ _Τ		WUP30	2mA	Х	Х	Port 1.12	TIM1: input capture A input	
36	K2	25	P1.13/ICAPB1	I/O	Τ _Τ		WUP31	2mA	Х	Х	Port 1.13	TIM1: input capture B input	
37	M1	26	P1.14/CAN0RX	I/O	Τ _Τ		WUP12	2mA	Х	Х	Port 1.14	CAN0: receive data input	
38	L2	27	P1.15/CAN0TX	I/O	Τ _Τ			2mA	Х	Х	Port 1.15	CAN0: transmit data output	
39	L3	28	P2.0/PWM0	I/O	Τ _Τ			2mA	Х	Х	Port 2.0	PWM0: PWM output	
40	K3	29	P2.1/CAN1RX	I/O	Τ _Τ		WUP13	2mA	Х	Х	Port 2.1	CAN1: receive data input	
41	M4	30	P2.2/CAN1TX	I/O	Τ _Τ			2mA	Х	Х	Port 2.2	CAN1: transmit data output	
42	L4	31	P2.3/PWM1	I/O	Τ _Τ			2mA	Х	Х	Port 2.3	PWM1: PWM output	
43	M2	32	P2.4/PWM2	I/O	Τ _Τ			2mA	Х	Х	Port 2.4	PWM2: PWM output	
44	М3		P2.5/PWM3	I/O	Τ _Τ			2mA	Х	Х	Port 2.5	PWM3: PWM output	
45	K4		P2.6/PWM4	I/O	Τ _Τ			2mA	Х	х	Port 2.6 PWM4: PWM output		
46	J4		P2.7/PWM5	I/O	Τ _Τ			2mA	Х	х	Port 2.7	Port 2.7 PWM5: PWM output	
47	M5	33	M0	I	Τ _Τ	pd					BOOT: m	ode selection 0 input	
48	L5	34	RSTIN	I	CT	pu					Reset input		
49	K5	35	M1	Ι	Τ _Τ	pd					BOOT: m	ode selection 1 input	

Table 4.	STR73xF pin	description
----------	-------------	-------------

	Pin n°		-	-		Inp	out	Ou	tpu	t				
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	OD	дд	Main function (after reset)	Alternate function		
50	J5	36	V _{DD}	S							Supply vo	ltage (5 V)		
51	M6	37	V _{SS}	S							Ground			
52	M7	38	XTAL1	I								amplifier circuit i ock generator inp	•	
53	H5	39	XTAL2	0							Oscillator	amplifier circuit of	output.	
54	L6	40	V _{SS}	S							Ground			
55	K6	41	P2.8/TDO1/CA N2RX	I/O	Τ _Τ			2mA	x	x	Port 2.8	UART1: transmit data output	CAN2: receive data input (TQFP100 only)	
56	J6	42	P2.9/RDI1/CAN 2TX	I/O	Τ _Τ		WUP14	2mA	х	х	Port 2.9	UART1: receive data input	CAN2: transmit data output (TQFP100 only)	
57	H6		P2.10	I/O	Τ _Τ		WUP16	2mA	Х	Х	Port 2.10			
58	G6		P2.11	I/O	Τ _Τ		WUP17	2mA	Х	Х	Port 2.11			
59	L7		P2.12	I/O	Τ _Τ		INT14	2mA	Х	Х	Port 2.12			
60	K7		P2.13	I/O	Τ _Τ		INT15	2mA	Х	Х	Port 2.13			
61	J7	43	P2.14/SCL0	I/O	Τ _Τ		WUP15	2mA	Х	Х	Port 2.14	I2C0: serial cloc	k	
62	H7	44	P2.15/SDA0	I/O	Τ _Τ			2mA	Х	Х	Port 2.15	I2C0: serial data	à	
63	M8	45	Test	I		pd					Reserved	pin. Must be tied	I to ground	
64	L8	46	V _{BIAS}	S							external r this pin w	ernal RC oscillator bias. A 1.3 M Ω ernal resistor has to be connected to pin when a 32 kHZ RC oscillator quency is used.		
65	M10	47	V _{SS}	S							Ground			
66	M11	48	V _{DD}	S							Supply vo	ltage (5 V)		
67	K8		P3.0/AIN0	I/O	Τ _Τ			2mA	Х	Х	Port 3.0	ADC: analog inp	out 0	
68	J8		P3.1/AIN1	I/O	Τ _Τ			2mA	Х	Х	Port 3.1	ADC: analog inp	out 1	
69	M9		P3.2/AIN2	I/O	Τ _Τ			2mA	Х	Х	Port 3.2	ADC: analog inp	out 2	
70	L9		P3.3/AIN3	I/O	Τ _Τ			2mA	Х	Х	Port 3.3	ADC: analog inp	out 3	
71	K9	49	P3.4/AIN4	I/O	Τ _Τ			2mA	х	х	Port 3.4	ADC: analog inp (AIN0 in TQFP1		
72	L10	50	P3.5/AIN5	I/O	Τ _Τ			2mA	х	х	Port 3.5	ADC: Analog in (AIN1 in TQFP1		

Table 4.	STR73xF pi	n description
----------	------------	---------------

	Pin n°			_		Inp	out	Ou	tpu	t		Alternate function	
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	OD	ЬР	Main function (after reset)		
97	F9		P4.3/ICAPB8	I/O	T _T		WUP27	2mA	Х	Х	Port 4.3	TIM8: input capt	ure B input
98	F8		P4.4/CAN2TX	I/O	Τ _Τ			2mA	Х	Х	Port 4.4	CAN2: transmit	data output
99	E12		P4.5/CAN2RX	I/O	Τ _Τ		WUP18	2mA	Х	Х	Port 4.5	CAN2: receive d	ata input
100	E11	72	P4.6/SCL1	I/O	T_T		WUP19	2mA	Х	Х	Port 4.6	I2C1: serial cloc	k
101	C12	73	P4.7/SDA1	I/O	T _T			2mA	Х	Х	Port 4.7	I2C1: serial data	
102	B12		P4.8/OCMPA8	I/O	T _T			2mA	Х	Х	Port 4.8	TIM8: output cor	mpare A output
103	E10		P4.9/ICAPB6	I/O	T_T			2mA	Х	Х	Port 4.9	TIM6: input capt	ure B input
104	E9	74	P4.10/ICAPA6/I CAPB5	I/O	Τ _Τ		WUP20	2mA	х	х	Port 4.10	TIM6: input capture A input (144-pin pkg only)	TIM5: input capture B input (TQFP100 only)
105	D12		P4.11/OCMPB 8	I/O	Τ _Τ			2mA	х	х	Port 4.11	TIM8: output compare B output	
106	D11		P4.12/ICAPA9	I/O	Τ _Τ		WUP21	2mA	Х	Х	Port 4.12	TIM9: input capture A input	
107	D10		P4.13/ICAPB9	I/O	T _T			2mA	Х	Х	Port 4.13	TIM9: input capt	ure B input
108	C11	75	P4.14/SS1	I/O	T_T			2mA	Х	Х	Port 4.14	BSPI1: slave se	ect
109	B11	76	P4.15/SCK1	I/O	T_T		WUP22	2mA	Х	Х	Port 4.15	BSPI1: serial clo	ock
110	B10	77	P5.0/MOSI1	I/O	Τ _Τ			2mA	х	х	Port 5.0	BSPI1: master c input	utput/slave
111	C10	78	P5.1/MISO1	I/O	Τ _Τ			2mA	х	х	Port 5.1	BSPI1: master input/Slave output	
112	A9		P5.2/OCMPA9	I/O	Τ _Τ			2mA	Х	Х	Port 5.2	TIM9: output cor	mpare A output
113	B9		P5.3/OCMPB9	I/O	Τ _T			2mA	Х	Х	Port 5.3	TIM9: output cor	mpare B output
114	C9	79	P5.4/ SS 2/PWM 3	I/O	Τ _Τ			2mA	х	х	Port 5.4	BSPI2: slave select	PWM3: PWM output (TQFP100 only)
115	D9	80	P5.5/SCK2	I/O	Τ _Τ		WUP23	2mA	Х	Х	Port 5.5	BSPI2: serial clock	
116	A11	81	P5.6/MOSI2	I/O	Τ _Τ			2mA	х	х	Port 5.6	BSPI2: master output/slave input	
117	A10	82	P5.7/MISO2	I/O	Τ _Τ			2mA	х	х	Port 5.7	BSPI2: master input/slave output	
118	A8	83	P5.8/PWM4	I/O	Τ _Τ		INT6	2mA	х	х	Port 5.8	PWM4: PWM ou only)	tput (TQFP100

57

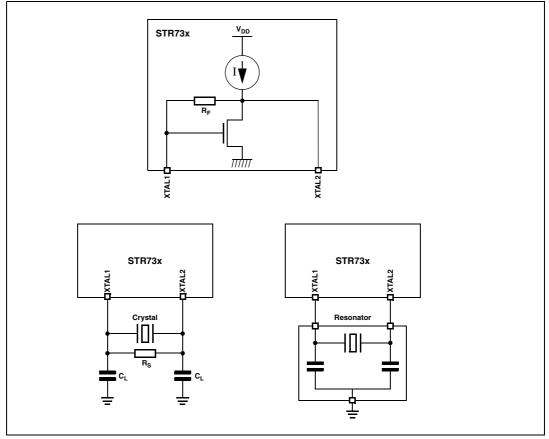
Typical application current consumption

Table 11.	Typical consumption in Run mode at 25°C and 85°C
-----------	--

Conditions	6	f _{MCLK} (MHz)	f _{ADC} (MHz)	Typical I _{DD} (mA)
		10	10	20
	Code executing in RAM	20	10	29
V _{DD} = 5.5 V, RC oscillator off, PLL on, RTC enabled, 1 Timer		36	9	42
(TIM) running, and ADC running in scan mode.		10	10	22
running in scan mode.	Code executing in Flash	20	10	32
		36	9	48

Table 12. Typical consumption in Run and low power modes at 25°C

Mode	Conditions	f _{MCLK}	Typical I _{DD}
DUN	All paripharals on RAM execution	36 MHz	76 mA
RUN	All peripherals on, RAM execution	24 MHz	56 mA
WFI	Main voltage regulator on, Flash on, EIC on, WIU on,	36 MHz	33 mA
VVEI	GPIOs on.	24 MHz	31 mA
	PLL off, main voltage regulator on	4 MHz	11 mA
	CLOCK2/16, main voltage regulator on	250 kHz	8 mA
SLOW	CLOCK2/16, main voltage regulator off	250 kHz	3 mA
	RC oscillator running in low frequency, main crystal oscillator off, main voltage regulator off	29 kHz	2.5 mA
LPWFI	CLOCK2/16, main voltage regulator off, LP voltage regulator = 2 mA, Flash in power down mode.	250 kHz	528 µA
	Main voltage regulator off, RTC on, RC oscillator off, LP voltage regulator = 6 mA	-	378 µA
STOP	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 6 mA	36 MHz24 MHz24 MHz36 MHz24 MHz24 MHz24 MHz250 kHz250 kHz250 kHz29 kHzP voltage ode.250 kHzcillator off, cillator off,-cillator off, cillator off,	83 µA
3105	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 4 mA	-	64 µA
	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 2 mA	-	44 µA
HALT	RTC off, LP voltage regulator = 2 mA	-	44 µA


27/52

4.3.2 Clock and timing characteristics

Crystal / ceramic resonator oscillator

The STR73xF can operate with a crystal oscillator or resonator clock source. *Figure 12* describes a simple model of the internal oscillator driver as well as example of connection for an oscillator or a resonator.

Figure 12. Crystal oscillator and resonator

Note: 1 XTAL2 must not be used to directly drive external circuits.

2 For test or boot purpose, XTAL2 can be used as an high impedance input pin to provide an external clock to the device. XTAL1 should be grounded, and XTAL2 connected to a wave signal generator providing a 0 to VDD signal. Directly driving XTAL2 may results in deteriorated jitter and duty cycle.

57

4.3.4 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1 second.

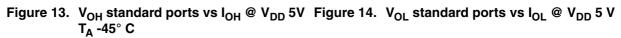
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

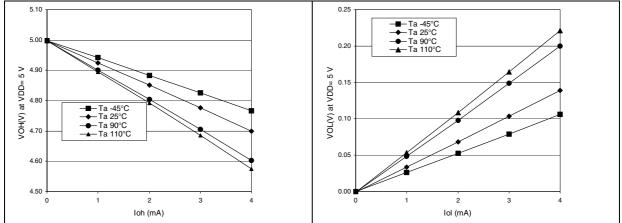
Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} =5 V, T _A =+25° C, f _{MCLK} =36 MHz conforms to IEC 1000-4-2	4A
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD}=5$ V, $T_A=+25^{\circ}$ C, $f_{MCLK}=36$ MHz conforms to IEC 1000-4-4	4A

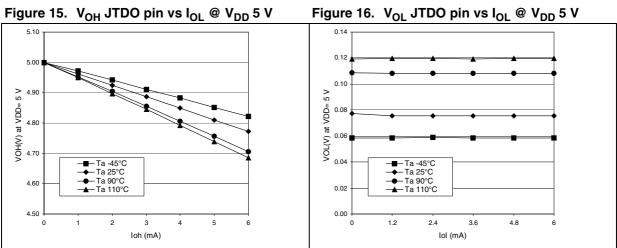
Table 19. EMS data

57

Output driving current

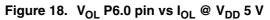

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

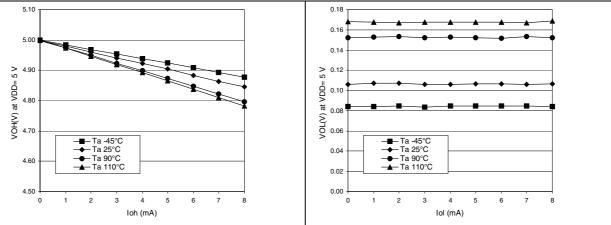

I/O Type	Symbol	Parameter	Conditions	Min	Max	Unit	
Standard	V _{OL} ¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} =+2 mA		0.4		
	V _{OH} ²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	I _{IO} =-2 mA	V _{DD} -0.8			
Med. Current (JTDO)	V _{OL} ¹⁾	Output low level voltage for an I/O pin	I _{IO} =+6 mA		0.4	v	
	V _{OH} ²⁾	Output high level voltage for an I/O pin	I _{IO} =-6 mA	V _{DD} -0.8			
High Current P6.0	V _{OL} ¹⁾	Output low level voltage for an I/O pin	I _{IO} =+8 mA		0.4		
	V _{OH} ²⁾	Output high level voltage for an I/O pin	I _{IO} =-8 mA	V _{DD} -0.8			

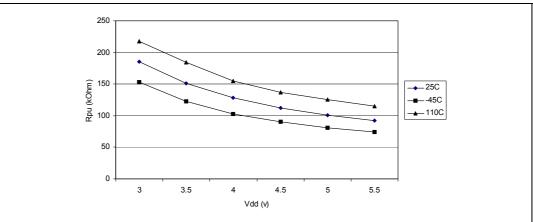

Table 24. Output driving current

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 6* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IQ} current sourced must always respect the absolute maximum rating specified in *Table 6* and the sum of I_{IQ} (I/O ports and control pins) must not exceed IV_{DD}.





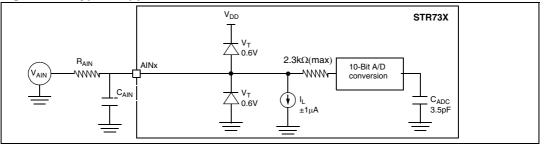


57

Symbol	Parameter	Conditions	Тур	Max	Unit
IE _T I	Total unadjusted error 1)		1.0	2.0	
IE _O I	Offset error ¹⁾		0.15	1.0	
IE _G I	Gain error ¹⁾		0.97	1.1	LSB
IE _D I	Differential linearity error ¹⁾		0.7	1.0	
ΙΕ _L Ι	Integral linearity error 1)		0.76	1.5	

Table 27.	ADC accuracy with f_{MCLK} = 20 MHz, f_{ADC} =10 MHz, R_{AIN} < 10 k Ω RAIN,
	V _{DDA} =5 V. This assumes that the ADC is calibrated ²⁾

1. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. The effect of negative injection current on robust pins is specified in *Section 4.3.5*.


Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\mathcal{I}_{INJ(PIN)}$ in *Section 4.3.5* does not affect the ADC accuracy.

2. Calibration is needed once after each power-up.

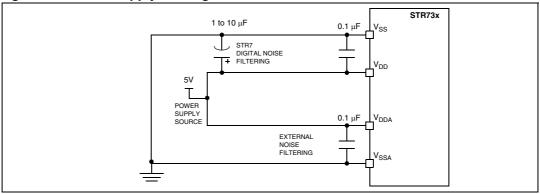
Figure 21. ADC accuracy characteristics

Figure 22. Typical application with ADC

Analog power supply and reference pins

The V_{DDA} and V_{SSA} pins are the analog power supply of the A/D converter cell. They act as the high and low reference voltages for the conversion.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see: *General PCB design guidelines*).


General PCB design guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

- Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.
- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 μF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 μF capacitor close to the power source (see *Figure 23*).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{DDA} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.

Software filtering of spurious conversion results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

Figure 23. Power supply filtering

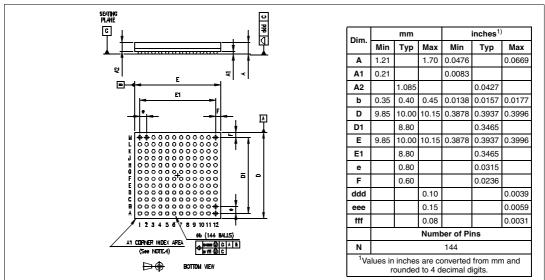
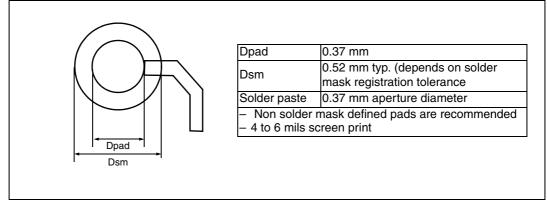



Figure 26. 144-ball low profile fine pitch ball grid array package

7 Known limitations

7.1 Low power wait for interrupt mode

When the STR73x device is put in Low Power Wait For Interrupt mode (LPWFI), the Flash goes into low power mode or power down mode, depending on the setting of the PWD bit in the Flash Control Register 0 (default is '0', Low Power mode). This default mode can create excessive voltage conditions on the transistor gates and may affect the long term behavior of the Low Power mode circuitry.

Workaround

There is no workaround. If Low Power Wait For Interrupt mode is used, it is strongly suggested to configure the Flash to enter power down mode (bit PWD = '1').

7.2 PLL free running mode at high temperature

When the STR73x device is operated and an ambient temperature (T_A) of more than 55° C and the main system clock (f_{MCLK}) is sourced by the PLL in free running mode, the device may not work properly.

Workaround

At high temperature (more than 55° C), it is recommended to use the internal RC oscillator as a backup clock source rather than the PLL free running mode.

