

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-LCC (J-Lead)
Supplier Device Package	28-PLCC (11.51x11.51)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51cc02ua-sisum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 11. SFR Mapping

_	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x000	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000					FFh
F0h	B 0000 0000		ADCLK xxx0 0000	ADCON x000 0000	ADDL 0000 0000	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x000	F7h
E8h	IEN1 xxxx x000	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000					EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 0000 0000	CMOD 0xxx x000	CCAPM0 x000 0000	CCAPM1 x000 0000					DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000		CANEN xxxx 0000	CFh
C0h	P4 xxxx xx11	CANGIE 1100 0000		CANIE 1111 0000	CANIDM1 xxxx xxxx	CANIDM2 xxxx xxxx	CANIDM3 xxxx xxxx	CANIDM4 xxxx xxxx	C7h
B8h	IPL0 x000 0000	SADEN 0000 0000		CANSIT xxxx 0000	CANIDT1 xxxx xxxx	CANIDT2 xxxx xxxx	CANIDT3 xxxx xxxx	CANIDT4 xxxx xxxx	BFh
B0h	P3 1111 1111	CANPAGE 1100 0000	CANSTCH xxxx xxxx	CANCONCH xxxx xxxx	CANBT1 xxxx xxxx	CANBT2 xxxx xxxx	CANBT3 xxxx xxxx	IPH0 x000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000	CANGSTA 1010 0000	CANGCON 0000 0000	CANTIML 0000 0000	CANTIMH 0000 0000	CANSTMPL xxxx xxxx	CANSTMPH xxxx xxxx	AFh
A0h	P2 xxxx xx11	CANTCON 0000 0000	AUXR1 ⁽²⁾ xxxx 00x0	CANMSG xxxx xxxx	CANTTCL 0000 0000	CANTTCH 0000 0000	WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000		CANGIT 0x00 0000	CANTEC 0000 0000	CANREC 0000 0000			9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000		CKCON 0000 0000	8Fh
80h		SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00x1 0000	87h
	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	,

Reserved

Notes: 1. These registers are bit-addressable.

Sixteen addresses in the SFR space are both byte-addressable and bit-addressable. The bit-addressable SFRs are those whose address ends in 0 and 8. The bit addresses, in this area, are 0x80 through to 0xFF.

2. AUXR1 bit ENBOOT is initialized with the content of the BLJB bit inverted.

Clock	 The T89C51CC02 core needs only 6 clock periods per machine cycle. This feature, called "X2", provides the following advantages: Divides frequency crystals by 2 (cheaper crystals) while keeping the same CPU power. Saves power consumption while keeping the same CPU power (oscillator power saving). Saves power consumption by dividing dynamic operating frequency by 2 in operating and idle modes. Increases CPU power by 2 while keeping the same crystal frequency. In order to keep the original C51 compatibility, a divider-by-2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by the software. An extra feature is available to start after Reset in the X2 Mode. This feature can be 				
	enabled by a bit X2B in the Hardware Security Byte. This bit is described in the section 'In-System Programming'.				
Description	The X2 bit in the CKCON register (See Table 12) allows switching from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode).				
	Setting this bit activates the X2 feature (X2 Mode) for the CPU Clock only (See Figure 3).				
	The Timers 0, 1 and 2, Uart, PCA, watchdog or CAN switch in X2 Mode only if the corre- sponding bit is cleared in the CKCON register.				
	The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on the XTAL1 input. In X2 Mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 3. shows the clock generation block diagram. The X2 bit is validated on the XTAL1 \div 2 rising edge to avoid glitches when switching from the X2 to the STD mode. Figure 4 shows the mode switching waveforms.				

	· · · · · · · · · · · · · · · · · · ·					
Program/Code	The T89C51CC02 implement 16K Bytes of on-chip program/code memory.					
Memory	The Flash memory increases EPROM and ROM functionality by in-circuit electrical era- sure and programming. Thanks to the internal charge pump, the high voltage needed for programming or erasing Flash cells is generated on-chip using the standard V_{DD} volt- age. Thus, the Flash memory can be programmed using only one voltage and allows In- System Programming (ISP). Hardware programming mode is also available using spe- cific programming tool.					
	Figure 12. Program/Code Memory Organization					
	3FFFh					
	16K Bytes Internal Flash					
	0000h					
Flash Memory Architecture	 T89C51CC02 features two on-chip Flash memories: Flash memory FM0: containing 16K Bytes of program memory (user space) organized into 128 bytes pages, Flash memory FM1: 2K Bytes for boot loader and Application Programming Interfaces (API). 					
	The FM0 can be program by both parallel programming and Serial ISP whereas FM1 supports only parallel programming by programmers. The ISP mode is detailed in the 'In-System Programming' section.					
	All Read/Write access operations on Flash memory by user application are managed by a set of API described in the 'In-System Programming' section.					
Figure 13. Flash Memory Archite	ecture					

Hardware Security (1 byte) \longrightarrow Extra Row (128 Bytes) \longrightarrow Column Latches (128 Bytes) \longrightarrow	
3FFFh	
	16K Bytes
	Flash Memory User Space
	FM0
0000h	

2K Bytes Flash Memory Boot Space	FFFFh
FM1	F800h

FM1 mapped between F800h and FFFFh when bit ENBOOT is set in AUXR1 register

FM0 Memory Architecture	The Flash memory is made up of 4 blocks (See Figure 13):					
	1. The memory array (user space) 16K Bytes					
	2. The Extra Row					
	3. The Hardware security bits					
	4. The column latch registers					
User Space	This space is composed of a 16K Bytes Flash memory organized in 128 pages of 12 Bytes. It contains the user's application code.					
Extra Row (XRow)	This row is a part of FM0 and has a size of 128 Bytes. The extra row may contain infor- mation for boot loader usage.					
Hardware Security Byte	The Hardware security Byte space is a part of FM0 and has a size of 1 byte. The 4 MSB can be read/written by software, the 4 LSB can only be read by software and written by hardware in parallel mode.					
Column Latches	The column latches, also part of FM0, have a size of full page (128 Bytes). The column latches are the entrance buffers of the three previous memory locations (user array, XROW and Hardware security byte).					
Cross Flash Memory Access Description	The FM0 memory can be programmed as describe on Table 21. Programming FM0 from FM0 is impossible.					
	The FM1 memory can be program only by parallel programming.					
	Table 21 show all software Flash access allowed.					

 Table 21. Cross Flash Memory Access

	Action		FM0 (user Flash)	FM1 (boot Flash)
from	E FMO FMO (user Flash)	Read	ok	-
uting		Load column latch	ok	-
Sxecr		Write	-	-
ode e	ode e	Read	ok	ok
Ŭ	FM1 (boot Flash)	Load column latch	ok	-
	-	Write	ok	-

Registers

Table 25. FCON RegisterFCON Register FCON (S:D1h)Flash Control Register

7	6	5	4	3	2	1	0		
FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY		
Bit Number	Bit Mnemonic	Description	Description						
7 - 4	FPL3:0	Programmin Write 5Xh fol (See Table 2	Programming Launch Command bits Write 5Xh followed by AXh to launch the programming according to FMOD1:0. (See Table 23.)						
3	FPS	Flash Map Program Space Set to map the column latch space in the data memory space. Clear to re-map the data memory space.							
2 - 1	FMOD1:0	Flash Mode See Table 22 or Table 23.							
0	FBUSY	Flash Busy Set by hardw Clear by hard Can not be c	ilash Busy Set by hardware when programming is in progress. Clear by hardware when programming is done. Can not be changed by software.						

Reset Value = 0000 0000b

Figure 22. UART Timing in Mode 1

Registers

Table 33. SCON Register

SCON (S:98h) Serial Control Register

7	6	5	4	3	2	1	0			
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI			
Bit Number	Bit Mnemonic	Description	Description							
7	FE	Framing Error bit (SMOD0 = 1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected.								
	SM0	Serial port N Refer to SM	Mode bit 0 (S 1 for serial por	MOD0 = 0) It mode select	ion.					
6	SM1	Serial port N SM0 SM1 0 0 0 1 1 0 1 1	Serial port Mode bit 1 SM0 SM1 Mode Baud Rate 0 0 Shift Register F _{XTAL} /12 (or F _{XTAL} /6 in mode X2) 0 1 8-bit UART Variable 1 0 9bit UART F _{XTAL} /64 or F _{XTAL} /32 1 1 9bit UART Variable							
5	SM2	Serial port I Clear to disa Set to enable	Serial port Mode 2 bit/Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3.							
4	REN	Reception E Clear to disa Set to enable	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.							
3	TB8	Transmitter Clear to tran Set to transn	Transmitter bit 8/Ninth bit to Transmit in Modes 2 and 3 Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.							
2	RB8	Receiver bit 8/Ninth bit Received in Modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1.								
1	ті	Transmit Interrupt Flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.					inning of the			
0	RI	Receive Interrupt Flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, See Figure 22. and Figure 23. in the other modes.								

Reset Value = 0000 0000b bit addressable

Table 37. PCON RegisterPCON (S:87h)Power Control Register

7	6	5	4	3	2	1	0		
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic	Description	Description						
7	SMOD1	Serial port N Set to select	/lode bit 1 double baud	rate in mode ?	1, 2 or 3.				
6	SMOD0	Serial port M Clear to sele Set to select	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to select FE bit in SCON register.						
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	POF	Power-off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.							
3	GF1	General pur Cleared by u Set by user f	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
2	GF0	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.							
1	PD	Power-dowr Cleared by h Set to enter p	Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Idle Mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.							

Reset Value = 00X1 0000b Not bit addressable

Timer 2	The T89C51CC02 Timer 2 is compatible with Timer 2 in the 80C52.						
	It is a 16-bit timer/counter: the count is maintained by two eightbit timer registers, TH2 and TL2 that are cascade-connected. It is controlled by T2CON register (See Table 45) and T2MOD register (See Table 46). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{T2 \ clock}/6$ (timer operation) or external pin T2 (counter operation) as timer clock. Setting TR2 allows TL2 to be incremented by the selected input.						
Timer 2 includes the following enhancements:							
	 Auto-reload mode (up or down counter) 						
	Programmable clock-output						
Auto-Reload Mode	The auto-reload mode configures Timer 2 as a 16-bit timer or event counter with auto- matic reload. This feature is controlled by the DCEN bit in T2MOD register (See Table 45). Setting the DCEN bit enables Timer 2 to count up or down as shown in Figure 29. In this mode the T2EX pin controls the counting direction.						
	When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.						
	When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.						

The EXF2 bit toggles when Timer 2 overflow or underflow, depending on the direction of the count. EXF2 does not generate an interrupt. This bit can be used to provide 17-bit resolution.

fields against the fixed format and the frame size. Errors detected by frame checks are designated "format errors".

ACK Errors As already mentioned frames received are acknowledged by all receivers through positive acknowledgement. If no acknowledgement is received by the transmitter of the message an ACK error is indicated. Error at Bit Level Monitoring The ability of the transmitter to detect errors is based on the monitoring of bus signals. Each node which transmits also observes the bus level and thus detects differences between the bit sent and the bit received. This permits reliable detection of global errors and errors local to the transmitter. Bit Stuffing The coding of the individual bits is tested at bit level. The bit representation used by CAN is "Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit coding. The synchronization edges are generated by means of bit stuffing. Error Signalling If one or more errors are discovered by at least one node using the above mechanisms, the current transmission is aborted by sending an "error flag". This prevents other nodes accepting the message and thus ensures the consistency of data throughout the network. After transmission of an erroneous message that has been aborted, the sender automatically re-attempts transmission. **CAN Controller** The CAN controller accesses are made through SFR. Description Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing). 4 independent message objects are implemented, a pagination system manages their accesses. Any message object can be programmed in a reception buffer block (even non-consecutive buffers). For the reception of defined messages one or several receiver message objects can be masked without participating in the buffer feature. An IT is generated when the buffer is full. The frames following the buffer-full interrupt will not be taken into account until at least one of the buffer message objects is re-enabled in reception. Higher priority of a message object for reception or transmission is given to the lower message object number. The programmable 16-bit Timer (CANTIMER) is used to stamp each received and sent message in the CANSTMP register. This timer starts counting as soon as the CAN controller is enabled by the ENA bit in the CANGCON register. The Time Trigger Communication (TTC) protocol is supported by the T89C51CC02.

To enable an interrupt on Buffer-full condition:

- Enable General CAN IT in the interrupt system register
- Enable interrupt on Buffer full, ENBUF

To enable an interrupt when Timer overruns:

• Enable Overrun IT in the interrupt system register

When an interrupt occurs, the corresponding message object bit is set in the SIT register.

To acknowledge an interrupt, the corresponding CANSTCH bits (RXOK, TXOK,...) or CANGIT bits (OVRTIM, OVRBUF,...), must be cleared by the software application.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error will also be raised. Consequently, two consecutive interrupts can occur, both due to the same error.

When a message object error occurs and is set in CANSTCH register, no general error are set in CANGIE register.

Fault Confinement

With respect to fault confinement, a unit may be in one of the three following status:

- Error active
- Error passive
- Bus off

An error active unit takes part in bus communication and can send an active error frame when the CAN macro detects an error.

An error passive unit cannot send an active error frame. It takes part in bus communication, but when an error is detected, a passive error frame is sent. Also, after a transmission, an error passive unit will wait before initiating further transmission.

A bus off unit is not allowed to have any influence on the bus.

For fault confinement, two error counters (TEC and REC) are implemented.

See CAN Specification for details on Fault confinement.

Figure 42. Line Error Mode

Table 74. CANIDT1 for V2.0 part A

CANIDT4 for V2.0 part A (S:BFh) CAN Identifier Tag Registers 4

7	6	6	5	4	3	2	1	0	
-	-		-	-	-	RTRTAG	-	RB0TAG	
Bit Numb	per	Bit I	Mnemonic	Description					
7 - 3	7 - 3 - Reserved The values read from these b bits.		Reserved The values read from these bits are indeterminate. Do not set th bits.						
2		F	RTRTAG	Remote transmission request tag value.					
1			-	Reserved The values read from this bit are indeterminate. Do not set these bit.					
0		F	RBOTAG	Reserved bit 0 tag value.					

No default value after reset.

Table 75. CANIDT2Register for V2.0 part ACANIDT1 for V2.0 Part B (S:BCh)CAN Identifier Tag Registers 1

7	(6	5	4	3	2	1	0
IDT 28	ID	Г 27	IDT 26	IDT 25	IDT 24	IDT 23	IDT 22	IDT 21
Bit Number Bit Mnemonic		Description						
7 - 0		I	DT28:21	IDentifier Ta See Figure 4	g Value 3.			

No default value after reset.

Table 76. CANIDT2 Register for V2.0 Part BCANIDT2 for V2.0 Part B (S:BDh)CAN Identifier Tag Registers 2

7		6	5	4	3	2	1	0
IDT 20	ID	Г 19	IDT 18	IDT 17	IDT 16	IDT 15	IDT 14	IDT 13
Bit Number Bit Mnemonic		Description						
7 - 0		I	DT20:13	IDentifier Tag See Figure 4	g Value 3.			

No default value after reset.

Table 82. CANIDM4 Register for V2.0 part ACANIDM4 for V2.0 part A (S:C7h)CAN Identifier Mask Registers 4

7	6	5	4	3	2	1	0		
-	-	-	-	-	RTRMSK	-	IDEMSK		
Bit Number Bit Mnemonic		Description							
7 - 3	7 - 3 -		Reserved The values read from these bits are indeterminate. Do not set the bits.						
2	I	RTRMSK	Remote transmission request Mask Value 0 - comparison true forced. 1 - bit comparison enabled.						
1		-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	0 IDEMSK		IDentifier Extension Mask Value 0 - comparison true forced. 1 - bit comparison enabled.						

Note: The ID Mask is only used for reception.

No default value after reset.

Table 83. CANIDM1 Register for V2.0 Part BCANIDM1 for V2.0 Part B (S:C4h)CAN Identifier Mask Registers 1

7	6	5	4	3	2	1	0
IDMSK 28	IDMSK	27 IDMSK 26	IDMSK 25	IDMSK 24	IDMSK 23	IDMSK 22	IDMSK 21
Bit Numb	er	Bit Mnemonic	Description				
7 - 0		IDMSK28:21	IDentifier Mask Value 0 - comparison true force 1 - bit comparison enable See Figure 43.				

Note: The ID Mask is only used for reception.

No default value after reset.

AIMEL

16-bit Software Timer Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.

Figure 49. PCA 16-bit Software Timer and High Speed Output Mode

Figure 52. ADC Description

Figure 53 shows the timing diagram of a complete conversion. For simplicity, the figure depicts the waveforms in idealized form and do not provide precise timing information. For ADC characteristics and timing parameters refer to the section "AC Characteristics" of this datasheet.

Figure 53. Timing Diagram

Note: Tsetup min, see the AC Parameter for A/D conversion.

Tconv = 11 clock ADC = 1sample and hold + 10-bit conversion

The user must ensure that Tsetup time between setting ADEN and the start of the first conversion.

ADC Converter Operation

A start of single A/D conversion is triggered by setting bit ADSST (ADCON.3).

After completion of the A/D conversion, the ADSST bit is cleared by hardware.

The end-of-conversion flag ADEOC (ADCON.4) is set when the value of conversion is available in ADDH and ADDL, it must be cleared by software. If the bit EADC (IEN1.1) is set, an interrupt occur when flag ADEOC is set (See Figure 55). Clear this flag for rearming the interrupt.

Note: Always leave Tsetup time before starting a conversion unless ADEN is permanently high. In this case one should wait Tsetup only before the first conversion

IT ADC Management

An interrupt end-of-conversion will occurs when the bit ADEOC is activated and the bit EADC is set. For re-arming the interrupt the bit ADEOC must be cleared by software.

Figure 55. ADC interrupt structure

Table 111. IPL1 RegisterIPL1 (S:F8h)Interrupt Priority Low Register 1

7	6	5	4	3	2	1	0		
-	-	-	-		POVRL	PADCL	PCANL		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value rea	teserved The value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value re-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
2	POVRL	Timer Overrun Interrupt Priority Level Less Significant bit Refer to PI2CH for priority level.							
1	PADCL	ADC Interrupt Priority Level Less Significant bit Refer to PSPIH for priority level.							
0	PCANL	CAN Interru Refer to PKE	pt Priority Le	evel Less Sign level.	nificant bit				

Reset Value = XXXX X000b bit addressable

Table of	Features	1
Contents	Description	2
	Block Diagram	2
	Pin Configurations	
	Pin Description	5
	I/O Configurations	7
	Port Structure	7
	Read-Modify-Write Instructions	8
	Quasi Bi-directional Port Operation	8
	SFR Mapping	10
	Clock	16
	Description	16
	Register	19
	Power Management	
	Reset Pin	20
	At Power-up (cold reset)	20
	During a Normal Operation (Warm Reset)	21
	Watchdog Reset	21
	Reset Recommendation to Prevent Flash Corruption	
	Idle Mode	22
	Power-down Mode	22
	Registers	25
	Data Memory	
	Internal Space	
	Dual Data Pointer	
	Registers	29
	EEPROM Data Memory	31
	Write Data in the Column Latches	31
	Programming	
	Read Data	31
	Examples	
	Registers	33

Absolute Maximum Ratings	140
DC Parameters for Standard Voltage	140
DC Parameters for A/D Converter	142
AC Parameters	143
Ordering Information	146
Package Drawings	147
VQFP32	147
PLCC28	149
	150
SOIC24	151
SOIC28	152
Datasheet Revision History	154
Changes from 4126C-10/02 to 4126D - 04/03	154
Changes from 4126D -05/03 to 4126E - 10/03	154
Changes from 4126E - 10/03 to 4126F - 12/03	154
Changes from 4126F - 12/03 4126G - 08/04	154
Changes from 4126G - 08/04 to 4126H - 01/05	154
Changes from 4126H - 01/05 to 4126I 11/05	154
Changes from 4126I to 4126J 05/06	154
Changes from 4126J to 4126K 11/07	154
Changes from 4126K 11/07 to 4126L 02/08	154
Table of Contents	i