

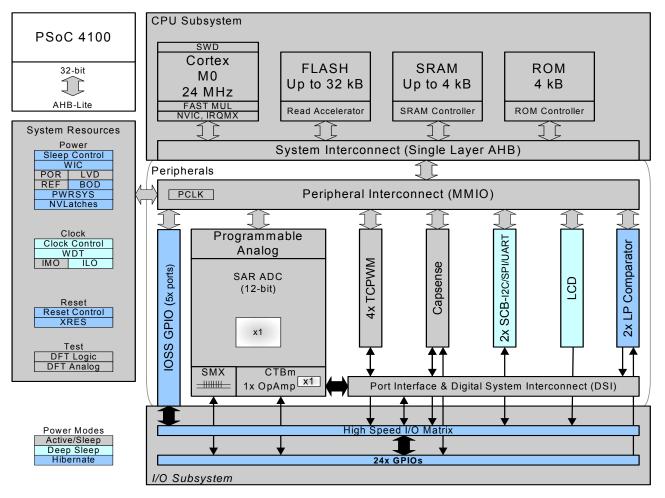
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4124pva-442z

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Functional Description

PSoC 4100 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator Integrated Development Environment (IDE) provides fully integrated programming and debug support for PSoC 4100 devices. The SWD interface is fully compatible with industry standard third party tools. With the ability to disable debug features, with very robust flash protection, and by allowing customer-proprietary functionality to be implemented in on-chip

programmable blocks, the PSoC 4100 family provides a level of security not possible with multi-chip application solutions or with microcontrollers.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4100 with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4100 allows the customer to make.

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PSoC 4100 is part of the 32-bit MCU subsystem, which is optimized for low power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC), which can wake the processor up from Deep Sleep mode allowing power to be switched off to the main processor when the chip is in Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt input (NMI), which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the Serial Wire Debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4100 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

PSoC 4100 has a flash module with a flash accelerator tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 0 wait-state (WS) access time at 24 MHz. Part of the flash module can be used to emulate EEPROM operation if required.

The PSoC 4100 flash supports the following flash protection modes at the memory sub-system level.

Open: No protection. Factory default mode that the product is shipped in.

Protected: User may change from Open to Protected. This mode disables debug interface accesses. The mode can be set back to Open but only after completely erasing the flash.

Kill: User may change from Open to Kill. This mode disables all debug accesses. The part cannot be erased externally, thus obviating the possibility of partial erasure by power interruption and potential malfunction and security leaks. This is an irrecvocable mode.

In addition, row-level Read/Write protection is also supported to prevent inadvertent Writes as well as selectively block Reads. Flash Read/Write/Erase operations are always available for internal code using system calls.

SRAM

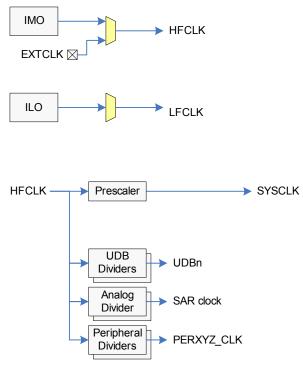
SRAM memory is retained during Hibernate.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System


The power system is described in detail in the section Power on page 10. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low-voltage detect (LVD)). The PSoC 4100 operates with a single external supply over the range of 1.71 V to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4100 provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

Clock System

The PSoC 4100 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for the PSoC 4100 consists of two internal oscillators, IMO and the ILO, and provision for an external clock.

Figure 1. PSoC 4100 MCU Clocking Architecture

The HFCLK signal can be divided down (see PSoC 4100 MCU Clocking Architecture) to generate synchronous clocks for the analog and digital peripherals. There are a total of 12 clock dividers for the PSoC 4100, each with 16-bit divide capability. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator.

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4100. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 MHz to 24 MHz in steps of 1 MHz. IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$.

ILO Clock Source

The ILO is a very low power oscillator, which is primarily used to generate clocks for peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register.

Reset

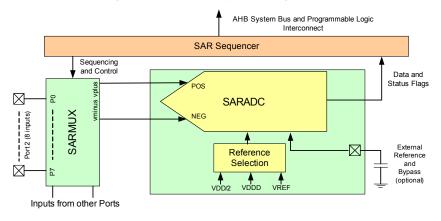
PSoC 4100 can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the Reset. An XRES pin is reserved for external reset to avoid complications with configuration and multiple pin functions during power-on or reconfiguration. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4100 reference system generates all internally required references. A 1% voltage reference spec is provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is possible to bypass the internal reference using a GPIO pin or to use an external reference for the SAR.

Analog Blocks

12-bit SAR ADC


The 12-bit 806 Ksps SAR ADC can operate at a maximum clock rate of 14.5 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to $\pm 1\%$) and by providing the choice (for the PSoC 4100 case) of three internal voltage references: V_{DD} , $V_{DD}/2$, and V_{REF} (nominally 1.024 V) as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision providing appropriate references are used and system noise levels permit. To improve performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, aggregate sampling bandwidth is equal to 806 Ksps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-board temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V.

Figure 2. SAR ADC System Diagram

GPIO

PSoC 4100 has 24 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - □ Analog input mode (input and output buffers disabled)
 - □ Input only
 - Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
- Selectable slew rates for dV/dt related noise control to improve EMI.

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4100).

Special Function Peripherals

LCD Segment Drive

The PSoC 4100 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4100 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used. (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

Pinouts

The following is the pin-list for PSoC 4100. Port 2 comprises of the high-speed Analog inputs for the SAR Mux. P1.7 is the optional external input and bypass for the SAR reference. Ports 3 and 4 contain the Digital Communication channels. All pins support CSD CapSense and Analog Mux Bus connections.

Pi	ns	28-SSOP Alternate Functions for Pins							Dia Deseriation
Name	Туре	Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	Pin Description
VSSD	Power	DN	-	-	-	-	-	-	Digital Ground
P2.2	GPIO	5	P2.2	sarmux.2	-	-	-	-	Port 2 Pin 2: gpio, lcd, csd, sarmux
P2.3	GPIO	6	P2.3	sarmux.3	-	-	-	-	Port 2 Pin 3: gpio, lcd, csd, sarmux
P2.4	GPIO	7	P2.4	sarmux.4	tcpwm0_p[1]	-	-	-	Port 2 Pin 4: gpio, lcd, csd, sarmux, pwm
P2.5	GPIO	8	P2.5	sarmux.5	tcpwm0_n[1]	-	-	-	Port 2 Pin 5: gpio, lcd, csd, sarmux, pwm
P2.6	GPIO	9	P2.6	sarmux.6	tcpwm1_p[1]	-	-	-	Port 2 Pin 6: gpio, lcd, csd, sarmux, pwm
P2.7	GPIO	10	P2.7	sarmux.7	tcpwm1_n[1]	_	_	-	Port 2 Pin 7: gpio, lcd, csd, sarmux, pwm
P3.0	GPIO	11	P3.0	-	tcpwm0_p[0]	scb1_uart_rx[0]	scb1_i2c_scl[0]	scb1_spi_mosi[0]	Port 3 Pin 0: gpio, lcd, csd, pwm, scb1
P3.1	GPIO	12	P3.1	-	tcpwm0_n[0]	scb1_uart_tx[0]	scb1_i2c_sda[0]	scb1_spi_miso[0]	Port 3 Pin 1: gpio, lcd, csd, pwm, scb1
P3.2	GPIO	13	P3.2	-	tcpwm1_p[0]	-	swd_io	scb1_spi_clk[0]	Port 3 Pin 2: gpio, lcd, csd, pwm, scb1, swd
P3.3	GPIO	14	P3.3	-	tcpwm1_n[0]	-	swd_clk	scb1_spi_ssel_0[0]	Port 3 Pin 3: gpio, lcd, csd, pwm, scb1, swd
P4.0	GPIO	15	P4.0	-	_	scb0_uart_rx	scb0_i2c_scl	scb0_spi_mosi	Port 4 Pin 0: gpio, lcd, csd, scb0
P4.1	GPIO	16	P4.1	-	_	scb0_uart_tx	scb0_i2c_sda	scb0_spi_miso	Port 4 Pin 1: gpio, lcd, csd, scb0
P4.2	GPIO	17	P4.2	csd_c_mod	-	-	-	scb0_spi_clk	Port 4 Pin 2: gpio, lcd, csd, scb0
P4.3	GPIO	18	P4.3	csd_c_sh_tan k	-	_	_	scb0_spi_ssel_0	Port 4 Pin 3: gpio, lcd, csd, scb0
P0.0	GPIO	19	P0.0	comp1_inp	-	_	_	scb0_spi_ssel_1	Port 0 Pin 0: gpio, lcd, csd, scb0, comp
P0.1	GPIO	20	P0.1	comp1_inn	-	_	_	scb0_spi_ssel_2	Port 0 Pin 1: gpio, lcd, csd, scb0, comp
P0.2	GPIO	21	P0.2	comp2_inp	-	-	-	scb0_spi_ssel_3	Port 0 Pin 2: gpio, lcd, csd, scb0, comp
P0.3	GPIO	22	P0.3	comp2_inn	-	-	-	-	Port 0 Pin 3: gpio, lcd, csd, comp
P0.6	GPIO	23	P0.6	-	ext_clk	-	-	scb1_spi_clk[1]	Port 0 Pin 6: gpio, lcd, csd, scb1, ext_clk
P0.7	GPIO	24	P0.7	-	-	_	wakeup	scb1_spi_ssel_0[1]	Port 0 Pin 7: gpio, lcd, csd, scb1, wakeup
XRES	XRES	25	XRES	-	-	-	-	-	Chip reset, active low
VCCD	Power	26	VCCD	-	-	_	_	-	Regulated supply, connect to 1 μF cap or 1.8 V
VDDD	Power	27	VDDD	-	-	_	_	-	Common power supply (Analog & Digital) 1.8 V–5.5 V
VSSA	Power	28(DN)	VSS	-	-	-	-	-	Analog Ground
P1.0	GPIO	1	P1.0	ctb.oa0.inp	tcpwm2_p[1]	-	_	-	Port 1 Pin 0: gpio, lcd, csd, ctb, pwm
P1.1	GPIO	2	P1.1	ctb.oa0.inm	tcpwm2_n[1]	-	_	-	Port 1 Pin 1: gpio, lcd, csd, ctb, pwm
P1.2	GPIO	3	P1.2	ctb.oa0.out	tcpwm3_p[1]	-	-	-	Port 1 Pin 2: gpio, lcd, csd, ctb, pwm
P1.7	GPIO	4	P1.7	ctb.oa1.inp_a It ext_vref	-	-	-	-	Port 1 Pin 7: gpio, lcd, csd, ext_ref

Notes:

1. tcpwm_p and tcpwm_n refer to tcpwm non-inverted and inverted outputs respectively.

2. P3.2 and P3.3 are SWD pins after boot (reset).

Descriptions of the pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

(GPIO)P2[2]

(GPIO)P2[3]

(GPIO)P2[4]

(GPIO)P2[5]

(GPIO)P2[6] (GPIO)P2[7] (GPIO)P3[0]

(GPIO)P3[1] = 12 (GPIO)P3[2] = 13 (GPIO)P3[3] = 14

8

10 **1**1

VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following package is supported: 28-pin SSOP.

SSOP

(Top View)

24 🗖

15 🗖

(GPIO)P0[7]

23 = (GPIO)P0[6]

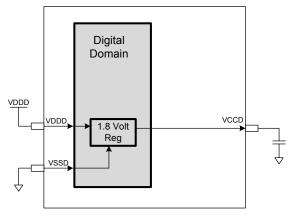
22 **(**GPIO)P0[3]

21 (GPIO)P0[2]

20 **(**GPIO)P0[1]

17 **■** (GPIO)P4[2] 16 **■** (GPIO)P4[1]

(GPIO)P4[0]



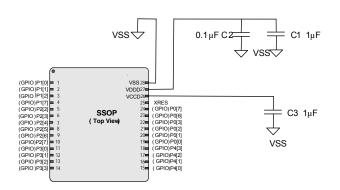
Power

The following power system diagram shows the minimum set of power supply pins as implemented for the PSoC 4100. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DDA} input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4100 family allows two distinct modes of power supply operation: Unregulated External Supply, and Regulated External Supply modes.

Unregulated External Supply

In this mode, PSoC 4100 is powered by an External Power Supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100 supplies the internal logic and the VCCD output of the PSoC 4100 must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6 μ F; X5R ceramic or better).


Bypass capacitors must be used from VDDD to ground, typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range in parallel with a smaller capacitor (0.1 μ F for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme for the 28-pin SSOP package follows.

Table 1. Example of a bypass scheme

Power Supply	Bypass Capacitors
VDDD-VSS	0.1 μ F ceramic capacitor (C2) plus bulk capacitor 1 to 10 μ F (C1). Total Capacitance may be greater than 10 μ F.
VCCD-VSS	1 μF ceramic capacitor at the VCCD pin (C3)
VREF–VSS (optional)	The internal bandgap may be bypassed with a 1 μ F to 10 μ F capacitor. Total capacitance may be greater than 10 μ F.

Figure 5. 28-Pin SSOP Example

Regulated External Supply

In this mode, the PSoC 4100 is powered by an external power supply that must be within the range of 1.71 to $1.89 \text{ V} (1.8 \pm 5\%)$; note that this range needs to include power supply ripple too. In this mode, VCCD, and VDDD pins are all shorted together and bypassed. The internal regulator is disabled in firmware.

GPIO

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	-	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	-	0.3 × V _{DDD}	V	
SID243	V _{IH} [2]	LVTTL input, $V_{DDD} \ge 2.7 V$	2.0	-	-	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 V$	-	-	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	_	V	I _{OH} = 4 mA at 3 V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8 V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 4 mA at 1.8 V V _{DDD}
SID62	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 8 mA at 3 V V _{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4	V	I _{OL} = 3 mA at 3 V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID65A	I _{IL_CTBM}	Input leakage current (absolute value) for CTBM pins	-	-	4	nA	
SID66	C _{IN}	Input capacitance	_	-	7	pF	
SID67	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID68	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDD}	-	-	mV	Guaranteed by characterization
SID69	I _{DIODE}	Current through protection diode to V _{DD} /Vss	-	-	100	μA	Guaranteed by characterization
SID69A	I _{TOT_GPIO}	Maximum total source or sink chip current	-	-	200	mA	Guaranteed by characterization

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60		3.3-V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60		3.3-V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	_	-	24	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	_	-	16.7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	-	-	7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	_	-	3.5	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	-	24	MHz	90/10% V _{IO}

Table 5. GPIO AC Specifications (Guaranteed by Characterization)

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Guaranteed by characterization
SID82	IDIODE	Current through protection diode to V_{DDD}/V_{SS}	-	-	100	μA	Guaranteed by characterization

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	-	-		Guaranteed by characterization

Analog Peripherals

Opamp

Table 8. Opamp Specifications (Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	-	-	-	-	
SID269	I _{DD_HI}	Power = high	-	1100	1850	μA	
SID270	I _{DD_MED}	Power = medium	-	550	950	μA	
SID271	I _{DD_LOW}	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	-	-	-	_	
SID272	GBW_HI	Power = high	6	-	-	MHz	
SID273	GBW_MED	Power = medium	4	-	-	MHz	
SID274	GBW_LO	Power = low	-	1	-	MHz	
	I _{OUT_MAX}	$V_{DDA} \ge 2.7 \text{ V}, 500 \text{ mV}$ from rail	-	-	_	_	
SID275	I _{OUT_MAX_HI}	Power = high	10	-	_	mA	
SID276	I _{OUT_MAX_MID}	Power = medium	10	-	-	mA	
SID277	I _{OUT_MAX_LO}	Power = low	-	5	-	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	-	-	-	
SID278	I _{OUT_MAX_HI}	Power = high	4	-	-	mA	
SID279	I _{OUT_MAX_MID}	Power = medium	4	-	-	mA	
SID280	IOUT MAX LO	Power = low	-	2	-	mA	
SID281	V _{IN}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	V _{DDA} - 0.2	V	
SID282	V _{CM}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	V _{DDA} - 0.2	V	
	V _{OUT}	$V_{DDA} \ge 2.7 V$	-	-	-		
SID283	V _{OUT_1}	Power = high, lload=10 mA	0.5	-	V _{DDA} – 0.5	V	
SID284	V _{OUT_2}	Power = high, lload=1 mA	0.2	-	V _{DDA} – 0.2	V	
SID285	V _{OUT_3}	Power = medium, lload=1 mA	0.2	-	V _{DDA} - 0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1mA	0.2	-	V _{DDA} - 0.2	V	
SID288	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS_TR}	Offset voltage, trimmed	-	±1	-	mV	Medium mode
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	µV/°C	High mode T _A <u><</u> 85 °C.
SID290Q	V _{OS_DR_TR}	Offset voltage drift, trimmed	-15	±3	15	µV/°C	High mode. T _A ≤ 105 °C
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	µV/°C	Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	_	±10	_		Low mode
SID291	CMRR	DC	70	80	-	dB	V _{DDD} = 3.6 V
SID292	PSRR	At 1 kHz, 100 mV ripple	70	85	_	dB	V _{DDD} = 3.6 V
	Noise		_	_	_	_	
SID293	V _{N1}	Input referred, 1 Hz - 1GHz, power = high	-	94	-	µVrms	
SID294	V _{N2}	Input referred, 1 kHz, power = high	_	72	-	nV/rtHz	
SID295	V _{N3}	Input referred, 10 kHz, power = high	_	28	_	nV/rtHz	
SID296	V _{N4}	Input referred, 100 kHz, power = high	_	15	_	nV/rtHz	

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID297	Cload	Stable up to maximum load. Perfor- mance specs at 50 pF.	-	-	125	pF	
SID298	Slew_rate	Cload = 50 pF, Power = High, $V_{DDA} \ge$ 2.7 V	6	-	_	V/µs	
SID299	T_op_wake	From disable to enable, no external RC dominating	-	300	-	μs	
	Comp_mode	Comparator mode; 50 mV drive, Trise = Tfall (approx.)	_	-	_		
SID299A	OL_GAIN	Open Loop Gain	_	90	_	dB	Guaranteed by design
SID300	T _{PD1}	Response time; power = high	_	150	_	ns	
SID301	T _{PD2}	Response time; power = medium	_	400	_	ns	
SID302	T _{PD3}	Response time; power = low	_	2000	_	ns	
SID303	Vhyst_op	Hysteresis	_	10	_	mV	

Table 8. Opamp Specifications (Guaranteed by Characterization) (continued)

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	-	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	-	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V_{DD} -1.	-	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} – 0.1	V	Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	-	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	-	-	400	μA	Guaranteed by characterization
SID248	I _{CMP2}	Block current, low power mode	-	-	100	μA	Guaranteed by characterization
SID259	I _{CMP3}	Block current, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge$ 1.8 V for Temp > 0 °C)	-	6	28	μA	Guaranteed by characterization
SID90	Z _{CMP}	DC input impedance of comparator	35	-	-	MΩ	Guaranteed by characterization

Table 10. Comparator AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID91	T _{RESP1}	Response time, normal mode	-	_	110	ns	50 mV overdrive
SID258	T _{RESP2}	Response time, low power mode	-	-	200	ns	50 mV overdrive
SID92	T _{RESP3}	Response time, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	Ι	-	15	μs	200 mV overdrive

Temperature Sensor

Table 11. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID93	T _{SENSACC}	Temperature sensor accuracy	-5	±1	+5	°C	–40 to +85 °C

SAR ADC

Table 12. SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID94	A_RES	Resolution	-	-	12	bits	
SID95	A_CHNIS_S	Number of channels - single ended	_	-	8		8 full speed
SID96	A-CHNKS_D	Number of channels - differential	-	-	4		Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	-	-	_		Yes. Based on characterization
SID98	A_GAINERR	Gain error	-	-	±0.1	%	With external reference. Guaranteed by characterization
SID99	A_OFFSET	Input offset voltage	-	I	2	mV	Measured with 1-V V _{REF.} Guaranteed by characterization
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V _{SS}	-	V_{DDA}	V	Based on device characterization
SID102	A_VIND	Input voltage range - differential	V _{SS}	-	V _{DDA}	V	Based on device characterization
SID103	A_INRES	Input resistance	-	-	2.2	KΩ	Based on device characterization
SID104	A_INCAP	Input capacitance	_	-	10	pF	Based on device characterization

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID106	A_PSRR	Power supply rejection ratio	70	-	-	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V
SID108	A_SAMP_1	Sample rate with external reference bypass cap	-	-	1	Msps	
SID108A	A_SAMP_2	Sample rate with no bypass cap. Reference = V_{DD}	-	-	806	Ksps	
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference	-	-	100	Ksps	
SID109	A_SNDR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID111	A_INL	Integral non linearity	-1.7	-	+2	LSB	$\begin{array}{l} V_{DD} \text{=} 1.71 \text{to} 5.5, 806 \\ \text{Ksps}, \text{Vref} \text{=} 1 \text{to} 5.5. \\ -40 ^\circ\text{C} \leq \text{T}_{A} \leq 85 ^\circ\text{C} \end{array}$
			-1.9	_	+2	LSB	$\begin{array}{l} V_{DD} = 1.71 \ to \ 5.5, \ 806 \\ Ksps, \ Vref = 1 \ to \ 5.5. \\ -40 \ ^{\circ}C \leq \ T_A \leq \ 105 \ ^{\circ}C \end{array}$
SID111A	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ \text{V}_{DDD}40 \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 85 \ ^{\circ}\text{C} \end{array}$
			-1.9	-	+2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 105 \ ^{\circ}\text{C} \end{array}$
SID111B	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID112	A_DNL	Differential non linearity	-1	-	+2.2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ to \ 5.5, \\ 806 \ Ksps, \ Vref = 1 \ to \\ 5.5. \ -40 \ ^{\circ}C \ \leq \ T_A \ \leq \\ 85 \ ^{\circ}C \end{array}$
			-1	-	+2.3	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 5.5, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1 \ \text{to} \\ 5.5. \ -40 \ ^\circ\text{C} \le \ T_A \ \le \\ 105 \ ^\circ\text{C} \end{array}$
SID112A	A_DNL	Differential non linearity	-1	-	+2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^\circ\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 85 \ ^\circ\text{C} \end{array}$
			–1	-	+2.2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 105 \ ^{\circ}\text{C} \end{array}$
SID112B	A_DNL	Differential non linearity	–1	-	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID113	A_THD	Total harmonic distortion	_	-	-65	dB	F _{IN} = 10 kHz.

Table 13. SAR ADC AC Specifications (Guaranteed by Characterization)

SPI Specifications

Table 22. Fixed SPI DC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	_	_	360	μA
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	_	_	560	μΑ
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	_	_	600	μΑ

Table 23. Fixed SPI AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID166	011	SPI operating frequency (master; 6X oversampling)	-	-	4	MHz

Table 24. Fixed SPI Master mode AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID167	T _{DMO}	MOSI valid after Sclock driving edge	-	-	15	ns
SID168	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO Sampling used	20	-	-	ns
SID169	T _{HMO}	Previous MOSI data hold time with respect to capturing edge at Slave	0	_	-	ns

Table 25. Fixed SPI Slave mode AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns
SID171	T _{DSO}	MISO valid after Sclock driving edge	-	-	42 + (3 × Tscbclk)	ns
SID171A	T _{DSO_ext}	MISO valid after Sclock driving edge in Ext. Clock mode	_	-	48	ns
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	-	-	ns

Memory

Table 26. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	Ι	5.5	V	

Table 27. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[3]	Row (block) write time (erase and program)	-	-	20	ms	Row (block) = 128 bytes. –40 $^\circ\text{C} \leq \ T_\text{A} \leq \ 85 \ ^\circ\text{C}$
			-	-	26	ms	Row (block) = 128 bytes. –40 $^\circ\text{C} \leq \ T_\text{A} \leq \ 105 \ ^\circ\text{C}$
SID175	T _{ROWERASE} ^[3]	Row erase time	-	_	13	ms	
SID176	T _{ROWPROGRAM} ^[3]	Row program time after erase	-	_	7	ms	–40 °C \leq T _A \leq 85 °C
			-	_	13	ms	–40 °C \leq T _A \leq 105 °C
SID178	T _{BULKERASE} ^[3]	Bulk erase time (32 KB)	-	-	35	ms	
SID180	T _{DEVPROG} ^[3]	Total device program time	-	-	7	seconds	Guaranteed by characterization
SID181	F _{END}	Flash endurance	100 K	_	_	cycles	Guaranteed by characterization
SID182	F _{RET}	Flash retention. $T_A \le 55 \degree$ C, 100 K P/E cycles	20	-	-	years	Guaranteed by characterization
SID182A		Flash retention. $T_A \le 85$ °C, 10 K P/E cycles	10	-	-	years	Guaranteed by characterization
SID182B	F _{RETQ}	Flash retention. $T_A \le 105$ °C, 10K P/E cycles, \le three years at $T_A \ge 85$ °C.	10	20	-		Guaranteed by character- ization.

System Resources

Power-on-Reset (POR) with Brown Out

Table 28. Imprecise Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	Guaranteed by characterization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4	V	Guaranteed by characterization
SID187	VIPORHYST	Hysteresis	15	_	200	mV	Guaranteed by characterization

Table 29. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.64	_	_		Full functionality between 1.71 V and BOD trip voltage is guaranteed by characterization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	-	-	V	Guaranteed by characterization
BID55	Svdd	Maximum power supply ramp rate	-	-	67	kV/sec	

Note

It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Table 38. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions		
SID257	T _{WS24} *	Number of wait states at 24 MHz	0	-	-		CPU execution from Flash. Guaranteed by characterization		
SID260	V _{REFSAR}	Trimmed internal reference to SAR	-1	-	+1	%	Percentage of Vbg (1.024 V). Guaranteed by characterization		
SID262	T _{CLKSWITCH}	Clock switching from clk1 to clk2 in clk1 periods	3	-	4	Periods	Guaranteed by design		
* Tws24 is gu	Tws24 is guaranteed by design.								

Ordering Information

The PSoC 4100 part numbers and features are listed in the Table 39.

			Features										Package	Operating Temperature		
Family	MPN	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Opamp (CTBm)	CapSense	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	GPIO	28-SSOP	–40 to +85 °C	–40 to +105 °C
	CY8C4124PVA-442Z	24	16	4	-	1	~	~	806 Ksps	2	4	2	24	~	~	-
4100	CY8C4125PVA-482Z	24	32	4	-	1	~	~	806 Ksps	2	4	2	24	~	~	-
4100	CY8C4124PVS-442Z	24	16	4	_	1	~	~	806 Ksps	2	4	2	24	~	_	~
	CY8C4125PVS-482Z	24	32	4	-	1	5	~	806 Ksps	2	4	2	24	~	_	~

Part Numbering Conventions

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

The part numbers are of the form CY8C4ABCDEF-GHI where the fields are defined as follows.

Example		CY8C	4	A	В	c	D	E	F	- (ЭH	1	z
	Cypress Prefix —												
4: PSoC4	Architecture —												
1: 4100 Family	Family within Architecture —												
2 : 24 MHz	Speed Grade —												
5: 32 KB	Flash Capacity —												
PV: SSOP	Package Code —												
A: Automotive -40 to +85 °C S: Automotive: -40 to +105 °C	Temperature Range —												
	Attributes Set —												
	Fab Location Change: Z —												

The field values are listed in Table 40.

Table 40. Field Values

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
Α	Family within architecture	1	4100 Family
		2	4200 Family
В	CPU Speed	2	24 MHz
		4	48 MHz
С	Flash Capacity	4	16 KB
		5	32 KB
DE	Package Code	PV	SSOP
F	Temperature Range	A/S	Automotive
GHI	Attributes Code	000-999	Code of feature set in specific family
Z	Fab location change		

Packaging

Table 41. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	For A grade devices	-40	25.00	85	°C
T _A	Operating ambient temperature	For S grade devices	-40	25.00	105	°C
TJ	Operating junction temperature	For A grade devices	-40	-	100	°C
TJ	Operating junction temperature	For S grade devices	-40	-	120	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.58	-	°C/W
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	46.28	-	°C/W

Table 42. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
28-pin SSOP	260 °C	30 seconds

Table 43. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3

PSoC4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents

Document History Page

Document Document	Document Title: Automotive PSoC [®] 4: PSoC 4100 Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-93576							
Revision	ECN	Orig. of Change	Submission Date	Description of Change				
*В	5071385	THOR / KIKU	01/21/2016	Changed status from Preliminary to Final.				
*C	5117912	MVRE	01/31/2016	Updated Features: Updated Programmable Analog: Replaced "Two opamps" with "One opamp". Updated Block Diagram: Replaced "2x" with "1x". Updated Functional Overview: Updated Analog Blocks: Updated Opamp (CTBm Block): Replaced "Two opamps" with "Opamp" in heading. Updated description. Updated description. Updated Power: Updated Unregulated External Supply: Updated Table 1: Updated details in "Bypass Capacitors" column corresponding to "VDDD–VSS" and "VCCD–VSS" power supplies.				
*D	5331416	MVRE	07/04/2016	Updated Functional Overview: Updated CPU and Memory Subsystem: Updated Flash: Updated description. Updated Fixed Function Digital: Updated Serial Communication Blocks (SCB): Updated description. Updated Pinouts: Updated Power: Added Figure 3. Updated Power: Added Figure 4. Updated Unregulated External Supply: Updated Table 1: Updated details in "Bypass Capacitors" column corresponding to "VDDD–VSS" and "VREF–VSS (optional)" Power Supply.				

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-93576 Rev. *E

[©] Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.