
Renesas Electronics America Inc - UPD60510F1-HN4-M1-A Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 100MHz

Connectivity CANbus, CSI, Ethernet, I²C, UART/USART

Peripherals DMA, WDT

Number of I/O 96

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 512K x 8

Voltage - Supply (Vcc/Vdd) 0.9V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 324-FBGA

Supplier Device Package 324-FBGA (19x19)

Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/upd60510f1-hn4-m1-a

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/upd60510f1-hn4-m1-a-4439744
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

How to Use This Manual

1. Purpose and Target Readers

This manual is intended for users who wish to understand the functions of industrial Ethernet network LSI

“R-IN32M3-EC/CL” and design application systems using it.

Target users are expected to understand the fundamentals of electrical circuits, logic circuits, and

microcomputers.

When designing an application system that includes this MCU, take all points to note into account.

Points to note are given in their contexts and at the final part of each section, and in the section giving usage notes.

The list of revisions is a summary of major points of revision or addition for earlier versions. It does not cover all revised

items. For details on the revised points, see the actual locations in the manual.

The mark “<R>” in the text indicates the major revisions to this version. You can easily find these revisions by copying

“<R>” and entering it in the search-string box for the PDF file.

Li terature Literature may be preliminary versions. Note, however, that the following descriptions do not

indicate "Preliminary". Some documents on cores were created when they were planned or still

under development. So, they may be directed to specific customers.

Documents related to the R-IN32M3 Series

Document Name Document Number

R-IN32M3 Series Datasheet R18DS0008EJ0200

R-IN32M3-EC User’s Manual R18UZ0003EJ0101

R-IN32M3-CL User’s Manual R18UZ0005EJ0101

R-IN32M3 Series User’s Manual: Peripheral Modules R18UZ0007EJ0301

R-IN32M3 Series Programming Manual: Driver This manual

R-IN32M3 Series Programming Manual: OS R18UZ0011EJ0300

R-IN32M3 Series User's Manual: TCP/IP Stack R18UZ0019EJ0200

 Contents-5

List of Tables

Table 1.1 List of Software Development Tools (Tool Chain)<R> ... 2

Table 1.2 List of Software Development Tools (Development Environment) ... 2

Table 2.1 Configuration of Directories for Sample Software ... 3

Table 2.2 Configuration of Files in Include File Directories .. 4

Table 2.3 Configuration of Files in Library Directories ... 5

Table 2.4 Configuration of Source Directories ... 6

Table 2.5 Configuration of Files in Driver Directories ... 6

Table 2.6 Configuration of Files in Middleware Directories .. 7

Table 2.7 Configuration of Files in Directories for the Sample Applications <R> ... 8

Table 2.8 Configuration of Files in Startup Directories<R> ... 9

Table 4.1 Data Type .. 18

Table 4.2 Constant (General) .. 19

Table 4.3 Constants (System) ... 19

Table 4.4 Constant (Error Code) ... 19

Table 4.5 Macro Definitions for Conditional Compilation<R> .. 20

Table 5.1 Definitions of APB Peripheral Registers .. 21

Table 5.2 Definitions of AHB Peripheral Registers .. 22

Table 6.1 Timer Driver Functions<R> .. 23

Table 6.2 UART Driver Functions .. 23

Table 6.3 IIC Driver Functions ... 23

Table 6.4 CSI Driver Functions .. 24

Table 6.5 DMAC Driver Function .. 24

Table 6.6 Serial Flash ROM Driver Functions.. 24

Table 6.7 Watchdog Timer Driver Functions ... 24

Table 7.1 EEPROM Functions .. 56

Table 7.2 Parallel Flash ROM Driver Functions ... 56

Table 7.3 Serial Flash ROM Driver Functions.. 56

Table 9.1 Replacing ARM Library Functions ... 77

Table 9.2 Replacing GCC Library Functions .. 79

Table 9.3 Replacing IAR Library Functions ... 81

R-IN32M3 Series Programming Manual: Driver 2. Configuration of Files

R18UZ0009EJ0500 Page 7 of 81

Feb 28, 2017

2.4.2 ./ Device /Renesas/RIN32M3/Source/Middleware: Middleware

The configuration of source files for the middleware is listed below.

Table 2.6 Configuration of Files in Middleware Directories

Directory File Contents

eeprom/ eeprom.c EEPROM middleware sample source

eeprom.h EEPROM middleware header file

flash/ flash.c Parallel flash ROM middleware sample source

flash.h Parallel flash ROM middleware header file

sflash/ sflash.c Serial flash ROM middleware sample source

sflash.h Serial flash ROM middleware header file

R-IN32M3 Series Programming Manual: Driver 3. Software Development Procedure

R18UZ0009EJ0500 Page 13 of 81

Feb 28, 2017

Watchdog timer

(16 bytes)

Reserved

Reserved

UART1

(128 bytes)

CSI1

(256 bytes)

Reserved

ETHER SWITCH control

register area （64 Kbytes)

Reserved

System register area

(64 Kbytes)

UART0

(128 bytes)

Reserved

IIC1

(64 bytes)

CAN1 area

(128 Kbytes)

CAN0 area

(128 Kbytes)

IIC0

(64 bytes)

Reserved

Timer (TAUJ)

(256 bytes)

CSI0

(256 bytes)

Reserved

APB Peripheral registers

area 512 Kbytes)

AHB Peripheral registers

area (192 Kbytes)

Reserved
400B 0000H
400A FFFFH

4008 0000H
4007 FFFFH

4000 0000H

4000 0000H

4000 0100H

4000 0200H

4000 0500H

4002 0000H

4004 0000H

4000 0300H

4001 0000H

4007 0000H

4007 FFFFH

4000 0400H

4000 0600H

4000 0700H

Figure 3.4 Memory Map (APB Peripheral Registers Area) (common to R-IN32M3-EC/CL)

R-IN32M3 Series Programming Manual: Driver 6. Driver

R18UZ0009EJ0500 Page 24 of 81

Feb 28, 2017

Table 6.4 CSI Driver Functions

Function Name Summary

csi_init Initialization of CSI controller

csi_write Transmit one byte of character data

csi_read Receive one byte of character data

csi_check_tx Check transmission data (for slave)

csi_check_rx Check received data (for slave)

csi_change_mode Tx/Rx mode change (for slave)

Table 6.5 DMAC Driver Function

Function Name Summary

dmac_memcpy Copy memory (DMA transfer)

Table 6.6 Serial Flash ROM Driver Functions

Function Name Summary

sromc_init Initialization of SPI bus controller

sromc_write Write data to SPI bus

sromc_read Read data form SPI bus

Table 6.7 Watchdog Timer Driver Functions

Function Name Summary

wdt_init Initialization of watchdog timer

wdt_start Watchdog timer activation

wdt_clear Counter clearing

wdt_wait_reset Wait for reset

R-IN32M3 Series Programming Manual: Driver 6. Driver

R18UZ0009EJ0500 Page 27 of 81

Feb 28, 2017

6.2.3 Initialization of One-Count Timer (triggered by hardware)

timer_onecount_hwtrg_init

(1) Description

Initialization of the one-count timer (triggered by hardware)

(2) C-Language Format

ER_RET timer_onecount_hwtrg_init(uint8_t ch,uint32_t o_time, uint32_t trg);

(3) Parameter

I/O Parameter Description

I uint8_t ch Channel selection argument

0: channel- 0

1: channel- 1

2: channel- 2

3: channel- 3

I uint32_t o_time Time for counting once (1 us to 42,949,672 ns)

I uint32_t trg Trigger source selection argument (the number of IRQ in trigger sources +4)

(4) Function

This function sets the timer selected by the channel selection argument to one-count timer mode. This timer is triggered

by the interrupt signal which is selected by the trigger source selection argument.

The timer stops counting after the specific time given by the “time for counting once” argument has elapsed.

The timer does not detect a trigger during counting.

A parameter error is returned if the value of the channel selection argument or the time for counting once is not available.

Set the frequency of the clock to drive counting by the timer to 100 MHz for this operation.

Caution: The interrupt will not be detectable if the counter clock period is longer than the interrupt

pulse width.

(5) Return Value

Return Value Meaning

ER_OK Initialization succeeded

ER_PARAM Parameter error

- The selected channel is NOT 0 to 3

- The time for counting once is NOT 1 to 42,949,672 ns

Remark: This API uses “delay counting” described in “TAUJ2 Operations” in “R-IN32M3 Series

User’s Manual: Peripheral Modules”.

R-IN32M3 Series Programming Manual: Driver 6. Driver

R18UZ0009EJ0500 Page 34 of 81

Feb 28, 2017

6.3.4 Confirming Presence of Received Data

uart_check_receivedata

(1) Description

Checking the presence of received data

(2) C-Language Format

ER_RET uart_check_receivedata(uint8_t ch);

(3) Parameter

I/O Parameter Description

I uint8_t ch Channel selection argument

0: channel-0

1: channel-1

(4) Function

This function checks whether RX_FIFO of the selected channel is empty.

ER_PARAM is returned if the selected channel is not 0 or 1.

Selection of the channel is defined in system_RIN32M3.h.

(5) Return Value

Return Value Meaning

1 The buffer holds received data

0 No received data

ER_PARAM Parameter error

- The selected channel is not 0 or 1

R-IN32M3 Series Programming Manual: Driver 6. Driver

R18UZ0009EJ0500 Page 35 of 81

Feb 28, 2017

6.4 IIC Control

6.4.1 Initialization of IIC Controller<R>

iic_init

(1) Description

Initialization of the IIC controller

(2) C-Language Format

ER_RET iic_init(uint8_t ch);

(3) Parameter

I/O Parameter Description

I uint8_t ch Channel selection argument

0: channel-0

1: channel-1

(4) Function

This function makes initial settings for the IIC controller of the selected channel.

ER_PARAM is returned if the selected channel is not 0 or 1.

 IIC clock setting

> Fast mode : 400 kHz

 IIC timing setting

 > Stop and start interval : 80 × PCLK

 > Setup cycles

 Start condition : 80 × PCLK

 Stop condition : 45 × PCLK

 Write data : 2 × PCLK

 > Hold cycles

 Start condition : 45 × PCLK

 Data : 80 × PCLK

 Write data : 0 × PCLK

 Read data : 2 × PCLK

Remark: The IIC clock setting “400 kHz” is based on the assumption that both the rise and fall times

of SDAn and SCLn are 20 ns. Change the register settings appropriately according to your

usage environment. For details, refer to the R-IN32M4 Series User’s Manual: Peripheral

Modules.

R-IN32M3 Series Programming Manual: Driver 6. Driver

R18UZ0009EJ0500 Page 39 of 81

Feb 28, 2017

6.4.4 Transmission of One Byte of Character Data

iic_write

(1) Description

Transmission of one byte of character data

(2) C-Language Format

ER_RET iic_write(uint8_t ch, uint8_t data);

(3) Parameter

I/O Parameter Description

I uint8_t ch Channel selection argument

0: channel-0

1: channel-1

I uint8_t data One byte of character data for transmission

(4) Function

This function transmits one byte of character data to the selected channel.

ER_PARAM is returned if the selected channel is not 0 or 1.

ER_NG (transmission failed) is returned in cases where ACK is not returned from the device each time 8-bit data is

transmitted.

(5) Return Value

Return Value Meaning

ER_OK Transmission succeeded

ER_NG Transmission failed

- ACK is NOT returned from the device

ER_PARAM Parameter error

- The selected channel is not 0 or 1

R-IN32M3 Series Programming Manual: Driver 6. Driver

R18UZ0009EJ0500 Page 47 of 81

Feb 28, 2017

6.5.6 Switching Tx/Rx Mode (for Slave)

csi_change_mode

(1) Description

Switching Tx/Rx mode

(2) C-Language Format

ER_RET csi_change_mode(uint32_t ch, uint32_t mode);

(3) Parameter

I/O Parameter Description

I uint32_t ch Channel selection argument

0: channel-0

1: channel-1

I uint32_t mode Transfer mode selection argument

0: Rx mode

1: Tx mode

(4) Function

This function sets CSI Tx/Rx mode for the selected channel.

ER_PARAM is returned if the channel selection argument or transfer mode selection argument is not 0 or 1.

 If the transfer mode selection argument is Rx mode, the setting is changed as below.

 > Stopping Tx operation

 > Enabling Rx operation

 If the transfer mode selection argument is Tx mode, the setting is changed as below.

 > Tx operation is permit

 > Rx operation is prohibit

(5) Return Value

Return Value Meaning

ER_OK Mode switching succeeded

ER_PARAM Parameter error

- The selected channel is not 0 or 1

- The selected mode is not 0 or 1

R-IN32M3 Series Programming Manual: Driver 6. Driver

R18UZ0009EJ0500 Page 53 of 81

Feb 28, 2017

6.8.2 Starting Watchdog Timer

wdt_start

(1) Description

Starting the watchdog timer

(2) C-Language Format

ER_RET wdt_start(void);

(3) Parameter

None

(4) Function

This function starts the watchdog timer. The watchdog timer cannot be stopped once it is started.

(5) Return Value

Return Value Meaning

ER_OK Timer started

R-IN32M3 Series Programming Manual: Driver 6. Driver

R18UZ0009EJ0500 Page 55 of 81

Feb 28, 2017

6.8.4 Waiting for Reset

wdt_wait_reset

(1) Description

Waiting for a reset

(2) C-Language Format

void wdt_wait_reset(void);

(3) Parameter

None

(4) Function

This is for waiting for the reset signal for the watchdog timer to be output in response to the overflow of the counter.

(5) Return Value

None

R-IN32M3 Series Programming Manual: Driver 7. Middleware

R18UZ0009EJ0500 Page 59 of 81

Feb 28, 2017

7.2.3 Reading EEPROM Data

eep_read

(1) Description

Reading EEPROM data

(2) C-Language Format

ER_RET eep_read(uint32_t eep_addr, uint8_t *data, uint32_t len);

(3) Parameter

I/O Parameter Description

I uint32_t eep_addr Address where reading of data starts

O uint8_t * data Pointer to the received data

I uint32_t len Amount of data to be read

(4) Function

This function activates the IIC controller to receive the amount of data specified by len in the EEPROM from the eep_adr

address. The read data in the EEPROM is written from the *data specified address to the len specified size of area.

ER_PARAM is returned if the specified end address is over the device capacity (device-specific).

If the value returned from the IIC controller is not ER_OK (transmission succeeded), the operation is as follows.

 Transmission of device selection information : A stop condition is issued and the write failure status is

returned.

 Transmission of byte address (high) : A stop condition is issued and the write failure status is

returned.

 Transmission of byte address (low) : A stop condition is issued and the write failure status is

returned.

 Transmission of device selection information

to be read

: The communication failure status is returned

 Transmission of the specified amount of data

to be written

: A stop condition is issued and the write failure status is

returned.

(5) Return Value

Return Value Meaning

ER_OK Success in reading

ER_NG Failure in reading

- The result of IIC driver processing is an error.

ER_PARAM Parameter error

- The specified end address is over the device capacity.

R-IN32M3 Series Programming Manual: Driver 7. Middleware

R18UZ0009EJ0500 Page 61 of 81

Feb 28, 2017

7.3.2 Writing Data

flash_program

(1) Description

Writing data

(2) C-Language Format

ER_RET flash_program(uint16_t* buf, uint32_t addr, uint32_t size);

(3) Parameter

I/O Parameter Description

I uint16_t* buf Address where the write data storage area starts

I uint32_t addr Write address

I uint32_t size Amount of data to be written (in bytes)

(4) Function

The function writes the amount of data specified by the size argument from the write address specified by the addr

argument to the parallel flash ROM area.

The written data of the address area specified by the *buf argument is used.

(5) Return Value

Return Value Meaning

ER_OK Success

ER_PARAM Parameter error

- The addr argument is NOT a 16-bit address threshold value

- The size argument is NOT a 16 bit address threshold value

- The additional value of the addr argument and the size argument is over the

maximum size of parallel flash ROM

R-IN32M3 Series Programming Manual: Driver 7. Middleware

R18UZ0009EJ0500 Page 62 of 81

Feb 28, 2017

7.3.3 Reading Data

flash_read_data

(1) Description

Reading data

(2) C-Language Format

ER_RET flash_read_data(uint16_t* buf, uint32_t addr, uint32_t size);

(3) Parameter

I/O Parameter Description

O uint16_t* buf Address where writing of read data starts

I uint32_t addr Read address

I uint32_t size Amount of data to be read (in bytes)

(4) Function

The function reads the amount of data specified by the size argument in the parallel flash ROM area from the read

address specified by the addr argument.

The data read is written to the address area specified by the *buf argument.

(5) Return Value

Return Value Meaning

ER_OK Success

ER_PARAM Parameter error

- The addr argument is NOT a 16-bit address threshold value

- The size argument is NOT a 16 bit address threshold value

- The additional value of the addr argument and the size argument is over the

maximum size of parallel flash ROM

R-IN32M3 Series Programming Manual: Driver 8. Example of Application

R18UZ0009EJ0500 Page 75 of 81

Feb 28, 2017

List 8.13 EEPROM Sample: Help Command Execution

I2C EEPROM Writer

> h

 r [addr] [size]

 w [addr] [data]

 d [addr]

 h

(← indicate command help)
(← read command argument is start address and read size)
(← write command argument is start address and 8-bit data)
(← download command argument is start address)
(← help command)

List 8.14 EEPROM Sample: Other Command Execution (command error)

I2C EEPROM Writer

> x 0 800

 Command error !!

(← the commands except r,R/w,W/d,D/h,H are error))

R-IN32M3 Series Programming Manual: Driver 9. Development Tool Specific Settings

R18UZ0009EJ0500 Page 77 of 81

Feb 28, 2017

9.1.2 Replacing Library Functions

Library functions are redefined in syscalls.c. <R>

Table 9.1 Replacing ARM Library Functions

Function Name Description

fputc Handles transmission of one byte of data to the UART.

The return value is Tx data.

fgetc Handles reception of one byte of data from the UART and echoes back the result of reception.

The return value is Rx data.

ferror Handles processing for a file error. Processing is not implemented.

The return value is EOF.

_sys_exit Handles processing for exiting the system. The internal function enters an endless loop.

_ttywrch Handles transmission of one byte of data to the UART.

There is no return value.

_clock_init No operation

clock The elapsed time (clock_t type) is returned with the interval counter of the interval timer.

The time precision is 80 ns.

R-IN32M3 Series Programming Manual: Driver 9. Development Tool Specific Settings

R18UZ0009EJ0500 Page 80 of 81

Feb 28, 2017

9.3 IAR

9.3.1 Startup

Reset

Startup routine

cstartup_M.c

Sample software

C library

Vector process

· Jump to reset handler

SystemInit()

· Initialization of H/W

· Disable WDT*
1

main()

· Application execution

__iar_program_start()

 · Call: SystemInit()

 · Call: __iar_data_init3()

 · Change vector address

 · Call: main()

__iar_data_init3()

· Initialization of data area

System_RIN32M3.c

*1: R-IN32M3-CL only

Figure 9.3 Startup Routine with IAR

[Memo]

R-IN32M3 Series
Programming Manual: Driver

