

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	112
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str735fz1h7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6	Orde	er codes
7	Kno	wn limitations
	7.1	Low power wait for interrupt mode 50
	7.2	PLL free running mode at high temperature
8	Revi	sion history

3.1 Related documentation

Available from www.arm.com:

ARM7TDMI technical reference manual

Available from http://www.st.com:

STR73x reference manual (RM0001)

STR7 Flash programming reference manual

STR73x software library user manual

For a list of related application notes refer to http://www.st.com.

3.2.3 STR731F/STR736F (TQFP100)

Figure 4. STR731F/STR736F pin configuration (top view)

57

	Pin n°)				Inp	out	Ou	tpu	t			
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	QO	Ъ	Main function (after reset)	Alternate function	
19	F3	12	P0.14/OCMPB 3	I/O	Τ _Τ			2mA	х	х	Port 0.14	TIM3: output compare B output	
20	F4	13	P0.15/OCMPA3	I/O	Τ _Τ			2mA	Х	Х	Port 0.15	TIM3: output compare A output	
21	F5	14	P1.0/OCMPA4	I/O	Τ _Τ			2mA	х	Х	Port 1.0	TIM4: output compare A output	
22	F6	15	P1.1/OCMPB4	I/O	Τ _Τ			2mA	Х	Х	Port 1.1	TIM4: output compare B output	
23	G2	16	P1.2/ICAPB4	I/O	Τ _Τ			2mA	Х	Х	Port 1.2	TIM4: input capture B input	
24	G3	17	P1.3/ICAPA4	I/O	Τ _Τ			2mA	Х	Х	Port 1.3	TIM4: input capture A input	
25	G4		V _{SS}	S							Ground		
26	H1		V _{DD}	S							Supply vo	ltage (5 V)	
27	J1		P1.4	I/O	Τ _Τ			2mA	Х	Х	Port 1.4		
28	G5		P1.5	I/O	Τ _Τ			2mA	Х	Х	Port 1.5		
29	K1	18	P1.6/OCMPB1	I/O	Τ _Τ			2mA	Х	Х	Port 1.6	TIM1: output compare B output	
30	L1	19	P1.7/OCMPA1	I/O	Τ _Τ			2mA	Х	Х	Port 1.7	TIM1: output compare A output	
31	H2	20	P1.8/OCMPA0	I/O	Τ _Τ		INT0	2mA	Х	Х	Port 1.8	TIM0: output compare A output	
32	НЗ	21	P1.9/OCMPB0	I/O	Τ _Τ		INT1	2mA	Х	Х	Port 1.9	TIM0: output compare B output	
33	H4	22	P1.10/ICAPB0	I/O	Τ _Τ		WUP28	2mA	Х	Х	Port 1.10	TIM0: input capture B input	
34	J2	23	P1.11/ICAPA0	I/O	Τ _Τ		WUP29	2mA	Х	Х	Port 1.11	TIM0: input capture A input	
35	J3	24	P1.12/ICAPA1	I/O	Τ _Τ		WUP30	2mA	х	Х	Port 1.12	TIM1: input capture A input	
36	K2	25	P1.13/ICAPB1	I/O	Τ _Τ		WUP31	2mA	Х	Х	Port 1.13	TIM1: input capture B input	
37	M1	26	P1.14/CAN0RX	I/O	Τ _Τ		WUP12	2mA	Х	Х	Port 1.14	CAN0: receive data input	
38	L2	27	P1.15/CAN0TX	I/O	Τ _Τ			2mA	Х	Х	Port 1.15	CAN0: transmit data output	
39	L3	28	P2.0/PWM0	I/O	Τ _Τ			2mA	Х	Х	Port 2.0	PWM0: PWM output	
40	K3	29	P2.1/CAN1RX	I/O	Τ _Τ		WUP13	2mA	Х	Х	Port 2.1	CAN1: receive data input	
41	M4	30	P2.2/CAN1TX	I/O	Τ _Τ			2mA	х	Х	Port 2.2	CAN1: transmit data output	
42	L4	31	P2.3/PWM1	I/O	Τ _Τ			2mA	Х	Х	Port 2.3	PWM1: PWM output	
43	M2	32	P2.4/PWM2	I/O	Τ _Τ			2mA	Х	Х	Port 2.4	PWM2: PWM output	
44	M3		P2.5/PWM3	I/O	Τ _Τ			2mA	Х	Х	Port 2.5	PWM3: PWM output	
45	K4		P2.6/PWM4	I/O	Τ _Τ			2mA	Х	Х	Port 2.6	Port 2.6 PWM4: PWM output	
46	J4		P2.7/PWM5	I/O	Τ _Τ			2mA	Х	Х	Port 2.7	PWM5: PWM output	
47	M5	33	M0	Ι	Τ _Τ	pd					BOOT: m	ode selection 0 input	
48	L5	34	RSTIN	Ι	CT	pu					Reset inp	ut	
49	K5	35	M1	Ι	Τ _Τ	pd					BOOT: mode selection 1 input		

Table 4.	STR73xF p	oin description
----------	-----------	-----------------

	Pin n°					Inp	out	Ou	Output				
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	OD	РР	Main function (after reset)	Alternate	function
97	F9		P4.3/ICAPB8	I/O	Τ _Τ		WUP27	2mA	Х	Х	Port 4.3	TIM8: input capt	ure B input
98	F8		P4.4/CAN2TX	I/O	Τ _Τ			2mA	Х	Х	Port 4.4	CAN2: transmit	data output
99	E12		P4.5/CAN2RX	I/O	Τ _Τ		WUP18	2mA	Х	Х	Port 4.5	CAN2: receive d	lata input
100	E11	72	P4.6/SCL1	I/O	Τ _Τ		WUP19	2mA	Х	Х	Port 4.6	I2C1: serial cloc	k
101	C12	73	P4.7/SDA1	I/O	Τ _Τ			2mA	Х	Х	Port 4.7	I2C1: serial data	l
102	B12		P4.8/OCMPA8	I/O	Τ _Τ			2mA	Х	Х	Port 4.8	TIM8: output cor	mpare A output
103	E10		P4.9/ICAPB6	I/O	Τ _Τ			2mA	Х	Х	Port 4.9	TIM6: input capt	ure B input
104	E9	74	P4.10/ICAPA6/I CAPB5	I/O	Τ _Τ		WUP20	2mA	х	x	Port 4.10	TIM6: input capture A input (144-pin pkg only)	TIM5: input capture B input (TQFP100 only)
105	D12		P4.11/OCMPB 8	I/O	Τ _Τ			2mA	х	х	Port 4.11	TIM8: output compare B output	
106	D11		P4.12/ICAPA9	I/O	Τ _Τ		WUP21	2mA	Х	х	Port 4.12	TIM9: input capture A input	
107	D10		P4.13/ICAPB9	I/O	Τ _Τ			2mA	Х	Х	Port 4.13	TIM9: input capture B input	
108	C11	75	P4.14/SS1	I/O	Τ _Τ			2mA	Х	х	Port 4.14	BSPI1: slave select	
109	B11	76	P4.15/SCK1	I/O	Τ _Τ		WUP22	2mA	Х	х	Port 4.15	BSPI1: serial clo	ock
110	B10	77	P5.0/MOSI1	I/O	Τ _Τ			2mA	х	х	Port 5.0	BSPI1: master c input	output/slave
111	C10	78	P5.1/MISO1	I/O	Τ _Τ			2mA	х	х	Port 5.1	BSPI1: master in output	nput/Slave
112	A9		P5.2/OCMPA9	I/O	Τ _Τ			2mA	Х	Х	Port 5.2	TIM9: output cor	mpare A output
113	B9		P5.3/OCMPB9	I/O	Τ _Τ			2mA	Х	Х	Port 5.3	TIM9: output cor	mpare B output
114	C9	79	P5.4/ SS 2/PWM 3	I/O	Τ _Τ			2mA	х	x	Port 5.4	BSPI2: slave select	PWM3: PWM output (TQFP100 only)
115	D9	80	P5.5/SCK2	I/O	Τ _Τ		WUP23	2mA	Х	Х	Port 5.5	BSPI2: serial clo	ock
116	A11	81	P5.6/MOSI2	I/O	Τ _Τ			2mA	х	х	Port 5.6	BSPI2: master of input	output/slave
117	A10	82	P5.7/MISO2	I/O	TT			2mA	х	х	Port 5.7	BSPI2: master in output	nput/slave
118	A8	83	P5.8/PWM4	I/O	TT		INT6	2mA	х	x	Port 5.8	PWM4: PWM ou only)	tput (TQFP100

Table 4.	STR73xF	pin	description
----------	---------	-----	-------------

	Pin n°					Inp	out	Output				
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	QO	дд	Main function (after reset)	Alternate function
119	B8	84	P5.9/PWM5	I/O	Τ _Τ		INT7	2mA	х	х	Port 5.9	PWM5: PWM output (TQFP100 only)
120	C8	85	P5.10/RDI2	I/O	Τ _Τ		INT8	2mA	Х	Х	Port 5.10	UART2: receive data input
121	A12	86	P5.11/TDO2	I/O	Τ _Τ		INT9	2mA	х	х	Port 5.11	UART2: transmit data output
122	D8	87	P5.12	I/O	Τ _Τ		INT10	2mA	Х	Х	Port 5.12	
123	E8		P5.13	I/O	Τ _Τ		INT11	2mA	Х	Х	Port 5.13	
124	B7		P5.14	I/O	Τ _Τ		INT12	2mA	х	х	Port 5.14	
125	A7		P5.15	I/O	Τ _Τ		INT13	2mA	Х	Х	Port 5.15	
126	A6	88	V ₁₈	S								1.8 V decoupling pin: a decoupling capacitor (recommended value: 100 nF) must be connected between this pin and nearest Vss pin.
127	C7	89	V _{SS}	S								Ground
128	D7	90	V _{DD}	S								Supply voltage (5 V)
129	E7	91	P6.0	I/O	Τ _Τ		WUP0	8mA	Х	Х	Port 6.0	
130	F7		P6.1	I/O	Τ _Τ		WUP1	2mA	Х	Х	Port 6.1	
131	B6	92	P6.2/RDI3	I/O	Τ _Τ		WUP2	2mA	х	х	Port 6.2	UART3: receive data input
132	C6		P6.3	I/O	Τ _Τ		WUP3	2mA	Х	Х	Port 6.3	
133	D6	93	P6.4/TDO3	I/O	Τ _Τ		WUP4	2mA	Х	Х	Port 6.4	UART3: transmit data output
134	E6		P6.5	I/O	Τ _Τ		WUP5	2mA	х	х	Port 6.5	
135	A5	94	P6.6	I/O	Τ _Τ		WUP6	2mA	Х	Х	Port 6.6	
136	B5		P6.7	I/O	Τ _Τ		WUP7	2mA	Х	Х	Port 6.7	
137	C5	95	P6.8/RDI0	I/O	Τ _Τ		WUP10	2mA	Х	Х	Port 6.8	UART0: receive data input
138	A3	96	P6.9/TDO0	I/O	Τ _Τ			2mA	Х	Х	Port 6.9	UART0: transmit data output
139	A2		P6.10	I/O	Τ _Τ		WUP8	2mA	Х	Х	Port 6.10	
140	D5	97	P6.11/MISO0	I/O	Τ _Τ			2mA	х	х	Port 6.11	BSPI0: master input/slave output
141	A4	98	P6.12/MOSI0	I/O	Τ _Τ			2mA	х	х	Port 6.12	BSPI0: master output/slave input
142	B4	99	P6.13/SCK0	I/O	Τ _T		WUP11	2mA	Х	Х	Port 6.13	BSPI0: serial clock
143	C4	100	P6.14/SS0	I/O	Τ _T			2mA	Х	Х	Port 6.14	BSPI0: slave select
144	B3		P6.15	I/O	TT		WUP9	2mA	Х	Х	Port 6.15	

4.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} - V _{SS}	External 5 V Supply voltage	-0.3	6.0	V
V _{SSA}	Reference ground for A/D converter	V _{SS}	V _{SS}	V
V _{DDA} - V _{SSA}	Reference voltage for A/D converter	-0.3	V _{DD} +0.3	V
V _{IN}	Input voltage on any pin	-0.3	V _{DD} +0.3	v
I∆V _{DDx} I	Variations between different 5 V power pins	-	0.3	m\/
IV _{SSX} - V _{SS} I	Variations between all the different ground pins	-	0.3	IIIV
V _{ESD(HBM)} Electrostatic discharge voltage (Human Body Model)		see : Absolute maximum ratings		
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	(electrical sensit		

Table 5. Voltage characteristics

Table 6. Current characteristics

Symbol	Ratings	Max.	Unit
I _{VDD}	100		
I _{VSS}	100		
l	Output current sunk by any I/O and control pin	10	m۸
٩O	Output current source by any I/O and control pin	10	ША
_{INJ(PIN)} 2) & 3)	Injected current on any other pin 4) &5)	±10	
$\Sigma I_{\rm INJ(PIN)}^{2)}$	Total injected current (sum of all I/O and control pins) 4)	±75	

1. All 5 V power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external 5 V supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

3. Negative injection disturbs the analog performance of the device. See note in Section 4.3.6: 10-bit ADC characteristics on page 43.

4. When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

5.) In 144-pin devices, only +10 mA on P0.3, P1.13, P3.6 and P4.13 pins (negative injection not allowed).

Symbol	Ratings	Value	Unit		
T _{STG}	Storage temperature range	-55 to +150	°C		
TJ	Maximum junction temperature (see Section 5.2: Thermal characteristics o page 48)				

 Table 7.
 Thermal characteristics

57

Typical application current consumption

Table 11.	Typical consumption in Run mode at 25°C and 85°C
-----------	--

Conditions	;	f _{MCLK} (MHz)	f _{ADC} (MHz)	Typical I _{DD} (mA)
		10	10	20
V _{DD} = 5.5 V, RC oscillator off, PLL on, RTC enabled, 1 Timer	Code executing in RAM	20	10	29
		36	9	42
(TIM) running, and ADC	Code executing in	10	10	22
running in scan mode.		20	10	32
		36	9	48

Table 12. Typical consumption in Run and low power modes at 25°C

Mode	Conditions	^f мсlк	Typical I _{DD}
DUN	All paripharals on RAM avagution	36 MHz	76 mA
HUN		24 MHz	56 mA
	Main voltage regulator on, Flash on, EIC on, WIU on,	36 MHz	33 mA
WFI	GPIOs on.	24 MHz	31 mA
	PLL off, main voltage regulator on	4 MHz	11 mA
SLOW	CLOCK2/16, main voltage regulator on	250 kHz	8 mA
	CLOCK2/16, main voltage regulator off	250 kHz	3 mA
	RC oscillator running in low frequency, main crystal oscillator off, main voltage regulator off	29 kHz	2.5 mA
LPWFI	CLOCK2/16, main voltage regulator off, LP voltage regulator = 2 mA, Flash in power down mode.	250 kHz	528 µA
	Main voltage regulator off, RTC on, RC oscillator off, LP voltage regulator = 6 mA	-	378 µA
STOP	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 6 mA	-	83 µA
STOP	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 4 mA	-	64 µA
	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 2 mA	-	44 µA
HALT	RTC off, LP voltage regulator = 2 mA	-	44 µA

27/52

On-chip peripherals

Symbol	Parameter	Conditions	Тур	Unit
	PC (baskup assillator) supply surrant	High frequency	120	μA
'DD(RC)	ne (backup oscillator) supply current	Low frequency	60	μA
I _{DD(TIM)}	TIM timer supply current 1)		350	μA
I _{DD(BSPI)}	BSPI supply current ¹⁾		1.1	mA
I _{DD(UART)}	UART supply current ¹⁾		850	μA
I _{DD(I2C)}	I2C supply current ¹⁾		430	μA
I _{DD(ADC)}	ADC supply current when converting ²⁾		5	mA
I _{DD(EIC)}	EIC supply current		2.88	mA
I _{DD(CAN)}	CAN supply current ¹⁾		2.95	mA
I _{DD(GPIO)}	GPIO supply current	fwour=36 MHz	150	μA
I _{DD(TB)}	TB supply current		250	μA
I _{DD(PWM)}	PWM supply current		240	μA
I _{DD(RTC)}	RTC supply current		370	μA
I _{DD(DMA)}	DMA supply current		2.5	mA
I _{DD(ARB)}	Native arbiter supply current		180	μA
I _{DD(AHB)}	AHB arbiter supply current		570	μA
I _{DD(WUT)}	WUT supply current		300	μA
I _{DD(WIU)}	WIU supply current		460	μA

Table 13. Peripheral current consumption at T_A= 25°C

 Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset, not clocked and the on-chip peripheral when clocked and not kept under reset. This measurement does not include the pad toggling consumption.

2. Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions.

57

Main oscillator characteristics

 V_{DD} = 5 V \pm 10%, T_A = -40° C to $T_{Amax}\text{,}$ unless otherwise specified.

Cumhal	Deveneter	Conditions		Value		l lmit
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC}	Oscillator frequency		4		8	MHz
9 _m	Oscillator transconductance		1.5		4.2	mA/V
V ¹)	Oscillation amplitude	$f_{OSC} = 4 \text{ MHz}, T_A = 25^{\circ} \text{ C}$	-	2.4	-	V
VOSC /	Oscillation amplitude	$f_{OSC} = 8 \text{ MHz}, T_A = 25^{\circ} \text{ C}$		1		v
V _{AV} ¹⁾	Oscillator operating point	Sine wave middle, $T_A = 25^{\circ} C$	-	0.77	-	v
	Oscillator start-up time	External crystal, V_{DD} = 5.5 V, f_{OSC} = 4 MHz, T_A =-40° C	-	-	12	ms
		External crystal, V _{DD} = 5.0 V, f _{OSC} = 4 MHz, T _A =25 ^o C	-	5.5	-	ms
+1)		External crystal, V_{DD} = 5.5 V, f _{OSC} = 6 MHz, T _A =-40 ^o C	-	-	8	ms
'STUP'		External crystal, V_{DD} = 5.0 V, f_{OSC} = 6 MHz, T_A =25° C	-	3.3	-	ms
		External crystal, V_{DD} = 5.5 V, f _{OSC} = 8 MHz, T _A =-40 ^o C	-	-	7	ms
		External crystal, $V_{DD} = 5.0 \text{ V}$, $f_{OSC} = 8 \text{ MHz}$, $T_A = 25^{\circ} \text{ C}$	-	2.7	-	ms

Table 14. Main oscillator characteristics

RC/backup oscillator characteristics

 V_{DD} = 5V \pm 10%, T_{A} = -40°C to $T_{Amax}\text{,}$ unless otherwise specified.

Symbol	Paramatar	Conditiona		Value		Unit
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
f		High frequency mode 1)		2.35		MHz
'RC	The frequency	Low frequency mode ¹⁾ CMU_RCCTL = 0x0 OMU_RCCTL = 0x5		29		kHz
f _{RCHF}	RC high frequency	CMU_RCCTL = 0x0	3			MHz
		CMU_RCCTL = 0xF			2.3	MHz
4	RC low frequency	CMU_RCCTL = 0x0	35			kHz
'RCLF		CMU_RCCTL = 0xF			30	kHz
f _{RCHFS} 2)	RC high frequency stability	Fixed CMU_RCCTL			10	%
f _{RCLFS} 2)	RC low frequency stability	Fixed CMU_RCCTL			23	%
t _{RCSTUP}	RC start-up time	Stable V _{DD} , $f_{RC} = 2.35$ MHz, $T_A = 25^{\circ}C$		2.35		μs

1) CMU_RCCTL = 0x8

2) RC frequency shift versus average value (%)

PLL electrical characteristics

 V_{DD} = 5 V \pm 10%, T_{A} = -40° C to T_{Amax} , unless otherwise specified

Symbol	Paramotor	Conditions		Value		Unit
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN} ⁽¹⁾	PLL reference clock	FREF_RANGE = '0' FREF_RANGE = '1'	1.5 3.0		3.0 5.0	MHz
fpllout	PLL output clock	MX = "00" MX = "01" MX = "10" MX = "11"	20 x f _{PLLIN} 12 x f _{PLLIN} 28 x f _{PLLIN} 16 x f _{PLLIN}		MHz	
f _{MCLK}	System clock	DX = 17	f _{PLLO}	_{JT} /DX	36	MHz
f _{FREE} ⁽²⁾	PLL free running frequency	FREF_RANGE = '0', MX0 = '1' FREF_RANGE = '0', MX0 = '0' FREF_RANGE = '1', MX0 = '1' FREF_RANGE = '1', MX0 = '0'		120 240 240 480		kHz
t _{LOCK} ⁽³⁾	PLL lock time	Stable oscillator (f _{PLLIN} = 4 MHz), stable V _{DD}		100	300	μs
Δt _{PKJIT}	PLL jitter (pk to pk)	f _{PLLIN} = 4 MHz (pulse generator)			1.5	ns

Table 16. PLL characteristics

1. $f_{\mbox{PLLIN}}$ is obtained from $f_{\mbox{OSC}}$ directly or through an optional divider by 2.

2. Typical data are based on $T_A=25^{\circ}C$, $V_{DD}=5V$

3. Max value is guaranteed by characterization, not tested in production.

Table 17.	Low-power	mode	wake-up) timing
-----------	-----------	------	---------	----------

Symbol	Parameter	Conditions	Тур	Unit
t _{WUHALT}	Wake-up from HALT mode	e RC high frequency in STOP mode RC low frequency in STOP mode		μs
twuetop	Wake-up from STOP mode	RC high frequency in STOP mode	180	μs
WUSTOP	Wake-up noin STOP mode	RC low frequency in STOP mode	234	μs
^t wulpwfi ¹⁾		Main voltage regulator on RC oscillator off f _{OSC} = 4 MHz, f _{MCLK} = f _{OSC} /16 RAM or FLASH execution	27	μs
	Wake-up from LPWFI mode	Main voltage regulator on RC oscillator = high frequency Flash execution		μs
		Main voltage regulator on RC oscillator = low frequency Flash execution	3.6	ms

1. Flash memory programmed to enter Power Down mode during LPWFI.

4.3.4 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	I Parameter Conditions		Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} =5 V, T _A =+25° C, f _{MCLK} =36 MHz conforms to IEC 1000-4-2	4A
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD}=5$ V, $T_A=+25^{\circ}$ C, $f_{MCLK}=36$ MHz conforms to IEC 1000-4-4	4A

Table 19. EMS data

sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

• **DLU**: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class 1)
LU	Static latch-up class	T_{A} =+25°C T_{A} =+85°C T_{A} =+105°C	A A A
DLU	Dynamic latch-up class	$V_{DD}{=}$ 5.5 V, $f_{OSC4M}{=}$ 4 MHz, $f_{MCLK}{=}$ 32 MHz, $T_{A}{=}$ +25° C	А

Table 22. Electrical sensitivities

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).

4.3.6 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MCLK}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
f _{ADC}			0.4		10	MHz
V _{AIN}	Conversion voltage range ²⁾		V _{SSA}		V_{DDA}	V
l _{lkg}	Negative input leakage current on analog pins	V _{IN} <v<sub>SS, I_{IN} < 400 μA on adjacent analog pin</v<sub>		5	6	μA
C _{ADC}	Internal sample and hold capacitor				3.5	pF
to ²⁾	Calibration time	face = 10 MHz	580.2			μs
^I CAL				5802		1/f _{ADC}
t _S ³⁾	Sampling time	f _{ADC} = 10 MHz	1		14	μs
			3			μs
t _{CONV}	Total conversion time (including sampling time)	f _{ADC} = 10 MHz	30 (10 for sampling +20 for successive approximation)		oling sive	1/f _{ADC}
lune	Running mode	Normal mode			5	mA
ADC	Power-down mode				1	μA

Table 26.	ADC characteristics
1 abie 20.	ADC CHARACTERISTICS

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$ and $V_{DDA}-V_{SS}=5.0V$. They are given only as design guidelines and are not tested.

2. Calibration is recommended once after each power-up.

3. During the sample time the input capacitance C_{AIN} (6.8 max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

57

Analog power supply and reference pins

The V_{DDA} and V_{SSA} pins are the analog power supply of the A/D converter cell. They act as the high and low reference voltages for the conversion.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see: *General PCB design guidelines*).

General PCB design guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

- Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.
- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 μF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 μF capacitor close to the power source (see *Figure 23*).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{DDA} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.

Software filtering of spurious conversion results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

Figure 23. Power supply filtering

5 Package characteristics

5.1 Package mechanical data

Figure 24. 100-pin thin quad flat package

Figure 25. 144-pin thin quad flat package

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

