E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	72
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str736fv1t7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Overview

Features	STR730FZx		STR735FZx		STR731FVx		STR736FV		/x	
Flash memory - bytes	128K 256K		128K	256K	64K	128K	256K	64K	128K	256K
RAM - bytes		16	κ				16	κ		
Peripheral functions		10 TIM timers, 112 I/Os, 32 wake-up lines, 16 ADC				6 TIM timers, 72 I/Os, 18 wake-up lines, 12 ADC channels				es,
CAN peripherals	3	3	0		3			0		
Operating voltage					4.5 to	5.5 V				
Operating temperature		-40 to +85°C/-40 to +105° C								
Packages	Packages T=TQFP144 20 x 20 H=LFBGA144 10 x10			T =TQFP100 14x14						

Table 2. Product overview

Package choice: reduced pin-count TQFP100 or feature-rich 144-pin TQFP or LFBGA

The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on each package.

The family includes versions with and without CAN.

High speed Flash memory

The Flash program memory is organized in 32-bit wide memory cells which can be used for storing both code and data constants. It is accessed by CPU with zero wait states @ 36 MHz.

The STR7 embedded Flash memory can be programmed using in-circuit programming or in-application programming.

The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years @ 85° C.

IAP (in-application programming): IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running.

ICP (in-circuit programming): ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board.

The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection:

- Sector write protection
- Flash debug protection (locks JTAG access)

Flexible power management

To minimize power consumption, you can program the STR73xF to switch to SLOW, WFI LPWFI, STOP or HALT modes depending on the current system activity in the application.

Flexible clock control

Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2 MHz or 32 kHz. The embedded PLL can be configured to generate an internal system clock of up to 36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers and dividers.

Voltage regulators

The STR73xF requires an external 4.5 to 5.5 V power supply. There are two internal Voltage Regulators for generating the 1.8 V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait for Interrupt (LPWFI) mode.

Low voltage detectors

The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8 V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF.

Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly.

2.1 On-chip peripherals

CAN interfaces

The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736.

DMA

4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to peripheral, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity.

16-bit timers (TIM)

Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph).

PWM modules (PWM)

The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor.

Timebase timers (TB)

The three 16-bit timebase timers with 8-bit prescaler for general purpose time triggering operations.

Real-time clock (RTC)

The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or

clock/calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps running, powered by the low power voltage regulator.

UARTs

The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 625 Kbaud.

Buffered serial peripheral interfaces (BSPI)

Each of the three BSPIs allow full duplex, synchronous communications with external devices, master or slave communication at up to 6 Mb/s in master mode and up to 4.5 Mb/s in slave mode (@36 MHz system clock).

I²C interfaces

The two I^2C Interfaces provide multi-master and slave functions, support normal and fast I^2C mode (400 kHz) and 7 or 10-bit addressing modes.

A/D converter

The 10-bit analog to digital converter, converts up to 16 channels in single-shot or continuous conversion modes (12 channels in 100-pin devices). The minimum conversion time is 3 μ s.

Watchdog

The 16-bit watchdog timer protects the application against hardware or software failures and ensures recovery by generating a reset.

I/O ports

Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose input/output or alternate function.

External interrupts and wake-up lines

16 external interrupts lines are available for application use. In addition, up to 32 external Wake-up lines (18 in 100-pin devices) can be used as general purpose interrupts or to wake-up the application from STOP mode.

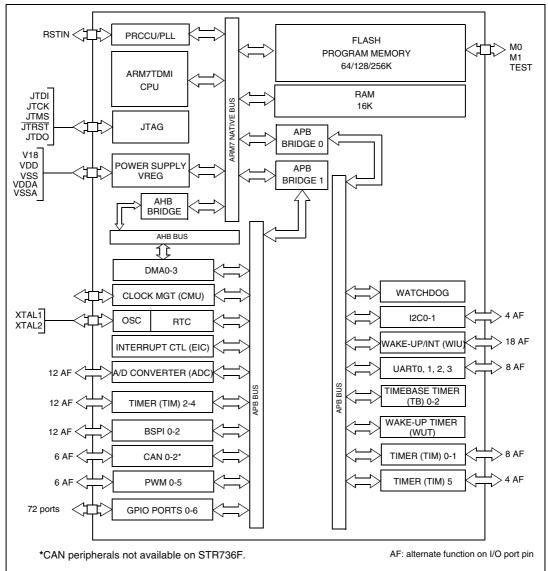


Figure 2. STR731F/STR736 block diagram

3.2.2 STR730F/STR735F (LFBGA144)

Table 3. STR730F/STR735F LFBGA ball connections

Ball	Name	Ball	Name	Ball	Name	Ball	Name
A1	P0.0 / OCMPB2	B1	P0.4 / OCMPA5	C1	P0.5 / OCMPB5	D1	V _{SS}
A2	P6.10 / WUP8	B2	P0.1 / OCMPA2	C2	P0.2 / ICAPA2	D2	V _{DD}
A3	P6.9 / TDO0	B3	P6.15 / WUP9	C3	P0.3 / ICAPB2	D3	P0.6 / ICAPA5
A4	P6.12 / MOSI0	B4	P6.13 / SCKO / WUP11	C4	P6.14 / SSO	D4	P0.7 /ICAPB5
A5	P6.6 / WUP6	B5	P6.7 / WUP7	C5	P6.8 / RDI0 / WUP10	D5	P6.11 / MISO0
A6	V ₁₈	B6	P6.2 / WUP2 / RDI3	C6	P6.3 / WUP3	D6	P6.4 / WUP4 /TDO3
A7	P5.15 / INT13	B7	P5.14 / INT12	C7	V _{SS}	D7	VDD
A8	P5.8 / INT6	B8	P5.9 / INT7	C8	P5.10 / INT8 / RDI2	D8	P5.12 / INT10
A9	P5.2 / OCMPA9	B9	P5.3 / OCMPB9	C9	P5.4 / SS2	D9	P5.5 / SCK2 / WUP23
A10	P5.7 / MISO2	B10	P5.0 / MOSI1	C10	P5.1 / MISO1	D10	P4.13 / ICAPB9
A11	P5.6 / MOSI2	B11	P4.15 / SCK1 / WUP22	C11	P4.14 / SS1	D11	P4.12 / ICAPA9 / WUP21
A12	P5.11 / TDO2 / INT9	B12	P4.8 / OCMPA8	C12	P4.7 / SDA1	D12	P4.11 / OCMPB8
E1	P0.8 / OCMPA6	F1	V _{DD}	G1	V _{SS}	H1	V _{DD}
E2	P0.9 / OCMPB6	F2	P0.13 / ICAPB3	G2	P1.2 / ICAPB4	H2	P1.8 / OCMPA0 / INT0
E3	P0.10 / OCMPA7	F3	P0.14 / OCMPB3	G3	P1.3 / ICAPA4	H3	P1.9 / OCMPB0 / INT1
E4	P0.11 / OCMPB7	F4	P0.15 / OCMPA3	G4	V _{SS}	H4	P1.10 / ICAPB0 / WUP28
E5	P0.12 / ICAPA3	F5	P1.0 / OCMPA4	G5	P1.5	H5	XTAL2
E6	P6.5 / WUP5	F6	P1.1 / OCMPB4	G6	P2.11 / WUP17	H6	P2.10 / WUP16
E7	P6.0 / WUP0	F7	P6.1 / WUP1	G7	P4.0 / ICAPA7 / WUP24	H7	P2.15 / SDA 0
E8	P5.13 / INT11	F8	P4.4 / CAN2TX ¹⁾	G8	VDD	H8	JTMS
E9	P4.10 / ICAPA6 / WUP20	F9	P4.3 / ICAPB8 / WUP27	G9	VSS	H9	VSS
E10	P4.9 / ICAPB6	F10	P4.2 / ICAPA8 / WUP26	G10	JTDO	H10	VDD
E11	P4.6 / SCL1 / WUP19	F11	P4.1 / ICAPB7 / WUP25	G11	JTCK	H11	P3.15 / AIN15 / INT5
E12	P4.5 / WUP18 / CAN2RX ¹⁾	F12	JTDI	G12	nJTRST	H12	P3.14 / AIN14 / INT4
J1	P1.4	K1	P1.6 / OCMPB1	L1	P1.7 / OCMPA1	M1	P1.14 / CAN0RX ¹⁾ / WUP12
J2	P1.11 / ICAPA0 / WUP29	K2	P1.13 / ICAPB1 / WUP31	L2	P1.15 / CAN0TX ¹⁾	M2	P2.4 / PWM2
J3	P1.12 / ICAPA1 / WUP30	K3	P2.1 / CAN1RX ¹⁾ / WUP13	L3	P2.0 / PWM0	МЗ	P2.5 / PWM3
J4	P2.7 / PWM5	K4	P2.6 / PWM4	L4	P2.3 / PWM1	M4	P2.2 / CAN1TX ¹⁾
J5	V _{DD}	K5	M1	L5	RSTIN	M5	MO
J6	P2.9 / RDI1 / WUP14	K6	P2.8 / TDO1	L6	V _{SS}	M6	V _{SS}
J7	P2.14 / SCL 0 / WUP15	K7	P2.13 / INT15	L7	P2.12 / INT14	M7	XTAL1
J8	P3.1 / AIN1	K8	P3.0 / AIN0	L8	VBIAS	M8	TST
J9	P3.13 / AIN13 / INT3	K9	P3.4 / AIN4	L9	P3.3 / AIN3	M9	P3.2 / AIN2
J10	P3.12 / AIN12 / INT2	K10	V _{DDA}	L10	P3.5 / AIN5	M10	V _{SS}
J11	P3.9 / AIN9	K11	V _{SSA}	L11	P3.7 / AIN7	M11	V _{DD}
J12	P3.8 / AIN8	K12	P3.11 / AIN11	L12	P3.10 / AIN10	M12	P3.6 / AIN6

Note: CAN alternate functions not available on STR735F.

Table 4.	STR73xF pin	description
----------	-------------	-------------

	Pin n°)				Inp	ut	Ou	tpu	t	Main	
TQFP144	LFBGA144	TQFP100	Pin name	Type	Input Level	pd/nd	interrupt	Capability	OD	ЪР	Main function (after reset)	Alternate function
119	B8	84	P5.9/PWM5	I/O	Τ _Τ		INT7	2mA	х	х	Port 5.9	PWM5: PWM output (TQFP100 only)
120	C8	85	P5.10/RDI2	I/O	Τ _T		INT8	2mA	Х	Х	Port 5.10	UART2: receive data input
121	A12	86	P5.11/TDO2	I/O	Τ _Τ		INT9	2mA	Х	Х	Port 5.11	UART2: transmit data output
122	D8	87	P5.12	I/O	Τ _Τ		INT10	2mA	Х	Х	Port 5.12	
123	E8		P5.13	I/O	Τ _Τ		INT11	2mA	Х	Х	Port 5.13	
124	B7		P5.14	I/O	Τ _Τ		INT12	2mA	Х	Х	Port 5.14	
125	A7		P5.15	I/O	Τ _Τ		INT13	2mA	Х	Х	Port 5.15	
126	A6	88	V ₁₈	S								1.8 V decoupling pin: a decoupling capacitor (recommended value: 100 nF) must be connected between this pin and nearest Vss pin.
127	C7	89	V _{SS}	S								Ground
128	D7	90	V _{DD}	S								Supply voltage (5 V)
129	E7	91	P6.0	I/O	Τ _Τ		WUP0	8mA	Х	Х	Port 6.0	
130	F7		P6.1	I/O	Τ _Τ		WUP1	2mA	Х	Х	Port 6.1	
131	B6	92	P6.2/RDI3	I/O	Τ _T		WUP2	2mA	Х	х	Port 6.2	UART3: receive data input
132	C6		P6.3	I/O	Τ _Τ		WUP3	2mA	Х	Х	Port 6.3	
133	D6	93	P6.4/TDO3	I/O	Τ _Τ		WUP4	2mA	Х	Х	Port 6.4	UART3: transmit data output
134	E6		P6.5	I/O	Τ _T		WUP5	2mA	Х	х	Port 6.5	
135	A5	94	P6.6	I/O	Τ _Τ		WUP6	2mA	Х	Х	Port 6.6	
136	B5		P6.7	I/O	Τ _Τ		WUP7	2mA	Х	Х	Port 6.7	
137	C5	95	P6.8/RDI0	I/O	Τ _T		WUP10	2mA	Х	х	Port 6.8	UART0: receive data input
138	A3	96	P6.9/TDO0	I/O	Τ _T			2mA	Х	Х	Port 6.9	UART0: transmit data output
139	A2		P6.10	I/O	Τ _Τ		WUP8	2mA	Х	х	Port 6.10	
140	D5	97	P6.11/MISO0	I/O	Τ _Τ			2mA	х	х	Port 6.11	BSPI0: master input/slave output
141	A4	98	P6.12/MOSI0	I/O	Τ _Τ			2mA	х	х	Port 6.12	BSPI0: master output/slave input
142	B4	99	P6.13/SCK0	I/O	Τ _Τ		WUP11	2mA	Х	х	Port 6.13	BSPI0: serial clock
143	C4	100	P6.14/SS0	I/O	Τ _Τ			2mA	Х	х	Port 6.14	BSPI0: slave select
144	B3		P6.15	I/O	Τ _Τ		WUP9	2mA	Х	Х	Port 6.15	

3.3 Memory mapping

Figure 5 shows the various memory configurations of the STR73xF system. The system memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure, the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM addresses can be aliased to Block 0 addresses using the remapping feature

Most reserved memory spaces (gray shaded areas in *Figure 5*) are protected from access by the user code. When an access this memory space is attempted, an ABORT signal is generated. Depending on the type of access, the ARM processor will enter "prefetch abort" state (Exception vector 0x0000_000C) or "data abort" state (Exception vector 0x0000_000C) or "data abort" state (Exception vector 0x0000_000C). It is up to the application software to manage these abort exceptions.

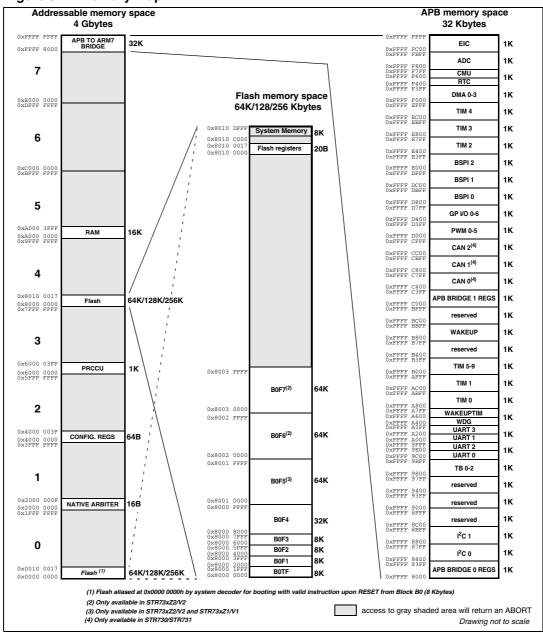


Figure 5. Memory map

4.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} - V _{SS}	External 5 V Supply voltage	-0.3	6.0	V
V _{SSA}	Reference ground for A/D converter	V _{SS}	V _{SS}	v
V_{DDA} - V_{SSA}	Reference voltage for A/D converter	-0.3	V _{DD} +0.3	V
V _{IN}	Input voltage on any pin	-0.3	V _{DD} +0.3	v
ا _ک V _{DDx}	Variations between different 5 V power pins	-	0.3	mV
IV _{SSX} - V _{SS} I	Variations between all the different ground pins	-	0.3	ΠV
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	see : Absolute maximum ratings		
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	(electrical sensit		

Table 5. Voltage characteristics

Table 6. Current characteristics

Symbol	Symbol Ratings		Unit
I _{VDD}	I _{VDD} Total current into V _{DD} power lines (source) ¹⁾		
I _{VSS}	I _{VSS} Total current out of V _{SS} ground lines (sink) ¹⁾		
ha	Output current sunk by any I/O and control pin	10	mA
Ι _{ΙΟ}	Output current source by any I/O and control pin	10	ШA
I _{INJ(PIN)} ^{2) & 3)}	INJ(PIN) ^{2) & 3)} Injected current on any other pin ^{4) &5)}		
$\Sigma I_{\rm INJ(PIN)}^{2)}$	Total injected current (sum of all I/O and control pins) 4)	±75	

1. All 5 V power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external 5 V supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

3. Negative injection disturbs the analog performance of the device. See note in Section 4.3.6: 10-bit ADC characteristics on page 43.

4. When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

5.) In 144-pin devices, only +10 mA on P0.3, P1.13, P3.6 and P4.13 pins (negative injection not allowed).

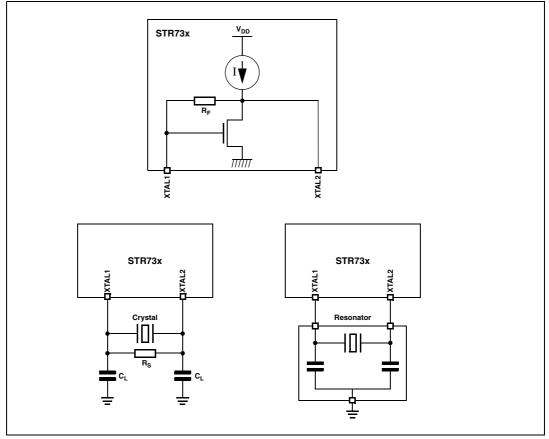
On-chip peripherals

Symbol	Parameter	Conditions	Тур	Unit
	RC (backup oscillator) supply current	High frequency	120	μA
I _{DD(RC)}	no (backup oscillator) supply current	Low frequency	60	μA
I _{DD(TIM)}	TIM timer supply current 1)		350	μA
I _{DD(BSPI)}	BSPI supply current ¹⁾		1.1	mA
I _{DD(UART)}	UART supply current ¹⁾		850	μA
I _{DD(I2C)}	I2C supply current ¹⁾		430	μA
I _{DD(ADC)}	ADC supply current when converting ²⁾		5	mA
I _{DD(EIC)}	EIC supply current		2.88	mA
I _{DD(CAN)}	CAN supply current ¹⁾		2.95	mA
I _{DD(GPIO)}	GPIO supply current	f _{MCLK} =36 MHz	150	μA
I _{DD(TB)}	TB supply current	MCLK-00 MI 12	250	μA
I _{DD(PWM)}	PWM supply current		240	μA
I _{DD(RTC)}	RTC supply current		370	μA
I _{DD(DMA)}	DMA supply current		2.5	mA
I _{DD(ARB)}	Native arbiter supply current		180	μA
I _{DD(AHB)}	AHB arbiter supply current		570	μA
I _{DD(WUT)}	WUT supply current		300	μA
I _{DD(WIU)}	WIU supply current		460	μA

Table 13. Peripheral current consumption at T_A= 25°C

 Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset, not clocked and the on-chip peripheral when clocked and not kept under reset. This measurement does not include the pad toggling consumption.

2. Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions.



4.3.2 Clock and timing characteristics

Crystal / ceramic resonator oscillator

The STR73xF can operate with a crystal oscillator or resonator clock source. *Figure 12* describes a simple model of the internal oscillator driver as well as example of connection for an oscillator or a resonator.

Figure 12. Crystal oscillator and resonator

Note: 1 XTAL2 must not be used to directly drive external circuits.

2 For test or boot purpose, XTAL2 can be used as an high impedance input pin to provide an external clock to the device. XTAL1 should be grounded, and XTAL2 connected to a wave signal generator providing a 0 to VDD signal. Directly driving XTAL2 may results in deteriorated jitter and duty cycle.

57

57

Main oscillator characteristics

 V_{DD} = 5 V \pm 10%, T_A = -40° C to $T_{Amax}\text{,}$ unless otherwise specified.

Cumhal	Deveneter	Conditions		Value		Unit
Symbol	Parameter	Conditions	Min	Тур	Max	
f _{OSC}	Oscillator frequency		4		8	MHz
9 _m	Oscillator transconductance		1.5		4.2	mA/V
V _{OSC} ¹⁾	Oscillation amplitude	$f_{OSC} = 4 \text{ MHz}, T_A = 25^{\circ} \text{ C}$	-	2.4	-	v
VOSC /	Oscillation amplitude	f_{OSC} = 8 MHz, T_A = 25° C		1		v
V _{AV} ¹⁾	Oscillator operating point	Sine wave middle, $T_A = 25^{\circ} C$	-	0.77	-	v
		External crystal, $V_{DD} = 5.5 \text{ V}$, $f_{OSC} = 4 \text{ MHz}$, T_A =-40° C	-	-	12	ms
		External crystal, V_{DD} = 5.0 V, f _{OSC} = 4 MHz, T _A =25 ^o C	-	5.5	-	ms
+. 1)		External crystal, $V_{DD} = 5.5 \text{ V}$, $f_{OSC} = 6 \text{ MHz}$, T_A =-40° C	-	-	8	ms
t _{STUP} 1)	Oscillator start-up time	External crystal, $V_{DD} = 5.0 \text{ V}$, $f_{OSC} = 6 \text{ MHz}$, $T_A = 25^{\circ} \text{ C}$	-	3.3	-	ms
		External crystal, $V_{DD} = 5.5 \text{ V}$, $f_{OSC} = 8 \text{ MHz}$, T_A =-40° C	-	-	7	ms
		External crystal, $V_{DD} = 5.0 \text{ V}$, $f_{OSC} = 8 \text{ MHz}$, $T_A = 25^{\circ} \text{ C}$	-	2.7	-	ms

Table 14. Main oscillator characteristics

0h.sl	Demonstern	0-			Value		Unit	
Symbol	Parameter	Co	Conditions		Тур	Max	Unit	
			$C_1^{(3)} = C_2^{(4)} = 10 \text{ pF}$	150	555	-		
		f _{OSC} = 4 MHz	$C_1 = C_2 = 20 \text{ pF}$	490	1035	-		
		Cp ²⁾ = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	490	1030	-		
			$C_1 = C_2 = 40 \text{ pF}$	380	850	-		
			$C_1 = C_2 = 10 \text{ pF}$	160	470	-		
		f _{OSC} = 5 MHz	$C_1 = C_2 = 20 \text{ pF}$	415	800	-		
	Feedback resistor	Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	340	735	-		
			$C_1 = C_2 = 40 \text{ pF}$	260	580	-		
		f _{OSC} = 6 MHz Cp = 10 pF	$C_1 = C_2 = 10 \text{ pF}$	160	415	-		
R _F ¹⁾			f _{OSC} = 6 MHz	$C_1 = C_2 = 20 \text{ pF}$	325	640	-	Ω
''F			$C_1 = C_2 = 30 \text{ pF}$	250	550	-		
			$C_1 = C_2 = 40 \text{ pF}$	180	420	-		
			$C_1 = C_2 = 10 \text{ pF}$	160	375	-		
		f _{OSC} = 7 MHz	$C_1 = C_2 = 20 \text{ pF}$	260	525	-		
		Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	185	420	-		
			$C_1 = C_2 = 40 \text{ pF}$	135	315	-		
			$C_1 = C_2 = 10 \text{ pF}$	155	340	-		
		f _{OSC} = 8 MHz	$C_1 = C_2 = 20 \text{ pF}$	210	435	-		
		Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	145	335	-		
			$C_1 = C_2 = 40 \text{ pF}$	100	245	-		

Table 14. Main oscillator characteristics (continued)

1. Min and max values are guaranteed by characterization, not tested in production.

- C_P represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and XTAL2 track.
- C₁ represents the total capacitance between XTAL1 and ground, including the external capacitance tied to XTAL1 pin (C_L) as well as the total parasitic capacitance between XTAL1 track and ground (this includes application board track capacitance to ground and device pin capacitance).
- C₂ represents the total capacitance between XTAL2 and ground, including the external capacitance tied to XTAL1 pin (C_L) as well as the total parasitic capacitance between XTAL2 track and ground (this includes application board track capacitance to ground and device pin capacitance).

RC/backup oscillator characteristics

 V_{DD} = 5V \pm 10%, T_{A} = -40°C to $T_{Amax}\text{,}$ unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
f	RC frequency	High frequency mode 1)		2.35		MHz
† _{RC}	The mequency	Low frequency mode ¹⁾		29		kHz
£	PC high frequency	CMU_RCCTL = 0x0	3			MHz
f _{RCHF}	RC high frequency	CMU_RCCTL = 0xF			2.3	MHz
£	DC low froguenov	CMU_RCCTL = 0x0	35			kHz
f _{RCLF}	RC low frequency	CMU_RCCTL = 0xF			30	kHz
f _{RCHFS} 2)	RC high frequency stability	Fixed CMU_RCCTL			10	%
f _{RCLFS} ²⁾	RC low frequency stability	Fixed CMU_RCCTL			23	%
t _{RCSTUP}	RC start-up time	Stable V _{DD} , $f_{RC} = 2.35 \text{ MHz}, T_A = 25^{\circ}\text{C}$		2.35		μs

1) CMU_RCCTL = 0x8

2) RC frequency shift versus average value (%)

PLL electrical characteristics

 V_{DD} = 5 V \pm 10%, T_{A} = -40° C to T_{Amax} , unless otherwise specified

Symbol	Parameter	Conditions	Value			Unit	
Symbol	Falameter	Conditions	Min	Тур	Max	Onit	
f _{PLLIN} ⁽¹⁾	PLL reference clock	FREF_RANGE = '0' FREF_RANGE = '1'	1.5 3.0		3.0 5.0	MHz	
f _{PLLOUT}	PLL output clock	MX = "00" MX = "01" MX = "10" MX = "11"	20 x f _{PLLIN} 12 x f _{PLLIN} 28 x f _{PLLIN} 16 x f _{PLLIN}		MHz		
f _{MCLK}	System clock	DX = 17	f _{PLLOUT} /DX 36		36	MHz	
f _{FREE} ⁽²⁾	PLL free running frequency	FREF_RANGE = '0', MX0 = '1' FREF_RANGE = '0', MX0 = '0' FREF_RANGE = '1', MX0 = '1' FREF_RANGE = '1', MX0 = '0'		120 240 240 480		kHz	
t _{LOCK} ⁽³⁾	PLL lock time	Stable oscillator (f _{PLLIN} = 4 MHz), stable V _{DD}	100 3		300	μs	
∆t _{PKJIT}	PLL jitter (pk to pk)	f _{PLLIN} = 4 MHz (pulse generator)			1.5	ns	

Table 16. PLL characteristics

1. $f_{\mbox{PLLIN}}$ is obtained from $f_{\mbox{OSC}}$ directly or through an optional divider by 2.

2. Typical data are based on $T_A=25^{\circ}C$, $V_{DD}=5V$

3. Max value is guaranteed by characterization, not tested in production.

Table 17.	Low-power	mode	wake-up	timing

Symbol	Parameter	Conditions	Тур	Unit
t _{WUHALT}	Wake-up from HALT mode		200	μs
+	Wake up from STOP mode	RC high frequency in STOP mode	180	μs
^t WUSTOP	Wake-up from STOP mode	RC low frequency in STOP mode	200	μs
t _{WULPWFI} ¹⁾		Main voltage regulator on RC oscillator off f _{OSC} = 4 MHz, f _{MCLK} = f _{OSC} /16 RAM or FLASH execution	27	μs
	Wake-up from LPWFI mode	Main voltage regulator on RC oscillator = high frequency Flash execution	46	μs
		Main voltage regulator on RC oscillator = low frequency Flash execution	3.6	ms

1. Flash memory programmed to enter Power Down mode during LPWFI.

4.3.3 Memory characteristics

Flash memory

Table 18. Flash memory characteristics

Quarteral	Demonstern	Tool Operativities of		Value	e	Unit
Symbol	Parameter	Test Conditions	Min Typ Max ¹⁾			
t _{WP}	Word program (32-bit)			35	80	μS
t _{DWP}	Double word program(64-bit)			64	150	μS
t _{BP64}	Bank program (64 K)	Double word program		0.5	1.25	S
t _{BP128}	Bank program (128 K)	Double word program		1	2.5	S
t _{BP256}	Bank program (256 K)	Double word program		2	4.9	S
t _{SE8}	Sector erase (8 K)	Not preprogrammed Preprogrammed ²⁾		0.6 0.5	0.9 0.8	S
t _{SE32}	Sector erase (32 K)	Not preprogrammed Preprogrammed ²⁾		1.1 0.8	2 1.8	S
t _{SE64}	Sector erase (64 K)	Not preprogrammed preprogrammed ²⁾		1.7 1.3	3.7 3.3	S
t _{RPD} ³⁾	Recovery from power-down				20	μS
t _{PSL} ³⁾	Program suspend latency				10	μs
t _{ESL} 3)	Erase suspend latency				30	μS
t _{ESR} ³⁾	Erase suspend rate	Min. time from erase resume to next erase suspend		20	20	ms
t _{SP} ³⁾	Set protection			40	170	μs
t _{FPW} ³⁾	First word program			1		ms
N _{END}	Endurance		10			kcycles
t _{RET}	Data retention	$T_A = 85^\circ C$	20			Years

1. $T_A = -45^{\circ}$ C after 0 cycles, Guaranteed by characterization, not tested in production.

2. All bits programmed to 0.

3. Guaranteed by design, not tested in production.

sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

• **DLU**: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ¹⁾
LU	Static latch-up class	T_{A} =+25°C T_{A} =+85°C T_{A} =+105°C	A A A
DLU	Dynamic latch-up class	$V_{DD}{=}$ 5.5 V, $f_{OSC4M}{=}$ 4 MHz, $f_{MCLK}{=}$ 32 MHz, $T_{A}{=}$ +25° C	А

Table 22. Electrical sensitivities

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).

4.3.5 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Table 23. I/O static characteristics
--

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IL}	Input low level voltage 1)	TTL ports			0.8	v	
V _{IH}	Input high level voltage 1)	TTE ports	2.0			v	
I _{INJ(PIN)}	Injected current on any I/O pin				±10	mA	
ΣI _{INJ(PIN)} 2)	Total injected current (sum of all I/O and control pins)				±75	mA	
l _{lkg}	Input leakage current 3)	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA	
۱ _S	Static current consumption ⁴⁾	Floating input mode		200		μA	
R _{PU}	Weak pull-up equivalent resistor ⁵⁾	V _{IN} =V _{SS}	55	120	220	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁵⁾	V _{IN} =V _{DD}	55	120	220	kΩ	
C _{IO}	I/O pin capacitance			5		pF	

1. Data based on characterization results, not tested in production.

When the current limitation is not possible, the V_{IN} absolute maximum rating must be respected, otherwise
refer to I_{INJ(PIN)} specification. A positive injection is induced by V_{IN}>V₃₃ while a negative injection is
induced by V_{IN}<V_{SS}. Refer to Section 4.2 on page 22 for more details.

- 3. Leakage could be higher than max. if negative current is injected on adjacent pins.
- 4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. Data based on design simulation and/or technology characteristics, not tested in production.
- The R_{PU} pull-up and R_{PD} pull-down equivalent resistor are based on a resistive transistor (corresponding I_{PU} and I_{PD} current characteristics described in *Figure 19*).

NRSTIN pin

The NRSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as R_{PU} (see : *General characteristics on page 38*)

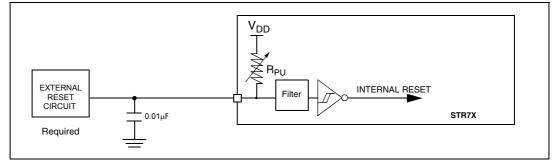

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Table 25. Reset pin characteristics

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRSTIN)}	NRSTIN Input low level voltage 1)				$0.3 V_{DD}$	v
V _{IH(NRSTIN)}	NRSTIN Input high level voltage 1)		0.7 V _{DD}			v
V _{hys(NRSTIN)}	NRSTIN Schmitt trigger voltage hysteresis ²⁾			800		mV
V _{F(RSTINn)}	NRSTIN Input filtered pulse ³⁾				500	ns
V _{NF(RSTINn)}	NRSTIN Input not filtered pulse ³⁾		2			μs
V _{RP(RSTINn)}	NRSTIN removal after Power-up ³⁾		100			μs

- 1. Data based on characterization results, not tested in production.
- 2. Hysteresis voltage between Schmitt trigger switching levels.
- 3. Data guaranteed by design, not tested in production.

Figure 19. Recommended NRSTIN pin protection¹⁾

- 1. The R_{PU} pull-up equivalent resistor is based on a resistive transistor.
- 2. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRSTIN pin can go below the V_{IL(NRSTIN)} max. level specified in Table 25. Otherwise the reset will not be taken into account internally.

6 Order codes

Table 29.Order codes

Partnumber	Flash Kbytes	Package	RAM Kbytes	TIM timers	6x PWM module	CAN periph	A/D chan.	Wake-up lines	I/O ports	Temp. range						
STR730FZ1T6	128	TQFP144														
STR730FZ2T6	256	20x20				3										
STR730FZ1H6	128	LFBGA144				5										
STR730FZ2H6	256	10x10		10			16	32	112							
STR735FZ1T6	128	TQFP144		10			10	52	112							
STR735FZ2T6	256	20x20				0										
STR735FZ1H6	128	LFBGA144	16		1	0				-40 to						
STR735FZ2H6	256	10x10	10							+85°C						
STR731FV0T6	64		-													
STR731FV1T6	128	TQFP100 14x14)			3				
STR731FV2T6	256			6 12		12 18	72									
STR736FV0T6	64				12	10										
STR736FV1T6	128	TQFP100 14x14				0										
STR736FV2T6	256															
STR730FZ1T7	128	TQFP144														
STR730FZ2T7	256	20x20									3					
STR730FZ1H7	128	LFBGA144				5										
STR730FZ2H7	256	10x10		10			16	32	112							
STR735FZ1T7	128	TQFP144		10			10	32	112							
STR735FZ2T7	256	20x20				0										
STR735FZ1H7	128	LFBGA144	16		1	0				-40 to						
STR735FZ2H7	256	10x10	10		•					+105°C						
STR731FV0T7	64															
STR731FV1T7	128	TQFP100 14x14				3										
STR731FV2T7	256			e			10	10	70							
STR736FV0T7	64			6			12	18	72							
STR736FV1T7	128	TQFP100 14x14				0										
STR736FV2T7	256															

7 Known limitations

7.1 Low power wait for interrupt mode

When the STR73x device is put in Low Power Wait For Interrupt mode (LPWFI), the Flash goes into low power mode or power down mode, depending on the setting of the PWD bit in the Flash Control Register 0 (default is '0', Low Power mode). This default mode can create excessive voltage conditions on the transistor gates and may affect the long term behavior of the Low Power mode circuitry.

Workaround

There is no workaround. If Low Power Wait For Interrupt mode is used, it is strongly suggested to configure the Flash to enter power down mode (bit PWD = '1').

7.2 PLL free running mode at high temperature

When the STR73x device is operated and an ambient temperature (T_A) of more than 55° C and the main system clock (f_{MCLK}) is sourced by the PLL in free running mode, the device may not work properly.

Workaround

At high temperature (more than 55° C), it is recommended to use the internal RC oscillator as a backup clock source rather than the PLL free running mode.

