

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0                                                              |
| Core Size                  | 32-Bit Single-Core                                                           |
| Speed                      | 24MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART   |
| Peripherals                | Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT                    |
| Number of I/O              | 24                                                                           |
| Program Memory Size        | 32KB (32K x 8)                                                               |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 4K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V                                                                 |
| Data Converters            | A/D 8x12b SAR; D/A 2xIDAC                                                    |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                               |
| Supplier Device Package    | 28-SSOP                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4125pvs-482zt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# Contents

| Block Diagram                | 3  |
|------------------------------|----|
| Functional Description       | 3  |
| Functional Overview          | 4  |
| CPU and Memory Subsystem     | 4  |
| System Resources             | 4  |
| Analog Blocks                | 5  |
| Fixed Function Digital       | 6  |
| GPIO                         | 7  |
| Special Function Peripherals | 7  |
| Pinouts                      | 8  |
| Power                        |    |
| Unregulated External Supply  |    |
| Regulated External Supply    |    |
| Development Support          |    |
| Documentation                |    |
| Online                       | 11 |
| Tools                        |    |
| Electrical Specifications    |    |
| Absolute Maximum Ratings     |    |

| 17<br>21<br>24<br>24 |
|----------------------|
| 21<br>24<br>24       |
| 24<br>24             |
| 24                   |
| <b>`</b>             |
| 28                   |
| 28                   |
| 30                   |
| 31                   |
| 33                   |
| 33                   |
| 34                   |
| 37                   |
| 37                   |
| 37                   |
| 37                   |
| 37                   |
| 37                   |
|                      |



# **Functional Overview**

#### **CPU and Memory Subsystem**

#### CPU

The Cortex-M0 CPU in PSoC 4100 is part of the 32-bit MCU subsystem, which is optimized for low power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC), which can wake the processor up from Deep Sleep mode allowing power to be switched off to the main processor when the chip is in Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt input (NMI), which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the Serial Wire Debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4100 has four break-point (address) comparators and two watchpoint (data) comparators.

#### Flash

PSoC 4100 has a flash module with a flash accelerator tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 0 wait-state (WS) access time at 24 MHz. Part of the flash module can be used to emulate EEPROM operation if required.

The PSoC 4100 flash supports the following flash protection modes at the memory sub-system level.

**Open:** No protection. Factory default mode that the product is shipped in.

**Protected:** User may change from Open to Protected. This mode disables debug interface accesses. The mode can be set back to Open but only after completely erasing the flash.

**Kill:** User may change from Open to Kill. This mode disables all debug accesses. The part cannot be erased externally, thus obviating the possibility of partial erasure by power interruption and potential malfunction and security leaks. This is an irrecvocable mode.

In addition, row-level Read/Write protection is also supported to prevent inadvertent Writes as well as selectively block Reads. Flash Read/Write/Erase operations are always available for internal code using system calls.

#### SRAM

SRAM memory is retained during Hibernate.

#### SROM

A supervisory ROM that contains boot and configuration routines is provided.

#### System Resources

#### Power System

The power system is described in detail in the section Power on page 10. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low-voltage detect (LVD)). The PSoC 4100 operates with a single external supply over the range of 1.71 V to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4100 provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

#### Clock System

The PSoC 4100 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for the PSoC 4100 consists of two internal oscillators, IMO and the ILO, and provision for an external clock.

#### Figure 1. PSoC 4100 MCU Clocking Architecture



The HFCLK signal can be divided down (see PSoC 4100 MCU Clocking Architecture) to generate synchronous clocks for the analog and digital peripherals. There are a total of 12 clock dividers for the PSoC 4100, each with 16-bit divide capability. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator.



#### Opamp (CTBm Block)

PSoC 4100 has an opamp with Comparator mode, which allows most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamp is designed with enough bandwidth to drive the S/H circuit of the ADC without requiring external buffering.

### Temperature Sensor

PSoC 4100 has one on-chip temperature sensor This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress supplied software that includes calibration and linearization.

#### Low-power Comparators

PSoC 4100 has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

### **Fixed Function Digital**

#### Timer/Counter/PWM Block

The Timer/Counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

#### Serial Communication Blocks (SCB)

PSoC 4100 has two SCBs, which can each implement an  $I^2C$ , UART, SPI, or LIN Slave interface.

**I<sup>2</sup>C Mode**: The hardware I<sup>2</sup>C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The  $I^2C$  peripheral is compatible with the  $I^2C$  Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP  $I^2C$ -bus specification and user manual (UM10204). The  $I^2C$  bus I/O is implemented with GPIO in open-drain modes. The I2C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data connected to all nodes. Required Rise and Fall times for different I2C speeds are guaranteed by using appropriate pull-up resistor values depending on V<sub>DD</sub>, Bus Capacitance, and resistor tolerance. For detailed information on how to calculate the optimum pull-up resistor value for your design, please refer to the UM10204 I<sup>2</sup>C bus specification and user manual, the newest revision is available at www.nxp.com.

The PSoC 4100 is not completely compliant with the  $I^2C$  spec in the following respects:

- GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I<sup>2</sup>C system.
- Fast-mode Plus has an I<sub>OL</sub> specification of 20 mA at a V<sub>OL</sub> of 0.4 V. The GPIO cells can sink a maximum of 8 mA I<sub>OL</sub> with a V<sub>OL</sub> maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the Bus Load.
- When the SCB is an I<sup>2</sup>C Master, it interposes an IDLE state between NACK and Repeated Start; the I<sup>2</sup>C spec defines Bus free as following a Stop condition so other Active Masters do not intervene but a Master that has just become activated may start an Arbitration cycle.
- When the SCB is in I<sup>2</sup>C Slave mode, and Address Match on External Clock is enabled (EC\_AM = 1) along with operation in the internally clocked mode (EC\_OP = 0), then its I<sup>2</sup>C address must be even.

**UART Mode**: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

**SPI Mode**: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI mode in which data interchange is reduced to reading and writing an array in memory.

**LIN Slave Mode**: The LIN Slave mode uses the SCB hardware block and implements a full LIN slave interface. This LIN slave is compliant with LIN v1.3 and LIN v2.1/2.2 specification standards. It is certified by C&S GmbH based on the standard protocol and data link layer conformance tests. The LIN slave can be operated at baud rates of up to ~20 Kbps with a maximum of 40-meter cable length. PSoC Creator software supports up to two LIN slave interfaces in the PSoC 4 device, providing built-in application programming interfaces (APIs) based on the LIN specification standard.



# Power

The following power system diagram shows the minimum set of power supply pins as implemented for the PSoC 4100. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the  $V_{DDA}$  input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.





The PSoC 4100 family allows two distinct modes of power supply operation: Unregulated External Supply, and Regulated External Supply modes.

## Unregulated External Supply

In this mode, PSoC 4100 is powered by an External Power Supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100 supplies the internal logic and the VCCD output of the PSoC 4100 must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6  $\mu$ F; X5R ceramic or better).

Bypass capacitors must be used from VDDD to ground, typical practice for systems in this frequency range is to use a capacitor in the 1- $\mu$ F range in parallel with a smaller capacitor (0.1  $\mu$ F for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme for the 28-pin SSOP package follows.

### Table 1. Example of a bypass scheme

| Power Supply           | Bypass Capacitors                                                                                                                    |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| VDDD-VSS               | 0.1 $\mu$ F ceramic capacitor (C2) plus bulk<br>capacitor 1 to 10 $\mu$ F (C1). Total<br>Capacitance may be greater than 10 $\mu$ F. |
| VCCD-VSS               | 1 μF ceramic capacitor at the VCCD pin (C3)                                                                                          |
| VREF–VSS<br>(optional) | The internal bandgap may be bypassed with a 1 $\mu$ F to 10 $\mu$ F capacitor. Total capacitance may be greater than 10 $\mu$ F.     |

## Figure 5. 28-Pin SSOP Example



# **Regulated External Supply**

In this mode, the PSoC 4100 is powered by an external power supply that must be within the range of 1.71 to  $1.89 \text{ V} (1.8 \pm 5\%)$ ; note that this range needs to include power supply ripple too. In this mode, VCCD, and VDDD pins are all shorted together and bypassed. The internal regulator is disabled in firmware.



# **Development Support**

The PSoC 4100 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

### Documentation

A suite of documentation supports the PSoC 4100 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

**Software User Guide**: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

**Component Datasheets**: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

**Application Notes:** PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

**Technical Reference Manual**: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

#### Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

#### Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.



# **Electrical Specifications**

## Absolute Maximum Ratings

# Table 2. Absolute Maximum Ratings<sup>[1]</sup>

| Spec ID# | Parameter                   | Description                                                                                                 | Min  | Тур | Мах                  | Units | Details/<br>Conditions                 |
|----------|-----------------------------|-------------------------------------------------------------------------------------------------------------|------|-----|----------------------|-------|----------------------------------------|
| SID1     | V <sub>DDD_ABS</sub>        | Digital supply relative to V <sub>SSD</sub>                                                                 | -0.5 | -   | 6                    | V     | Absolute max                           |
| SID2     | V <sub>CCD_ABS</sub>        | Direct digital core voltage input relative to $V_{\mbox{\scriptsize SSD}}$                                  | -0.5 | -   | 1.95                 | V     | Absolute max                           |
| SID3     | V <sub>GPIO_ABS</sub>       | GPIO voltage                                                                                                | -0.5 | -   | V <sub>DD</sub> +0.5 | V     | Absolute max                           |
| SID4     | I <sub>GPIO_ABS</sub>       | Maximum current per GPIO                                                                                    | -25  | -   | 25                   | mA    | Absolute max                           |
| SID5     | I <sub>GPIO_injection</sub> | GPIO injection current, Max for V <sub>IH</sub> > $V_{DDD}$ , and Min for V <sub>IL</sub> < V <sub>SS</sub> | -0.5 | -   | 0.5                  | mA    | Absolute max, current injected per pin |
| BID44    | ESD_HBM                     | Electrostatic discharge human body model                                                                    | 2200 | -   | -                    | V     |                                        |
| BID45    | ESD_CDM                     | Electrostatic discharge charged device model                                                                | 500  | -   | -                    | V     |                                        |
| BID46    | LU                          | Pin current for latch-up                                                                                    | -200 | _   | 200                  | mA    |                                        |

### **Device-Level Specifications**

All specifications are valid for –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C for A grade devices and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  105 °C for S grade devices, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

#### Table 3. DC Specifications

| Spec ID#     | Parameter                   | Description                                                                            | Min   | Тур | Max  | Units | Details/Conditions               |
|--------------|-----------------------------|----------------------------------------------------------------------------------------|-------|-----|------|-------|----------------------------------|
| SID53        | V <sub>DD</sub>             | Power supply input voltage<br>(V <sub>DDA</sub> = V <sub>DDD</sub> = V <sub>DD</sub> ) | 1.8   | -   | 5.5  | V     | With regulator enabled           |
| SID255       | V <sub>DDD</sub>            | Power supply input voltage unregulated                                                 | 1.71  | 1.8 | 1.89 | V     | Internally unregulated<br>Supply |
| SID54        | V <sub>CCD</sub>            | Output voltage (for core logic)                                                        | -     | 1.8 | -    | V     |                                  |
| SID55        | C <sub>EFC</sub>            | External regulator voltage bypass                                                      | 1     | 1.3 | 1.6  | μF    | X5R ceramic or better            |
| SID56        | C <sub>EXC</sub>            | Power supply decoupling capacitor                                                      | -     | 1   | -    | μF    | X5R ceramic or better            |
| Active Mode, | V <sub>DD</sub> = 1.71 V to | 5.5 V. Typical Values measured at $V_{\text{DD}}$                                      | = 3.3 | V.  |      |       |                                  |
| SID9         | I <sub>DD4</sub>            | Execute from Flash;<br>CPU at 6 MHz                                                    | -     | -   | 2.8  | mA    |                                  |
| SID10        | I <sub>DD5</sub>            | Execute from Flash;<br>CPU at 6 MHz                                                    | -     | 2.2 | -    | mA    | T = 25 °C                        |
| SID12        | I <sub>DD7</sub>            | Execute from Flash;<br>CPU at 12 MHz                                                   | _     | -   | 4.2  | mA    |                                  |
| SID13        | I <sub>DD8</sub>            | Execute from Flash;<br>CPU at 12 MHz                                                   | _     | 3.7 | -    | mA    | T = 25 °C                        |
| SID16        | I <sub>DD11</sub>           | Execute from Flash;<br>CPU at 24 MHz                                                   | -     | 6.7 | -    | mA    | T = 25 °C                        |
| SID17        | I <sub>DD12</sub>           | Execute from Flash;<br>CPU at 24 MHz                                                   | -     | _   | 7.2  | mA    |                                  |

Note

Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.



## Table 3. DC Specifications (continued)

| Spec ID#     | Parameter                                | Description                                                  | Min | Тур | Max  | Units | Details/Conditions                 |
|--------------|------------------------------------------|--------------------------------------------------------------|-----|-----|------|-------|------------------------------------|
| Sleep Mode,  | V <sub>DD</sub> = 1.7 V to 5             | 5.5 V                                                        |     |     |      |       | l                                  |
| SID25        | I <sub>DD20</sub>                        | I <sup>2</sup> C wakeup, WDT,<br>and Comparators on. 6 MHz.  | -   | 1.3 | 1.8  | mA    | V <sub>DD</sub> = 1.71 V to 5.5 V  |
| SID25A       | I <sub>DD20A</sub>                       | I <sup>2</sup> C wakeup, WDT,<br>and Comparators on. 12 MHz. | _   | 1.7 | 2.2  | mA    | V <sub>DD</sub> = 1.71 V to 5.5 V  |
| Deep Sleep N | Mode, V <sub>DD</sub> = 1.8              | V to 3.6 V (Regulator on)                                    |     | 1   | •    |       | L                                  |
| SID31        | I <sub>DD26</sub>                        | I <sup>2</sup> C wakeup and WDT on.                          | _   | 1.3 | -    | μA    | T = 25 °C                          |
| SID32        | I <sub>DD27</sub>                        | I <sup>2</sup> C wakeup and WDT on.                          | _   | -   | 45   | μA    | T = 85 °C                          |
| Deep Sleep M | Mode, V <sub>DD</sub> = 3.6              | V to 5.5 V                                                   |     |     |      |       |                                    |
| SID34        | I <sub>DD29</sub>                        | I <sup>2</sup> C wakeup and WDT on                           | -   | 1.5 | 15   | μA    | Typ. at 25 °C<br>Max at 85 °C      |
| Deep Sleep N | Mode, V <sub>DD</sub> = 1.7 <sup>-</sup> | 1 V to 1.89 V (Regulator bypassed)                           |     | 1   | •    |       | L                                  |
| SID37        | I <sub>DD32</sub>                        | I <sup>2</sup> C wakeup and WDT on.                          | _   | 1.7 | -    | μA    | T = 25 °C                          |
| SID38        | I <sub>DD33</sub>                        | I <sup>2</sup> C wakeup and WDT on                           | _   | -   | 60   | μA    | T = 85 °C                          |
| Deep Sleep N | Mode, +105 °C                            | 1                                                            |     | 1   | I    |       | L                                  |
| SID33Q       | I <sub>DD28Q</sub>                       | I <sup>2</sup> C wakeup and WDT on. Regulator Off.           | _   | -   | 135  | μA    | V <sub>DD</sub> = 1.71 V to 1.89 V |
| SID34Q       | I <sub>DD29Q</sub>                       | I <sup>2</sup> C wakeup and WDT on.                          | _   | _   | 180  | μA    | V <sub>DD</sub> = 1.8 V to 3.6 V   |
| SID35Q       | I <sub>DD30Q</sub>                       | I <sup>2</sup> C wakeup and WDT on.                          | _   | _   | 140  | μA    | V <sub>DD</sub> = 3.6 V to 5.5 V   |
| Hibernate Mo | ode, V <sub>DD</sub> = 1.8 V             | to 3.6 V (Regulator on)                                      |     | 1   |      |       |                                    |
| SID40        | I <sub>DD35</sub>                        | GPIO & Reset active                                          | _   | 150 | -    | nA    | T = 25 °C                          |
| SID41        | I <sub>DD36</sub>                        | GPIO & Reset active                                          | _   | -   | 1000 | nA    | T = 85 °C                          |
| Hibernate Mo | ode, V <sub>DD</sub> = 3.6 V             | to 5.5 V                                                     |     | 1   | •    |       | L                                  |
| SID43        | I <sub>DD38</sub>                        | GPIO & Reset active                                          | _   | 150 | -    | nA    | T = 25 °C                          |
| Hibernate Mo | ode, V <sub>DD</sub> = 1.71              | V to 1.89 V (Regulator bypassed)                             |     | 1   | •    |       | L                                  |
| SID46        | I <sub>DD41</sub>                        | GPIO & Reset active                                          | _   | 150 | -    | nA    | T = 25 °C                          |
| SID47        | I <sub>DD42</sub>                        | GPIO & Reset active                                          | _   | -   | 1000 | nA    | T = 85 °C                          |
| Hibernate Mo | ode, +105 °C                             | 1                                                            |     | 1   | •    |       | L                                  |
| SID42Q       | I <sub>DD37Q</sub>                       | Regulator Off                                                | _   | -   | 19.4 | μA    | V <sub>DD</sub> = 1.71 V to 1.89 V |
| SID43Q       | I <sub>DD38Q</sub>                       |                                                              | _   | -   | 17   | μA    | V <sub>DD</sub> = 1.8 V to 3.6 V   |
| SID44Q       | I <sub>DD39Q</sub>                       |                                                              | _   | -   | 16   | μA    | V <sub>DD</sub> = 3.6 V to 5.5 V   |
| Stop Mode    |                                          |                                                              |     | I.  |      |       |                                    |
| SID304       | I <sub>DD43A</sub>                       | Stop Mode current; V <sub>DD</sub> = 3.3 V                   | -   | 20  | 80   | nA    | Typ at 25 °C.<br>Max at 85 °C      |
|              |                                          | Stop Mode current; V <sub>DD</sub> = 5.5 V                   | -   | 20  | 750  | nA    | Typ at 25 °C<br>Max at 85 °C       |
| Stop Mode, + | -105 °C                                  | ·                                                            |     | •   | •    |       |                                    |
| SID304Q      | I <sub>DD43AQ</sub>                      | Stop Mode current; V <sub>DD</sub> = 3.6 V                   | -   | _   | 5645 | nA    |                                    |
| XRES curren  | t                                        |                                                              |     |     |      | •     |                                    |
| SID307       | I <sub>DD_XR</sub>                       | Supply current while XRES asserted                           | -   | 2   | 5    | mA    |                                    |



| Spec ID# | Parameter            | Description                                                                 | Min | Тур | Мах  | Units | Details/<br>Conditions                     |
|----------|----------------------|-----------------------------------------------------------------------------|-----|-----|------|-------|--------------------------------------------|
| SID70    | T <sub>RISEF</sub>   | Rise time in fast strong mode                                               | 2   | -   | 12   | ns    | 3.3-V V <sub>DDD</sub> ,<br>Cload = 25 pF  |
| SID71    | T <sub>FALLF</sub>   | Fall time in fast strong mode                                               | 2   | -   | 12   | ns    | 3.3-V V <sub>DDD</sub> ,<br>Cload = 25 pF  |
| SID72    | T <sub>RISES</sub>   | Rise time in slow strong mode                                               | 10  | -   | 60   |       | 3.3-V V <sub>DDD</sub> ,<br>Cload = 25 pF  |
| SID73    | T <sub>FALLS</sub>   | Fall time in slow strong mode                                               | 10  | -   | 60   |       | 3.3-V V <sub>DDD</sub> ,<br>Cload = 25 pF  |
| SID74    | F <sub>GPIOUT1</sub> | GPIO Fout;3.3 V $\leq$ V <sub>DDD</sub> $\leq$ 5.5 V. Fast strong mode.     | -   | -   | 24   | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle |
| SID75    | F <sub>GPIOUT2</sub> | GPIO Fout;1.7 V $\leq$ V <sub>DDD</sub> $\leq$ 3.3 V. Fast strong mode.     | -   | -   | 16.7 | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle |
| SID76    | F <sub>GPIOUT3</sub> | GPIO Fout;3.3 V $\leq$ V <sub>DDD</sub> $\leq$ 5.5 V. Slow strong mode.     | -   | -   | 7    | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle |
| SID245   | F <sub>GPIOUT4</sub> | GPIO Fout;1.7 V $\leq$ V <sub>DDD</sub> $\leq$ 3.3 V. Slow strong mode.     | -   | -   | 3.5  | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle |
| SID246   | F <sub>GPIOIN</sub>  | GPIO input operating frequency; 1.71 V $\leq$ V <sub>DDD</sub> $\leq$ 5.5 V | -   | -   | 24   | MHz   | 90/10% V <sub>IO</sub>                     |

# Table 5. GPIO AC Specifications (Guaranteed by Characterization)

# XRES

## Table 6. XRES DC Specifications

| Spec ID# | Parameter            | Description                                          | Min                       | Тур | Max                       | Units | Details/<br>Conditions         |
|----------|----------------------|------------------------------------------------------|---------------------------|-----|---------------------------|-------|--------------------------------|
| SID77    | V <sub>IH</sub>      | Input voltage high threshold                         | 0.7 ×<br>V <sub>DDD</sub> | -   | _                         | V     | CMOS Input                     |
| SID78    | V <sub>IL</sub>      | Input voltage low threshold                          | -                         | -   | 0.3 ×<br>V <sub>DDD</sub> | V     | CMOS Input                     |
| SID79    | R <sub>PULLUP</sub>  | Pull-up resistor                                     | 3.5                       | 5.6 | 8.5                       | kΩ    |                                |
| SID80    | C <sub>IN</sub>      | Input capacitance                                    | -                         | 3   | -                         | pF    |                                |
| SID81    | V <sub>HYSXRES</sub> | Input voltage hysteresis                             | _                         | 100 | _                         | mV    | Guaranteed by characterization |
| SID82    | IDIODE               | Current through protection diode to $V_{DDD}/V_{SS}$ | _                         | -   | 100                       | μA    | Guaranteed by characterization |

# Table 7. XRES AC Specifications

| Spec ID# | Parameter               | Description       | Min | Тур | Мах | Units | Details/<br>Conditions         |
|----------|-------------------------|-------------------|-----|-----|-----|-------|--------------------------------|
| SID83    | T <sub>RESETWIDTH</sub> | Reset pulse width | 1   | -   | -   | μs    | Guaranteed by characterization |



# **Analog Peripherals**

## Opamp

# Table 8. Opamp Specifications (Guaranteed by Characterization)

| Spec ID# | Parameter               | Description                                           | Min   | Тур  | Мах                    | Units   | Details/<br>Conditions                         |
|----------|-------------------------|-------------------------------------------------------|-------|------|------------------------|---------|------------------------------------------------|
|          | I <sub>DD</sub>         | Opamp block current. No load.                         | -     | -    | _                      | _       |                                                |
| SID269   | I <sub>DD_HI</sub>      | Power = high                                          | -     | 1100 | 1850                   | μA      |                                                |
| SID270   | I <sub>DD_MED</sub>     | Power = medium                                        | -     | 550  | 950                    | μA      |                                                |
| SID271   | I <sub>DD_LOW</sub>     | Power = low                                           | -     | 150  | 350                    | μA      |                                                |
|          | GBW                     | Load = 20 pF, 0.1 mA. V <sub>DDA</sub> = 2.7 V        | -     | -    | -                      | _       |                                                |
| SID272   | GBW_HI                  | Power = high                                          | 6     | -    | -                      | MHz     |                                                |
| SID273   | GBW_MED                 | Power = medium                                        | 4     | -    | -                      | MHz     |                                                |
| SID274   | GBW_LO                  | Power = low                                           | -     | 1    | -                      | MHz     |                                                |
|          | I <sub>OUT_MAX</sub>    | $V_{DDA} \ge 2.7 \text{ V}, 500 \text{ mV}$ from rail | -     | -    | -                      | _       |                                                |
| SID275   | I <sub>OUT_MAX_HI</sub> | Power = high                                          | 10    | -    | -                      | mA      |                                                |
| SID276   | IOUT_MAX_MID            | Power = medium                                        | 10    | -    | -                      | mA      |                                                |
| SID277   | IOUT_MAX_LO             | Power = low                                           | -     | 5    | -                      | mA      |                                                |
|          | I <sub>OUT</sub>        | V <sub>DDA</sub> = 1.71 V, 500 mV from rail           | -     | -    | _                      | _       |                                                |
| SID278   | I <sub>OUT_MAX_HI</sub> | Power = high                                          | 4     | -    | -                      | mA      |                                                |
| SID279   | IOUT_MAX_MID            | Power = medium                                        | 4     | -    | -                      | mA      |                                                |
| SID280   | IOUT_MAX_LO             | Power = low                                           | -     | 2    | -                      | mA      |                                                |
| SID281   | V <sub>IN</sub>         | Charge pump on, $V_{DDA} \ge 2.7 V$                   | -0.05 | -    | V <sub>DDA</sub> – 0.2 | V       |                                                |
| SID282   | V <sub>CM</sub>         | Charge pump on, $V_{DDA} \ge 2.7 V$                   | -0.05 | -    | V <sub>DDA</sub> – 0.2 | V       |                                                |
|          | V <sub>OUT</sub>        | $V_{DDA} \ge 2.7 V$                                   | -     | -    | -                      |         |                                                |
| SID283   | V <sub>OUT_1</sub>      | Power = high, lload=10 mA                             | 0.5   | -    | $V_{DDA} - 0.5$        | V       |                                                |
| SID284   | V <sub>OUT_2</sub>      | Power = high, lload=1 mA                              | 0.2   | -    | V <sub>DDA</sub> - 0.2 | V       |                                                |
| SID285   | V <sub>OUT_3</sub>      | Power = medium, lload=1 mA                            | 0.2   | -    | V <sub>DDA</sub> - 0.2 | V       |                                                |
| SID286   | V <sub>OUT_4</sub>      | Power = low, lload=0.1mA                              | 0.2   | -    | $V_{DDA} - 0.2$        | V       |                                                |
| SID288   | V <sub>OS_TR</sub>      | Offset voltage, trimmed                               | 1     | ±0.5 | 1                      | mV      | High mode                                      |
| SID288A  | V <sub>OS_TR</sub>      | Offset voltage, trimmed                               | -     | ±1   | -                      | mV      | Medium mode                                    |
| SID288B  | V <sub>OS_TR</sub>      | Offset voltage, trimmed                               | -     | ±2   | -                      | mV      | Low mode                                       |
| SID290   | V <sub>OS_DR_TR</sub>   | Offset voltage drift, trimmed                         | -10   | ±3   | 10                     | µV/°C   | High mode<br>T <sub>A</sub> <u>&lt;</u> 85 °C. |
| SID290Q  | V <sub>OS_DR_TR</sub>   | Offset voltage drift, trimmed                         | -15   | ±3   | 15                     | µV/°C   | High mode.<br>T <sub>A</sub> ≤ 105 °C          |
| SID290A  | V <sub>OS_DR_TR</sub>   | Offset voltage drift, trimmed                         | -     | ±10  | -                      | µV/°C   | Medium mode                                    |
| SID290B  | V <sub>OS_DR_TR</sub>   | Offset voltage drift, trimmed                         | -     | ±10  | -                      | µV/°C   | Low mode                                       |
| SID291   | CMRR                    | DC                                                    | 70    | 80   | -                      | dB      | V <sub>DDD</sub> = 3.6 V                       |
| SID292   | PSRR                    | At 1 kHz, 100 mV ripple                               | 70    | 85   | -                      | dB      | V <sub>DDD</sub> = 3.6 V                       |
|          | Noise                   |                                                       | -     | -    | -                      | _       |                                                |
| SID293   | V <sub>N1</sub>         | Input referred, 1 Hz - 1GHz, power =<br>high          | -     | 94   | -                      | µVrms   |                                                |
| SID294   | V <sub>N2</sub>         | Input referred, 1 kHz, power = high                   | -     | 72   | -                      | nV/rtHz |                                                |
| SID295   | V <sub>N3</sub>         | Input referred, 10 kHz, power = high                  | -     | 28   | -                      | nV/rtHz |                                                |
| SID296   | V <sub>N4</sub>         | Input referred, 100 kHz, power = high                 | -     | 15   | -                      | nV/rtHz |                                                |



## Table 10. Comparator AC Specifications

(Guaranteed by Characterization)

| Spec ID# | Parameter          | Description                                                                                                                           | Min | Тур | Max | Units | Details/Conditions |
|----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|--------------------|
| SID91    | T <sub>RESP1</sub> | Response time, normal mode                                                                                                            | -   | -   | 110 | ns    | 50 mV overdrive    |
| SID258   | T <sub>RESP2</sub> | Response time, low power mode                                                                                                         | -   | -   | 200 | ns    | 50 mV overdrive    |
| SID92    | T <sub>RESP3</sub> | Response time, ultra low power mode<br>( $V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C,<br>$V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C) | Ι   | Ι   | 15  | μs    | 200 mV overdrive   |

#### Temperature Sensor

### **Table 11. Temperature Sensor Specifications**

| Spec ID# | Parameter            | Description                 | Min | Тур | Max | Units | <b>Details/Conditions</b> |
|----------|----------------------|-----------------------------|-----|-----|-----|-------|---------------------------|
| SID93    | T <sub>SENSACC</sub> | Temperature sensor accuracy | -5  | ±1  | +5  | °C    | –40 to +85 °C             |

### SAR ADC

# Table 12. SAR ADC DC Specifications

| Spec ID# | Parameter | Description                        | Min             | Тур | Max              | Units | Details/Conditions                                                       |
|----------|-----------|------------------------------------|-----------------|-----|------------------|-------|--------------------------------------------------------------------------|
| SID94    | A_RES     | Resolution                         | -               | -   | 12               | bits  |                                                                          |
| SID95    | A_CHNIS_S | Number of channels - single ended  | -               | -   | 8                |       | 8 full speed                                                             |
| SID96    | A-CHNKS_D | Number of channels - differential  | _               | -   | 4                |       | Diff inputs use<br>neighboring I/O                                       |
| SID97    | A-MONO    | Monotonicity                       | -               | -   | -                |       | Yes. Based on<br>characterization                                        |
| SID98    | A_GAINERR | Gain error                         | _               |     | ±0.1             | %     | With external<br>reference.<br>Guaranteed by<br>characterization         |
| SID99    | A_OFFSET  | Input offset voltage               | -               | -   | 2                | mV    | Measured with 1-V<br>V <sub>REF.</sub> Guaranteed by<br>characterization |
| SID100   | A_ISAR    | Current consumption                | -               | -   | 1                | mA    |                                                                          |
| SID101   | A_VINS    | Input voltage range - single ended | V <sub>SS</sub> | -   | V <sub>DDA</sub> | V     | Based on device<br>characterization                                      |
| SID102   | A_VIND    | Input voltage range - differential | V <sub>SS</sub> | -   | V <sub>DDA</sub> | V     | Based on device<br>characterization                                      |
| SID103   | A_INRES   | Input resistance                   | _               | -   | 2.2              | KΩ    | Based on device characterization                                         |
| SID104   | A_INCAP   | Input capacitance                  | _               | -   | 10               | pF    | Based on device<br>characterization                                      |



| Spec ID# | Parameter | Description                                                    | Min  | Тур | Мах  | Units | Details/Conditions                                                                                                                                                                                                           |
|----------|-----------|----------------------------------------------------------------|------|-----|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SID106   | A_PSRR    | Power supply rejection ratio                                   | 70   | -   | -    | dB    |                                                                                                                                                                                                                              |
| SID107   | A_CMRR    | Common mode rejection ratio                                    | 66   | -   | -    | dB    | Measured at 1 V                                                                                                                                                                                                              |
| SID108   | A_SAMP_1  | Sample rate with external reference bypass cap                 | -    | -   | 1    | Msps  |                                                                                                                                                                                                                              |
| SID108A  | A_SAMP_2  | Sample rate with no bypass cap.<br>Reference = V <sub>DD</sub> | -    | -   | 806  | Ksps  |                                                                                                                                                                                                                              |
| SID108B  | A_SAMP_3  | Sample rate with no bypass cap. Internal reference             | -    | -   | 100  | Ksps  |                                                                                                                                                                                                                              |
| SID109   | A_SNDR    | Signal-to-noise and distortion ratio (SINAD)                   | 65   | -   | _    | dB    | F <sub>IN</sub> = 10 kHz                                                                                                                                                                                                     |
| SID111   | A_INL     | Integral non linearity                                         | -1.7 | -   | +2   | LSB   | $\begin{array}{l} V_{DD}  \text{=}  1.71  \text{to}  5.5,  806 \\ \text{Ksps},  \text{Vref}  \text{=}  1  \text{to}  5.5. \\ -40 ^\circ\text{C} \leq  \text{T}_A  \leq  85 ^\circ\text{C} \end{array}$                       |
|          |           |                                                                | -1.9 | _   | +2   | LSB   | $\begin{array}{l} V_{DD} = 1.71 \ to \ 5.5, \ 806 \\ Ksps, \ Vref = 1 \ to \ 5.5. \\ -40 \ ^{\circ}C \leq \ T_A \leq \ 105 \ ^{\circ}C \end{array}$                                                                          |
| SID111A  | A_INL     | Integral non linearity                                         | -1.5 | _   | +1.7 | LSB   | $ \begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ \text{V}_{DDD}. \ -40 \ ^\circ\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 85 \ ^\circ\text{C} \end{array} $ |
|          |           |                                                                | -1.9 | _   | +2   | LSB   | $\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 105 \ ^{\circ}\text{C} \end{array}$     |
| SID111B  | A_INL     | Integral non linearity                                         | -1.5 | -   | +1.7 | LSB   | V <sub>DDD</sub> = 1.71 to 5.5,<br>500 Ksps, Vref = 1 to<br>5.5.                                                                                                                                                             |
| SID112   | A_DNL     | Differential non linearity                                     | -1   | _   | +2.2 | LSB   | $\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 5.5, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1 \ \text{to} \\ 5.5. \ -40 \ \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \leq \\ 85 \ \ ^{\circ}\text{C} \end{array}$           |
|          |           |                                                                | -1   | _   | +2.3 | LSB   | $\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 5.5, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1 \ \text{to} \\ 5.5. \ -40 \ \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \leq \\ 105 \ \ ^{\circ}\text{C} \end{array}$          |
| SID112A  | A_DNL     | Differential non linearity                                     | -1   | _   | +2   | LSB   | $\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^\circ\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 85 \ ^\circ\text{C} \end{array}$          |
|          |           |                                                                | -1   | -   | +2.2 | LSB   | $\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \\ 806 \ \text{Ksps}, \ \text{Vref} = 1.71 \\ \text{to} \ V_{DDD}. \ -40 \ ^\circ\text{C} \leq \ \text{T}_{\text{A}} \\ \leq \ 105 \ ^\circ\text{C} \end{array}$         |
| SID112B  | A_DNL     | Differential non linearity                                     | -1   | _   | +2.2 | LSB   | V <sub>DDD</sub> = 1.71 to 5.5,<br>500 Ksps, Vref = 1 to<br>5.5.                                                                                                                                                             |
| SID113   | A_THD     | Total harmonic distortion                                      | _    | _   | -65  | dB    | F <sub>IN</sub> = 10 kHz.                                                                                                                                                                                                    |

# Table 13. SAR ADC AC Specifications (Guaranteed by Characterization)



## CSD

## Table 14. CSD Block Specification

| Spec ID# | Parameter  | Description                                                        | Min  | Тур   | Max | Units | Details/<br>Conditions                              |
|----------|------------|--------------------------------------------------------------------|------|-------|-----|-------|-----------------------------------------------------|
| CSD Spe  | cification |                                                                    |      |       |     | -     |                                                     |
| SID308   | VCSD       | Voltage range of operation                                         | 1.71 | -     | 5.5 | V     |                                                     |
| SID309   | IDAC1      | DNL for 8-bit resolution                                           | -1   | -     | 1   | LSB   |                                                     |
| SID310   | IDAC1      | INL for 8-bit resolution                                           | -3   | -     | 3   | LSB   |                                                     |
| SID311   | IDAC2      | DNL for 7-bit resolution                                           | -1   | -     | 1   | LSB   |                                                     |
| SID312   | IDAC2      | INL for 7-bit resolution                                           | -3   | -     | 3   | LSB   |                                                     |
| SID313   | SNR        | Ratio of counts of finger to noise. Guaranteed by characterization | 5    | -     | -   | Ratio | Capacitance range of 9 to 35 pF, 0.1 pF sensitivity |
| SID314   | IDAC1_CRT1 | Output current of Idac1 (8-bits) in High range                     | -    | 612   | I   | μA    |                                                     |
| SID314A  | IDAC1_CRT2 | Output current of Idac1(8-bits) in Low range                       | -    | 306   | Ι   | μA    |                                                     |
| SID315   | IDAC2_CRT1 | Output current of Idac2 (7-bits) in High range                     | -    | 304.8 | -   | μA    |                                                     |
| SID315A  | IDAC2_CRT2 | Output current of Idac2 (7-bits) in Low range                      | -    | 152.4 | -   | μA    |                                                     |

# **Digital Peripherals**

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

## Timer/Counter/PWM

# Table 15. TCPWM Specifications

(Guaranteed by Characterization)

| Spec ID      | Parameter | Description                                         | Min  | Тур | Max | Units | Details/Conditions                                                                                                               |
|--------------|-----------|-----------------------------------------------------|------|-----|-----|-------|----------------------------------------------------------------------------------------------------------------------------------|
| SID.TCPWM.1  | ITCPWM1   | Block current consumption at 3 MHz                  | Ι    | Ι   | 45  | μA    | All modes<br>(Timer/Counter/PWM)                                                                                                 |
| SID.TCPWM.2  | ITCPWM2   | Block current consumption at 12 MHz                 | _    | _   | 155 | μA    | All modes<br>(Timer/Counter/PWM)                                                                                                 |
| SID.TCPWM.2A | ITCPWM3   | Block current consumption at 48 MHz                 | -    | Ι   | 650 | μA    | All modes<br>(Timer/Counter/PWM)                                                                                                 |
| SID.TCPWM.3  | TCPWMFREQ | Operating frequency                                 | Ι    | -   | Fc  | MHz   | Fc max = Fcpu.<br>Maximum = 24 MHz                                                                                               |
| SID.TCPWM.4  | TPWMENEXT | Input Trigger Pulse Width for all<br>Trigger Events | 2/Fc | _   | _   | ns    | Trigger Events can be Stop,<br>Start, Reload, Count,<br>Capture, or Kill depending<br>on which mode of operation<br>is selected. |
| SID.TCPWM.5  | TPWMEXT   | Output Trigger Pulse widths                         | 2/Fc | _   | _   | ns    | Minimum possible width of<br>Overflow, Underflow, and<br>CC (Counter equals<br>Compare value) trigger<br>outputs                 |
| SID.TCPWM.5A | TCRES     | Resolution of Counter                               | 1/Fc | _   | -   | ns    | Minimum time between<br>successive counts                                                                                        |
| SID.TCPWM.5B | PWMRES    | PWM Resolution                                      | 1/Fc | _   | -   | ns    | Minimum pulse width of<br>PWM Output                                                                                             |
| SID.TCPWM.5C | QRES      | Quadrature inputs resolution                        | 1/Fc | -   | -   | ns    | Minimum pulse width<br>between Quadrature phase<br>inputs.                                                                       |



## SPI Specifications

## Table 22. Fixed SPI DC Specifications (Guaranteed by Characterization)

| Spec ID | Parameter         | Description                              |   | Тур | Max | Units |
|---------|-------------------|------------------------------------------|---|-----|-----|-------|
| SID163  | I <sub>SPI1</sub> | Block current consumption at 1 Mbits/sec | - | -   | 360 | μA    |
| SID164  | I <sub>SPI2</sub> | Block current consumption at 4 Mbits/sec | - | -   | 560 | μA    |
| SID165  | I <sub>SPI3</sub> | Block current consumption at 8 Mbits/sec | - | _   | 600 | μA    |

# Table 23. Fixed SPI AC Specifications (Guaranteed by Characterization)

| Spec ID | Parameter        | Description                                       | Min | Тур | Max | Units |
|---------|------------------|---------------------------------------------------|-----|-----|-----|-------|
| SID166  | F <sub>SPI</sub> | SPI operating frequency (master; 6X oversampling) | _   | _   | 4   | MHz   |

### Table 24. Fixed SPI Master mode AC Specifications (Guaranteed by Characterization)

| Spec ID | Parameter        | Description                                                                     | Min | Тур | Max | Units |
|---------|------------------|---------------------------------------------------------------------------------|-----|-----|-----|-------|
| SID167  | T <sub>DMO</sub> | MOSI valid after Sclock driving edge                                            | -   | -   | 15  | ns    |
| SID168  | T <sub>DSI</sub> | MISO valid before Sclock capturing edge. Full<br>clock, late MISO Sampling used | 20  | -   | -   | ns    |
| SID169  | Т <sub>НМО</sub> | Previous MOSI data hold time with respect to<br>capturing edge at Slave         | 0   | _   | -   | ns    |

### Table 25. Fixed SPI Slave mode AC Specifications (Guaranteed by Characterization)

| Spec ID | Parameter            | Description                                                | Min | Тур | Max                   | Units |
|---------|----------------------|------------------------------------------------------------|-----|-----|-----------------------|-------|
| SID170  | T <sub>DMI</sub>     | MOSI valid before Sclock capturing edge                    | 40  | -   | -                     | ns    |
| SID171  | T <sub>DSO</sub>     | MISO valid after Sclock driving edge                       | -   | -   | 42 + (3 ×<br>Tscbclk) | ns    |
| SID171A | T <sub>DSO_ext</sub> | MISO valid after Sclock driving edge in Ext.<br>Clock mode | _   | -   | 48                    | ns    |
| SID172  | T <sub>HSO</sub>     | Previous MISO data hold time                               | 0   | -   | -                     | ns    |
| SID172A | T <sub>SSELSCK</sub> | SSEL Valid to first SCK Valid edge                         | 100 | _   | _                     | ns    |



## Internal Main Oscillator

## Table 33. IMO DC Specifications (Guaranteed by Design)

| Spec ID | Parameter         | Description                     | Min | Тур | Max | Units | Details/Conditions |
|---------|-------------------|---------------------------------|-----|-----|-----|-------|--------------------|
| SID219  | I <sub>IMO2</sub> | IMO operating current at 24 MHz | -   | -   | 325 | μA    |                    |
| SID220  | I <sub>IMO3</sub> | IMO operating current at 12 MHz | _   | -   | 225 | μA    |                    |
| SID221  | I <sub>IMO4</sub> | IMO operating current at 6 MHz  | -   | -   | 180 | μA    |                    |
| SID222  | I <sub>IMO5</sub> | IMO operating current at 3 MHz  | -   | -   | 150 | μA    |                    |

#### Table 34. IMO AC Specifications

| Spec ID | Parameter               | Description                          | Min | Тур | Max | Units | Details/Conditions                                                     |
|---------|-------------------------|--------------------------------------|-----|-----|-----|-------|------------------------------------------------------------------------|
| SID223  | F <sub>IMOTOL1</sub>    | Frequency variation from 3 to 24 MHz | -   | -   | ±2  | %     | <u>+</u> 3% if T <sub>A</sub> > 85 °C and<br>IMO frequency <<br>24 MHz |
| SID226  | T <sub>STARTIMO</sub>   | IMO startup time                     | -   | -   | 12  | μs    |                                                                        |
| SID227  | T <sub>JITRMSIMO1</sub> | RMS Jitter at 3 MHz                  | -   | 156 | -   | ps    |                                                                        |
| SID228  | T <sub>JITRMSIMO2</sub> | RMS Jitter at 24 MHz                 | -   | 145 | -   | ps    |                                                                        |

Internal Low-Speed Oscillator

## Table 35. ILO DC Specifications (Guaranteed by Design)

| Spec ID | Parameter         | Description                     | Min | Тур | Max  | Units | Details/Conditions                |
|---------|-------------------|---------------------------------|-----|-----|------|-------|-----------------------------------|
| SID231  | I <sub>ILO1</sub> | ILO operating current at 32 kHz | _   | 0.3 | 1.05 | μA    | Guaranteed by<br>Characterization |
| SID233  | IILOLEAK          | ILO leakage current             | _   | 2   | 15   | nA    | Guaranteed by<br>Design           |

## Table 36. ILO AC Specifications

| Spec ID | Parameter              | Description              | Min | Тур | Max | Units | Details/Conditions                                        |
|---------|------------------------|--------------------------|-----|-----|-----|-------|-----------------------------------------------------------|
| SID234  | T <sub>STARTILO1</sub> | ILO startup time         | -   | -   | 2   | ms    | Guaranteed by charac-<br>terization                       |
| SID236  | T <sub>ILODUTY</sub>   | ILO duty cycle           | 40  | 50  | 60  | %     | Guaranteed by charac-<br>terization                       |
| SID237  | F <sub>ILOTRIM1</sub>  | 32 kHz trimmed frequency | 15  | 32  | 50  | kHz   | Max. ILO frequency is<br>70 kHz if T <sub>A</sub> > 85 °C |

#### **Table 37. External Clock Specifications**

| Spec ID | Parameter  | Description                        | Min | Тур | Max | Units | <b>Details/Conditions</b>      |
|---------|------------|------------------------------------|-----|-----|-----|-------|--------------------------------|
| SID305  | ExtClkFreq | External Clock input Frequency     | 0   | -   | 24  | MHz   | Guaranteed by characterization |
| SID306  | ExtClkDuty | Duty cycle; Measured at $V_{DD/2}$ | 45  | -   | 55  | %     | Guaranteed by characterization |



# Table 38. Block Specs

| Spec ID      | Parameter              | Description                                          | Min | Тур | Max | Units   | Details/Conditions                                                |
|--------------|------------------------|------------------------------------------------------|-----|-----|-----|---------|-------------------------------------------------------------------|
| SID257       | T <sub>WS24</sub> *    | Number of wait states at 24 MHz                      | 0   | -   | -   |         | CPU execution from<br>Flash. Guaranteed by<br>characterization    |
| SID260       | V <sub>REFSAR</sub>    | Trimmed internal reference to SAR                    | -1  | -   | +1  | %       | Percentage of Vbg<br>(1.024 V). Guaranteed<br>by characterization |
| SID262       | T <sub>CLKSWITCH</sub> | Clock switching from clk1 to clk2 in<br>clk1 periods | 3   | -   | 4   | Periods | Guaranteed by design                                              |
| * Tws24 is g | uaranteed by design.   | ·                                                    |     | •   |     |         |                                                                   |



# The field values are listed in Table 40.

## Table 40. Field Values

| Field | Description                | Values  | Meaning                                |
|-------|----------------------------|---------|----------------------------------------|
| CY8C  | Cypress Prefix             |         |                                        |
| 4     | Architecture               | 4       | PSoC 4                                 |
| A     | Family within architecture | 1       | 4100 Family                            |
|       |                            | 2       | 4200 Family                            |
| В     | CPU Speed                  | 2       | 24 MHz                                 |
|       |                            | 4       | 48 MHz                                 |
| С     | Flash Capacity             | 4       | 16 KB                                  |
|       |                            | 5       | 32 KB                                  |
| DE    | Package Code               | PV      | SSOP                                   |
| F     | Temperature Range          | A/S     | Automotive                             |
| GHI   | Attributes Code            | 000-999 | Code of feature set in specific family |
| Z     | Fab location change        |         |                                        |

# Packaging

## Table 41. Package Characteristics

| Parameter       | Description                         | Conditions          | Min | Тур   | Max | Units |
|-----------------|-------------------------------------|---------------------|-----|-------|-----|-------|
| T <sub>A</sub>  | Operating ambient temperature       | For A grade devices | -40 | 25.00 | 85  | °C    |
| T <sub>A</sub>  | Operating ambient temperature       | For S grade devices | -40 | 25.00 | 105 | °C    |
| TJ              | Operating junction temperature      | For A grade devices | -40 | -     | 100 | °C    |
| TJ              | Operating junction temperature      | For S grade devices | -40 | -     | 120 | °C    |
| T <sub>JA</sub> | Package $\theta_{JA}$ (28-pin SSOP) |                     | -   | 66.58 | -   | °C/W  |
| T <sub>JC</sub> | Package $\theta_{JC}$ (28-pin SSOP) |                     | -   | 46.28 | -   | °C/W  |

### Table 42. Solder Reflow Peak Temperature

| Package     | Maximum Peak Temperature | Maximum Time at Peak Temperature |  |  |
|-------------|--------------------------|----------------------------------|--|--|
| 28-pin SSOP | 260 °C                   | 30 seconds                       |  |  |

# Table 43. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

| Package     | MSL   |
|-------------|-------|
| 28-pin SSOP | MSL 3 |

PSoC4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical\_documents







# **Document Conventions**

# Units of Measure

# Table 45. Units of Measure

| Symbol | Unit of Measure        |
|--------|------------------------|
| °C     | degrees Celsius        |
| dB     | decibel                |
| fF     | femto farad            |
| Hz     | hertz                  |
| KB     | 1024 bytes             |
| kbps   | kilobits per second    |
| Khr    | kilohour               |
| kHz    | kilohertz              |
| kΩ     | kilo ohm               |
| Ksps   | kilosamples per second |
| LSB    | least significant bit  |
| Mbps   | megabits per second    |
| MHz    | megahertz              |
| MΩ     | mega-ohm               |
| Msps   | megasamples per second |
| μA     | microampere            |
| μF     | microfarad             |
| μH     | microhenry             |
| μs     | microsecond            |
| μV     | microvolt              |
| μW     | microwatt              |
| mA     | milliampere            |
| ms     | millisecond            |
| mV     | millivolt              |
| nA     | nanoampere             |
| ns     | nanosecond             |
| nV     | nanovolt               |
| Ω      | ohm                    |
| pF     | picofarad              |
| ppm    | parts per million      |
| ps     | picosecond             |
| S      | second                 |
| sps    | samples per second     |
| sqrtHz | square root of hertz   |
| V      | volt                   |



# **Document History Page**

| Document Document | Document Title: Automotive PSoC <sup>®</sup> 4: PSoC 4100 Family Datasheet Programmable System-on-Chip (PSoC <sup>®</sup> )<br>Document Number: 001-93576 |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Revision          | ECN                                                                                                                                                       | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| *В                | 5071385                                                                                                                                                   | THOR /<br>KIKU     | 01/21/2016         | Changed status from Preliminary to Final.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| *C                | 5117912                                                                                                                                                   | MVRE               | 01/31/2016         | Updated Features:<br>Updated Programmable Analog:<br>Replaced "Two opamps" with "One opamp".<br>Updated Block Diagram:<br>Replaced "2x" with "1x".<br>Updated Functional Overview:<br>Updated Analog Blocks:<br>Updated Opamp (CTBm Block):<br>Replaced "Two opamps" with "Opamp" in heading.<br>Updated description.<br>Updated description.<br>Updated Power:<br>Updated Unregulated External Supply:<br>Updated Table 1:<br>Updated details in "Bypass Capacitors" column corresponding to "VDDD–VSS"<br>and "VCCD–VSS" power supplies. |  |  |
| *D                | 5331416                                                                                                                                                   | MVRE               | 07/04/2016         | Updated Functional Overview:<br>Updated CPU and Memory Subsystem:<br>Updated Flash:<br>Updated description.<br>Updated Fixed Function Digital:<br>Updated Serial Communication Blocks (SCB):<br>Updated description.<br>Updated Pinouts:<br>Updated description.<br>Updated Figure 3.<br>Updated Figure 3.<br>Updated Power:<br>Added Figure 4.<br>Updated Unregulated External Supply:<br>Updated Table 1:<br>Updated details in "Bypass Capacitors" column corresponding to "VDDD–VSS"<br>and "VREF–VSS (optional)" Power Supply.        |  |  |



# Sales, Solutions, and Legal Information

## Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

### Products

| cypress.com/arm        |
|------------------------|
| cypress.com/automotive |
| cypress.com/clocks     |
| cypress.com/interface  |
| cypress.com/iot        |
| cypress.com/memory     |
| cypress.com/mcu        |
| cypress.com/psoc       |
| cypress.com/pmic       |
| cypress.com/touch      |
| cypress.com/usb        |
| cypress.com/wireless   |
|                        |

# **PSoC<sup>®</sup> Solutions**

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

#### **Cypress Developer Community**

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

#### **Technical Support**

cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-93576 Rev. \*E

<sup>©</sup> Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.