

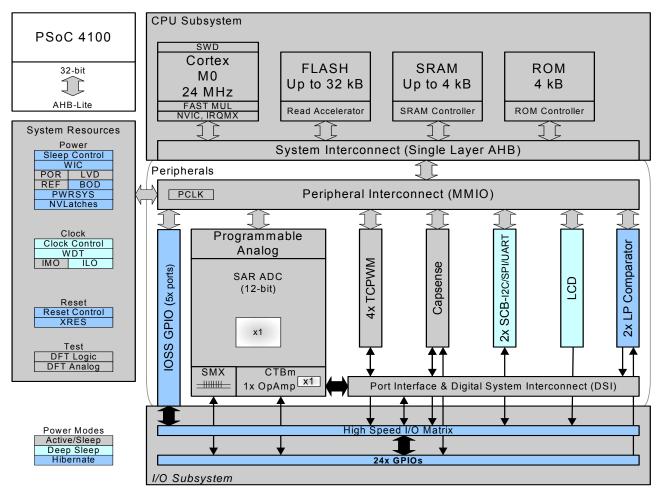
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4125pvs-482z

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Functional Description

PSoC 4100 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator Integrated Development Environment (IDE) provides fully integrated programming and debug support for PSoC 4100 devices. The SWD interface is fully compatible with industry standard third party tools. With the ability to disable debug features, with very robust flash protection, and by allowing customer-proprietary functionality to be implemented in on-chip

programmable blocks, the PSoC 4100 family provides a level of security not possible with multi-chip application solutions or with microcontrollers.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4100 with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4100 allows the customer to make.

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PSoC 4100 is part of the 32-bit MCU subsystem, which is optimized for low power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC), which can wake the processor up from Deep Sleep mode allowing power to be switched off to the main processor when the chip is in Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt input (NMI), which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the Serial Wire Debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4100 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

PSoC 4100 has a flash module with a flash accelerator tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 0 wait-state (WS) access time at 24 MHz. Part of the flash module can be used to emulate EEPROM operation if required.

The PSoC 4100 flash supports the following flash protection modes at the memory sub-system level.

Open: No protection. Factory default mode that the product is shipped in.

Protected: User may change from Open to Protected. This mode disables debug interface accesses. The mode can be set back to Open but only after completely erasing the flash.

Kill: User may change from Open to Kill. This mode disables all debug accesses. The part cannot be erased externally, thus obviating the possibility of partial erasure by power interruption and potential malfunction and security leaks. This is an irrecvocable mode.

In addition, row-level Read/Write protection is also supported to prevent inadvertent Writes as well as selectively block Reads. Flash Read/Write/Erase operations are always available for internal code using system calls.

SRAM

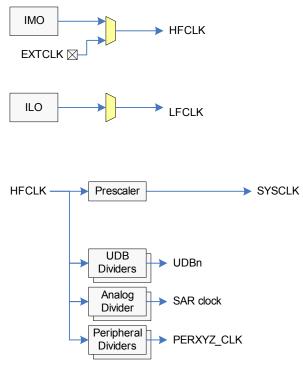
SRAM memory is retained during Hibernate.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System


The power system is described in detail in the section Power on page 10. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low-voltage detect (LVD)). The PSoC 4100 operates with a single external supply over the range of 1.71 V to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4100 provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

Clock System

The PSoC 4100 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for the PSoC 4100 consists of two internal oscillators, IMO and the ILO, and provision for an external clock.

Figure 1. PSoC 4100 MCU Clocking Architecture

The HFCLK signal can be divided down (see PSoC 4100 MCU Clocking Architecture) to generate synchronous clocks for the analog and digital peripherals. There are a total of 12 clock dividers for the PSoC 4100, each with 16-bit divide capability. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator.

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4100. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 MHz to 24 MHz in steps of 1 MHz. IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$.

ILO Clock Source

The ILO is a very low power oscillator, which is primarily used to generate clocks for peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register.

Reset

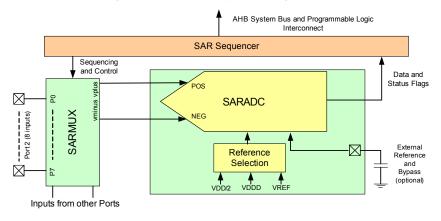
PSoC 4100 can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the Reset. An XRES pin is reserved for external reset to avoid complications with configuration and multiple pin functions during power-on or reconfiguration. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4100 reference system generates all internally required references. A 1% voltage reference spec is provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is possible to bypass the internal reference using a GPIO pin or to use an external reference for the SAR.

Analog Blocks

12-bit SAR ADC


The 12-bit 806 Ksps SAR ADC can operate at a maximum clock rate of 14.5 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to $\pm 1\%$) and by providing the choice (for the PSoC 4100 case) of three internal voltage references: V_{DD} , $V_{DD}/2$, and V_{REF} (nominally 1.024 V) as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision providing appropriate references are used and system noise levels permit. To improve performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, aggregate sampling bandwidth is equal to 806 Ksps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-board temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V.

Figure 2. SAR ADC System Diagram

GPIO

PSoC 4100 has 24 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - □ Analog input mode (input and output buffers disabled)
 - □ Input only
 - Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
- Selectable slew rates for dV/dt related noise control to improve EMI.

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4100).

Special Function Peripherals

LCD Segment Drive

The PSoC 4100 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

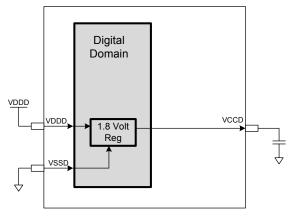
Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4100 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.


The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used. (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

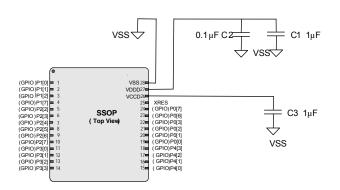
Power

The following power system diagram shows the minimum set of power supply pins as implemented for the PSoC 4100. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DDA} input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4100 family allows two distinct modes of power supply operation: Unregulated External Supply, and Regulated External Supply modes.

Unregulated External Supply

In this mode, PSoC 4100 is powered by an External Power Supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100 supplies the internal logic and the VCCD output of the PSoC 4100 must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6 μ F; X5R ceramic or better).


Bypass capacitors must be used from VDDD to ground, typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range in parallel with a smaller capacitor (0.1 μ F for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme for the 28-pin SSOP package follows.

Table 1. Example of a bypass scheme

Power Supply	Bypass Capacitors						
VDDD-VSS	0.1 μ F ceramic capacitor (C2) plus bulk capacitor 1 to 10 μ F (C1). Total Capacitance may be greater than 10 μ F.						
VCCD-VSS	1 μF ceramic capacitor at the VCCD pin (C3)						
VREF–VSS (optional)	The internal bandgap may be bypassed with a 1 μ F to 10 μ F capacitor. Total capacitance may be greater than 10 μ F.						

Figure 5. 28-Pin SSOP Example

Regulated External Supply

In this mode, the PSoC 4100 is powered by an external power supply that must be within the range of 1.71 to $1.89 \text{ V} (1.8 \pm 5\%)$; note that this range needs to include power supply ripple too. In this mode, VCCD, and VDDD pins are all shorted together and bypassed. The internal regulator is disabled in firmware.

Electrical Specifications

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SSD}	-0.5	-	6	V	Absolute max
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SSD}	-0.5	-	1.95	V	Absolute max
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5	V	Absolute max
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25	mA	Absolute max
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DDD} , and Min for V _{IL} < V _{SS}	-0.5	_	0.5	mA	Absolute max, current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	
BID46	LU	Pin current for latch-up	-200	-	200	mA	

Device-Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C for A grade devices and -40 °C \leq T_A \leq 105 °C for S grade devices, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 3. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID53	V _{DD}	Power supply input voltage (V _{DDA} = V _{DDD} = V _{DD})	1.8	Ι	5.5	V	With regulator enabled
SID255	V _{DDD}	Power supply input voltage unregulated	1.71	1.8	1.89	V	Internally unregulated Supply
SID54	V _{CCD}	Output voltage (for core logic)	-	1.8	-	V	
SID55	C _{EFC}	External regulator voltage bypass	1	1.3	1.6	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply decoupling capacitor	-	1	-	μF	X5R ceramic or better
Active Mode	, V _{DD} = 1.71 V to	$_{ m 5.5}$ V. Typical Values measured at V $_{ m DD}$	= 3.3 \	V.			
SID9	I _{DD4}	Execute from Flash; CPU at 6 MHz	-	-	2.8	mA	
SID10	I _{DD5}	Execute from Flash; CPU at 6 MHz	-	2.2	-	mA	T = 25 °C
SID12	I _{DD7}	Execute from Flash; CPU at 12 MHz	-	_	4.2	mA	
SID13	I _{DD8}	Execute from Flash; CPU at 12 MHz	-	3.7	-	mA	T = 25 °C
SID16	I _{DD11}	Execute from Flash; CPU at 24 MHz	-	6.7	-	mA	T = 25 °C
SID17	I _{DD12}	Execute from Flash; CPU at 24 MHz	_	_	7.2	mA	

Note

Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 3. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Sleep Mode,	V _{DD} = 1.7 V to 5	5.5 V					
SID25	I _{DD20}	I ² C wakeup, WDT, and Comparators on. 6 MHz.	-	1.3	1.8	mA	V _{DD} = 1.71 V to 5.5 V
SID25A	I _{DD20A}	I ² C wakeup, WDT, and Comparators on. 12 MHz.	_	1.7	2.2	mA	V _{DD} = 1.71 V to 5.5 V
Deep Sleep I	Mode, V _{DD} = 1.8	V to 3.6 V (Regulator on)					
SID31	I _{DD26}	I ² C wakeup and WDT on.	-	1.3	-	μA	T = 25 °C
SID32	I _{DD27}	I ² C wakeup and WDT on.	-	I	45	μA	T = 85 °C
Deep Sleep I	Mode, V _{DD} = 3.6	V to 5.5 V			•		
SID34	I _{DD29}	I ² C wakeup and WDT on	-	1.5	15	μA	Typ. at 25 °C Max at 85 °C
Deep Sleep I	Mode, V _{DD} = 1.7	1 V to 1.89 V (Regulator bypassed)			•		
SID37	I _{DD32}	I ² C wakeup and WDT on.	_	1.7	-	μA	T = 25 °C
SID38	I _{DD33}	I ² C wakeup and WDT on	-	-	60	μA	T = 85 °C
Deep Sleep I	Mode, +105 °C				•		1
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	_	_	135	μA	V _{DD} = 1.71 V to 1.89 V
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on.	-	-	180	μA	V _{DD} = 1.8 V to 3.6 V
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on.	_	_	140	μA	V _{DD} = 3.6 V to 5.5 V
Hibernate M	ode, V _{DD} = 1.8 V	to 3.6 V (Regulator on)			I		L
SID40	I _{DD35}	GPIO & Reset active	_	150	-	nA	T = 25 °C
SID41	I _{DD36}	GPIO & Reset active	-	-	1000	nA	T = 85 °C
Hibernate M	ode, V _{DD} = 3.6 V	to 5.5 V			•		L
SID43	I _{DD38}	GPIO & Reset active	_	150	-	nA	T = 25 °C
Hibernate M		V to 1.89 V (Regulator bypassed)			•		L
SID46	I _{DD41}	GPIO & Reset active	_	150	-	nA	T = 25 °C
SID47	I _{DD42}	GPIO & Reset active	_	_	1000	nA	T = 85 °C
Hibernate M	ode, +105 °C				•		L
SID42Q	I _{DD37Q}	Regulator Off	_	_	19.4	μA	V _{DD} = 1.71 V to 1.89 V
SID43Q	I _{DD38Q}		_	_	17	μA	V _{DD} = 1.8 V to 3.6 V
SID44Q	I _{DD39Q}		_	_	16	μA	V _{DD} = 3.6 V to 5.5 V
Stop Mode							
SID304	I _{DD43A}	Stop Mode current; V_{DD} = 3.3 V	-	20	80	nA	Typ at 25 °C. Max at 85 °C
		Stop Mode current; V _{DD} = 5.5 V	-	20	750	nA	Typ at 25 °C Max at 85 °C
Stop Mode, -	+105 °C	·			•		
SID304Q	I _{DD43AQ}	Stop Mode current; V_{DD} = 3.6 V	_	_	5645	nA	
XRES currer							
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID297	Cload	Stable up to maximum load. Perfor- mance specs at 50 pF.	-	-	125	pF	
SID298	Slew_rate	Cload = 50 pF, Power = High, $V_{DDA} \ge$ 2.7 V	6	-	_	V/µs	
SID299	T_op_wake	From disable to enable, no external RC dominating	-	300	-	μs	
	Comp_mode	Comparator mode; 50 mV drive, Trise = Tfall (approx.)	_	-	_		
SID299A	OL_GAIN	Open Loop Gain	_	90	_	dB	Guaranteed by design
SID300	T _{PD1}	Response time; power = high	_	150	_	ns	
SID301	T _{PD2}	Response time; power = medium	_	400	_	ns	
SID302	T _{PD3}	Response time; power = low	_	2000	_	ns	
SID303	Vhyst_op	Hysteresis	_	10	_	mV	

Table 8. Opamp Specifications (Guaranteed by Characterization) (continued)

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	-	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	-	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V_{DD} -1.	-	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} – 0.1	V	Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	-	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	-	-	400	μA	Guaranteed by characterization
SID248	I _{CMP2}	Block current, low power mode	-	-	100	μA	Guaranteed by characterization
SID259	I _{CMP3}	Block current, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge$ 1.8 V for Temp > 0 °C)	-	6	28	μA	Guaranteed by characterization
SID90	Z _{CMP}	DC input impedance of comparator	35	-	-	MΩ	Guaranteed by characterization

Table 10. Comparator AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID91	T _{RESP1}	Response time, normal mode	-	_	110	ns	50 mV overdrive
SID258	T _{RESP2}	Response time, low power mode	-	-	200	ns	50 mV overdrive
SID92	T _{RESP3}	Response time, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	Ι	-	15	μs	200 mV overdrive

Temperature Sensor

Table 11. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID93	T _{SENSACC}	Temperature sensor accuracy	-5	±1	+5	°C	–40 to +85 °C

SAR ADC

Table 12. SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID94	A_RES	Resolution	-	-	12	bits	
SID95	A_CHNIS_S	Number of channels - single ended	_	-	8		8 full speed
SID96	A-CHNKS_D	Number of channels - differential	-	-	4		Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	-	-	_		Yes. Based on characterization
SID98	A_GAINERR	Gain error	-	-	±0.1	%	With external reference. Guaranteed by characterization
SID99	A_OFFSET	Input offset voltage	-		2	mV	Measured with 1-V V _{REF.} Guaranteed by characterization
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V _{SS}	-	V _{DDA}	V	Based on device characterization
SID102	A_VIND	Input voltage range - differential	V _{SS}	-	V _{DDA}	V	Based on device characterization
SID103	A_INRES	Input resistance	-	_	2.2	KΩ	Based on device characterization
SID104	A_INCAP	Input capacitance	-	-	10	pF	Based on device characterization

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID106	A_PSRR	Power supply rejection ratio	70	-	-	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V
SID108	A_SAMP_1	Sample rate with external reference bypass cap	-	-	1	Msps	
SID108A	A_SAMP_2	Sample rate with no bypass cap. Reference = V_{DD}	-	-	806	Ksps	
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference	-	-	100	Ksps	
SID109	A_SNDR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID111	A_INL	Integral non linearity	-1.7	-	+2	LSB	$\begin{array}{l} V_{DD} \text{=} 1.71 \text{to} 5.5, 806 \\ \text{Ksps}, \text{Vref} \text{=} 1 \text{to} 5.5. \\ -40 ^\circ\text{C} \leq \text{T}_{A} \leq 85 ^\circ\text{C} \end{array}$
			-1.9	_	+2	LSB	$\begin{array}{l} V_{DD} = 1.71 \ to \ 5.5, \ 806 \\ Ksps, \ Vref = 1 \ to \ 5.5. \\ -40 \ ^{\circ}C \leq \ T_A \leq \ 105 \ ^{\circ}C \end{array}$
SID111A	A_INL	L Integral non linearity	-1.5	-	+1.7	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ \text{V}_{DDD}40 \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 85 \ ^{\circ}\text{C} \end{array}$
			-1.9	-	+2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 105 \ ^{\circ}\text{C} \end{array}$
SID111B	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID112	A_DNL	DNL Differential non linearity	-1	-	+2.2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ to \ 5.5, \\ 806 \ Ksps, \ Vref = 1 \ to \\ 5.5. \ -40 \ ^{\circ}C \ \leq \ T_A \ \leq \\ 85 \ ^{\circ}C \end{array}$
			-1	-	+2.3	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 5.5, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1 \ \text{to} \\ 5.5. \ -40 \ ^\circ\text{C} \le \ T_A \ \le \\ 105 \ ^\circ\text{C} \end{array}$
SID112A	A_DNL	Differential non linearity	-1	-	+2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^\circ\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 85 \ ^\circ\text{C} \end{array}$
			–1	-	+2.2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 105 \ ^{\circ}\text{C} \end{array}$
SID112B	A_DNL	Differential non linearity	–1	-	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID113	A_THD	Total harmonic distortion	_	-	-65	dB	F _{IN} = 10 kHz.

Table 13. SAR ADC AC Specifications (Guaranteed by Characterization)

βĈ

Table 16. Fixed I²C DC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	_	50	μΑ	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	_	1.4	μA	

Table 17. Fixed I²C AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	1	1	Mbps	

LCD Direct Drive

Table 18. LCD Direct Drive DC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	-	5	-	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	_	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO. 25 °C	-	0.6	-	mA	32 × 4 segments. 50 Hz
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO. 25 °C	_	0.5	_	mA	32 × 4 segments. 50 Hz

Table 19. LCD Direct Drive AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	

Table 20. Fixed UART DC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	-	55	μA	
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	-	-	312	μA	

Table 21. Fixed UART AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units
SID162	F _{UART}	Bit rate	_	-	1	Mbps

SPI Specifications

Table 22. Fixed SPI DC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	_	_	360	μA
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	_	_	560	μA
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	_	_	600	μA

Table 23. Fixed SPI AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID166	011	SPI operating frequency (master; 6X oversampling)	-	-	4	MHz

Table 24. Fixed SPI Master mode AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID167	T _{DMO}	MOSI valid after Sclock driving edge	-	-	15	ns
SID168	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO Sampling used	20	-	-	ns
SID169	T _{HMO}	Previous MOSI data hold time with respect to capturing edge at Slave	0	_	-	ns

Table 25. Fixed SPI Slave mode AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns
SID171	T _{DSO}	MISO valid after Sclock driving edge	-	-	42 + (3 × Tscbclk)	ns
SID171A	T _{DSO_ext}	MISO valid after Sclock driving edge in Ext. Clock mode	_	-	48	ns
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	-	-	ns

Voltage Monitors

Table 30. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	_	-	100	μA	Guaranteed by characterization

Table 31. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time			1	μs	Guaranteed by characterization

SWD Interface

 Table 32.
 SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \leq V_{DD} \leq 5.5~V$	_	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71~V \le V_{DD} \le 3.3~V$	_	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	-	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	_	_	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 33. IMO DC Specifications (Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID219	I _{IMO2}	IMO operating current at 24 MHz	-	-	325	μA	
SID220	I _{IMO3}	IMO operating current at 12 MHz	-	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	-	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	-	_	150	μA	

Table 34. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 24 MHz	-	_	±2		<u>+</u> 3% if T _A > 85 °C and IMO frequency < 24 MHz
SID226	T _{STARTIMO}	IMO startup time	_	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	-	156	-	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	_	145	_	ps	

Internal Low-Speed Oscillator

Table 35. ILO DC Specifications (Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	_	0.3	1.05		Guaranteed by Characterization
SID233	IILOLEAK	ILO leakage current	_	2	15		Guaranteed by Design

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	2	ms	Guaranteed by charac- terization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by charac- terization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max. ILO frequency is 70 kHz if T _A > 85 °C

Table 37. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	24		Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at $V_{DD/2}$	45	Ι	55		Guaranteed by characterization

The field values are listed in Table 40.

Table 40. Field Values

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
Α	Family within architecture	1	4100 Family
		2	4200 Family
В	CPU Speed	2	24 MHz
		4	48 MHz
С	Flash Capacity	4	16 KB
		5	32 KB
DE	Package Code	PV	SSOP
F	Temperature Range	A/S	Automotive
GHI	Attributes Code	000-999	Code of feature set in specific family
Z	Fab location change		

Packaging

Table 41. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	For A grade devices	-40	25.00	85	°C
T _A	Operating ambient temperature	For S grade devices	-40	25.00	105	°C
TJ	Operating junction temperature	For A grade devices	-40	-	100	°C
TJ	Operating junction temperature	For S grade devices	-40	-	120	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.58	-	°C/W
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	46.28	-	°C/W

Table 42. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
28-pin SSOP	260 °C	30 seconds

Table 43. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3

PSoC4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents

Acronyms

Table 44. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSo
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
lir	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD
PC	program counter
PCB	printed circuit board

Document Conventions

Units of Measure

Table 45. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
Ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*D (cont.)	5331416	MVRE	07/04/2016	Updated Electrical Specifications:
				Updated Device-Level Specifications:
				Updated Table 3:
				Updated entire table.
				Updated Analog Peripherals:
				Updated Opamp:
				Updated Table 8:
				Updated values in "Typ" and "Max" columns for I _{DD_HI} , I _{DD_MED} , I _{DD_LOW} parameters.
				Updated details in "Details/Conditions" column corresponding to "SID290"
				Spec ID and " V_{OS} DR_TR" parameter. Added SID290Q Spec ID corresponding to V_{OS} DR_TR parameter and its
				details.
				Added SID299A Spec ID corresponding to OL_GAIN parameter and its detail
				Updated Comparator:
				Updated Table 9:
				Updated details in "Description", "Min", "Typ", "Max" columns corresponding t
				"I _{CMP1} ", "I _{CMP2} " and "I _{CMP3} " parameters. Updated Table 10:
				Updated details in "Description", "Min", "Typ", "Max" columns corresponding t
				"T _{RESP1} ", "T _{RESP2} " and "T _{RESP3} " parameters. Updated Digital Peripherals:
				Removed "Timer".
				Removed "Counter".
				Removed "Pulse Width Modulation (PWM)".
				Added Timer/Counter/PWM.
				Updated I ² C:
				Updated Table 16:
				Changed maximum value of I_{12C1} parameter from 10.5 µA to 50 µA.
				Updated LCD Direct Drive:
				Updated Table 20:
				Changed maximum value of I_{UART1} parameter from 9 µA to 55 µA.
				Updated SPI Specifications:
				Updated Table 25:
				Replaced "FCPU" with "Tscbclk" in "Max" column corresponding to T_{DSO}
				parameter.
				Updated Memory:
				Updated Table 27:
				Added F _{RETO} parameter and its details.

Document History Page (continued)

Revision	Number: 00 ⁴ ECN	Orig. of Change	Submission Date	Description of Change
*D (cont.)	5331416	MVRE	07/04/2016	Updated Electrical Specifications: Updated System Resources: Updated Power-on-Reset (POR) with Brown Out: Updated Table 29: Updated details in "Details/Conditions" column corresponding to V _{FALLPPOR} parameter. Added Svdd parameter and its details. Updated Internal Main Oscillator: Updated Table 34: Updated details in "Details/Conditions" column corresponding to F _{IMOTOL1} parameter. Updated Internal Low-Speed Oscillator: Updated Internal Low-Speed Oscillator: Updated Table 36: Updated details in "Details/Conditions" column corresponding to F _{ILOTRIM1} parameter. Updated Packaging: Updated Packaging: Updated to new template. Completing Sunset Review.
*E	5675099	SNPR	03/28/2017	Updated Ordering Information.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-93576 Rev. *E

[©] Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.