

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RS08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	254 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9rs08kb12csg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D
MC9S08AC16			
MC9S908AC60			
MC9S08AC128			
MC9S08AW60			
MC9S08GB60A			
MC9S08GT16A			
MC9S08JM16			
MC9S08JM60			
MC9S08LL16			
MC9S08QE128			
MC9S08QE32			
MC9S08RG60			
MCF51CN128			
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D
MC9S08QB8			
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D
MC9S08QG8			
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D

Freescale Semiconductor

Data Sheet: Technical Data

Document Number: MC9RS08KB12 Rev. 5, 1/2012

MC9RS08KB12 Series

Covers:MC9RS08KB12 MC9RS08KB8 MC9RS08KB4 MC9RS08KB2

- 8-Bit RS08 Central Processor Unit (CPU)
 - Up to 20 MHz CPU at 1.8 V to 5.5 V across temperature range of -40 °C to 85 °C
 - Subset of HC08 instruction set with added BGND instruction
 - Single Global interrupt vector
- On-Chip Memory
 - Up to 12 KB flash read/program/erase over full operating voltage and temperature,
 - 12 KB/8 KB/4 KB/2 KB flash are optional - Up to 254-byte random-access memory (RAM),
 - 254-byte/126-byte RAM are optional
 - Security circuitry to prevent unauthorized access to flash contents
- · Power-Saving Modes
 - Wait mode CPU shuts down; system clocks continue to run; full voltage regulation
 - Stop mode CPU shuts down; system clocks are stopped; voltage regulator in standby
 - Wakeup from power-saving modes using RTI, KBI, ADC, ACMP, SCI and LVD
- Clock Source Options
 - Oscillator (XOSC) Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 39.0625 kHz or 1 MHz to 16 MHz
 - Internal Clock Source (ICS) Internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation over temperature and voltage; supporting bus frequencies up to 10 MHz
- System Protection
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal low power oscillator
 - Low-voltage detection with reset or interrupt
 - Illegal opcode detection with reset
 - Illegal address detection with reset
 - Flash-block protection

MC9RS08KB12 20-Pin SOIC Case 751D

16-Pin TSSOP Case 948F

24-Pin QFN Case 1982-01

> 16-Pin SOIC N/B Case 751B

8-Pin SOIC Case 751

- Development Support
 - Single-wire background debug interface
 - Breakpoint capability to allow single breakpoint setting during in-circuit debugging
- Peripherals
 - ADC 12-channel, 10-bit resolution; 2.5 μs conversion time; automatic compare function; 1.7 mV/°C temperature sensor; internal bandgap reference channel; operation in stop; hardware trigger
 - ACMP Analog comparator; full rail-to-rail supply operation; option to compare to fixed internal bandgap reference voltage; can operate in stop mode
 - TPM One 2-channel timer/pulse-width modulator module; selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel
 - IIC Inter-integrated circuit bus module capable of operation up to 100 kbps with maximum bus loading; capable of higher baud rates with reduced loading
 - **SCI** One serial communications interface module with optional 13-bit break; LIN extensions
 - MTIM Two 8-bit modulo timers; optional clock sources
 - **RTI** One real-time clock with optional clock sources
- **KBI** Keyboard interrupts; up to 8 ports
- Input/Output
 - 18 GPIOs in 24- and 20-pin packages; 14 GPIOs in 16-pin package; 6 GPIOs in 8-pin package; including one output-only pin and one input-only pin
 - Hysteresis and configurable pullup device on all input pins; configurable slew rate and drive strength on all output pins
- Package Options
 - MC9RS08KB12/MC9RS08KB8/MC9RS08KB4
 - 24-pin QFN, 20-pin SOIC, 16-pin SOIC NB or TSSOP
 - MC9RS08KB2
 - 8-pin SOIC or DFN

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2008-2012. All rights reserved.

Pin Assignments

	Pin Nu	umber			< Low	est Priority	> Highest	
24	20	16	8	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	3	3	3					V _{DD}
2	_		—	NC				
3	4	4	4					V _{SS}
4	5	5	—	PTB7	SCL ¹			EXTAL
5	6	6	—	PTB6	SDA ¹			XTAL
6	7	7	—	PTB5	TPMCH1 ²			
7	8	8	—	PTB4	TPMCH0 ²			
8	9		—	PTC3			ADP11	
9	10		—	PTC2			ADP10	
10	11		—	PTC1			ADP9	
11	12		—	PTC0			ADP8	
12	13	9	—	PTB3	KBIP7		ADP7	
13	14	10	—	PTB2	KBIP6		ADP6	
14	15	11	—	PTB1	KBIP5	TxD ³	ADP5	
15	16	12	—	PTB0	KBIP4	RxD ³	ADP4	
16	17	13	5	PTA3	KBIP3	SCL ¹	TxD ³	ADP3
17	18	14	6	PTA2	KBIP2	SDA ¹	RxD ³	ADP2
18	19	15	7	PTA1	KBIP1	TPMCH1 ²	ADP1	ACMP-
19	20	16	8	PTA0	KBIP0	TPMCH0 ²	ADP0	ACMP+
20	—	_	—	NC				
21	—	—	_	NC				
22	—	—	—	NC				
23	1	1	1	PTA5		TCLK	RESET	V _{PP}
24	2	2	2	PTA4	ACMPO	BKGD	MS	

Table 1. Pin Availability by Package Pin-Count

¹ IIC pins can be remapped to PTB6 and PTB7, default reset location is PTA2 and PTA3. It can be configured only once.

² TPM pins can be remapped to PTB4 and PTB5, default reset location is PTA0 and PTA1.

³ SCI pins can be remapped to PTA2 and PTA3, default reset location is PTB0 and PTB1. It can be configured only once.

unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 85	°C
Maximum junction temperature	T _{JMAX}	150	°C
Thermal resistance 24-pin QFN	θ_{JA}	113	°C/W
Thermal resistance 20-pin SOIC	θ _{JA}	83	°C/W
Thermal resistance 16-pin SOIC NB	θ _{JA}	103	°C/W
Thermal resistance 16-pin TSSOP	θ_{JA}	29	°C/W
Thermal resistance 8-pin SOIC	θ _{JA}	150	°C/W
Thermal resistance 8-pin DFN	θ_{JA}	110	°C/W

The average chip-junction temperature (TJ) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A =$ Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C /W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between PD and TJ (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273°C) + θ_{JA} \times (PD)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

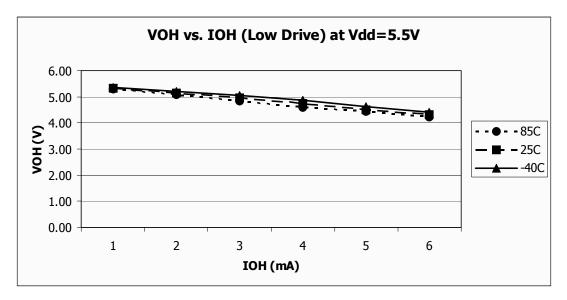


Figure 7. Typical V_{OH} vs. I_{OH} V_{DD} = 5.5 V (Low Drive)

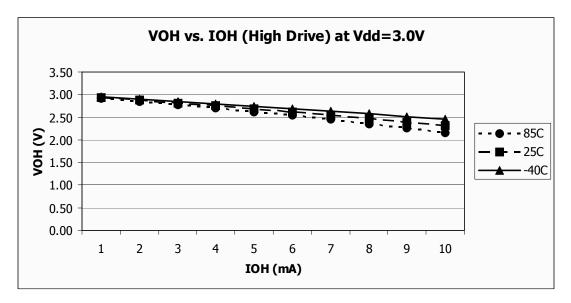


Figure 8. Typical V_{OH} vs. I_{OH} V_{DD} = 3.0 V (High Drive)

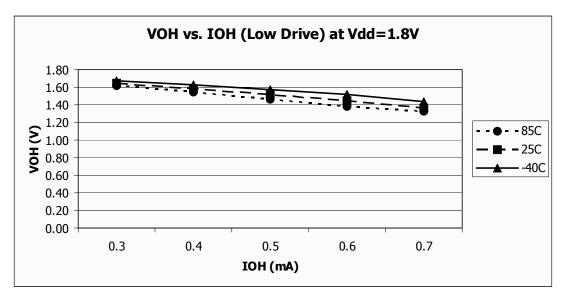


Figure 11. Typical V_{OH} vs. I_{OH} V_{DD} = 1.8 V (Low Drive)

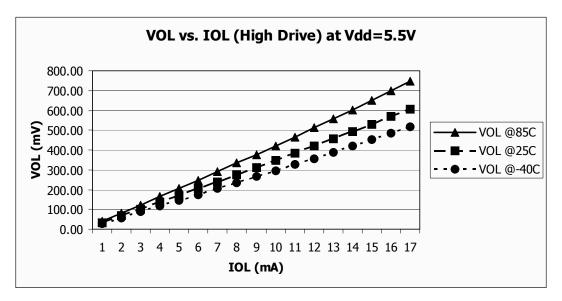


Figure 12. Typical V_{OL} vs. I_{OL} V_{DD} = 5.5 V (High Drive)

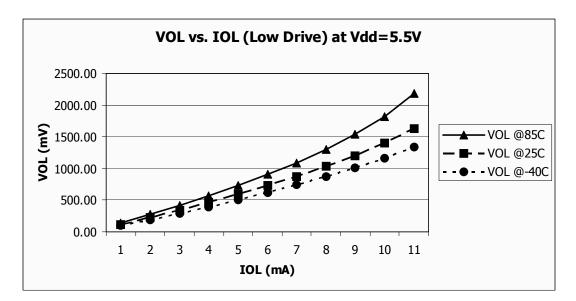


Figure 13. Typical V_{OL} vs. I_{OL} V_{DD} = 5.5 V (Low Drive)

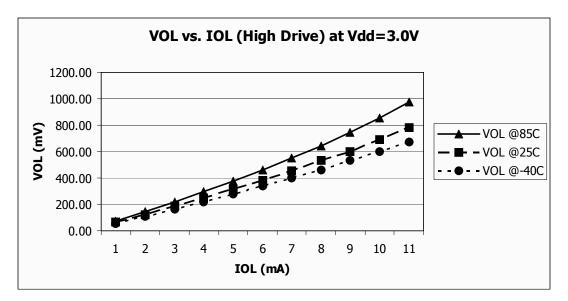


Figure 14. Typical V_{OL} vs. I_{OL} V_{DD} = 3.0 V (High Drive)

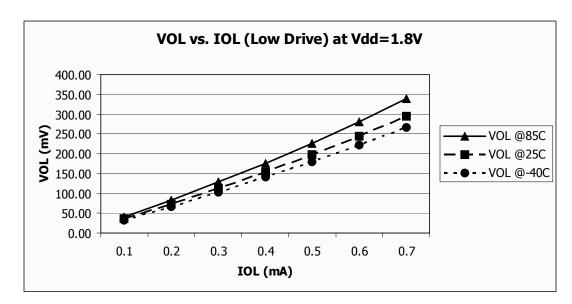


Figure 17. Typical V_{OL} vs. I_{OL} V_{DD} = 1.8 V (Low Drive)

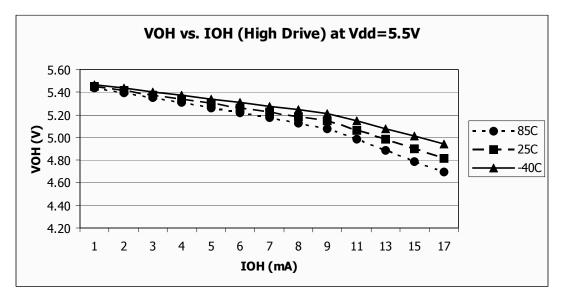


Figure 18. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 5.5 V (High Drive)

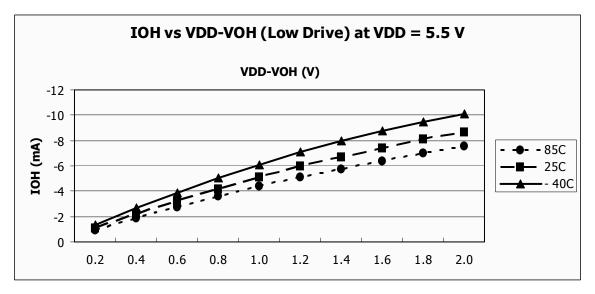


Figure 19. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 5.5 V (Low Drive)

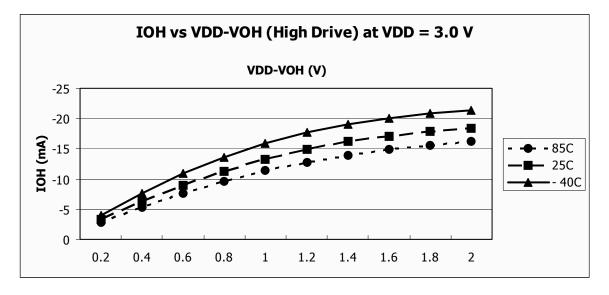


Figure 20. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 3 V (High Drive)

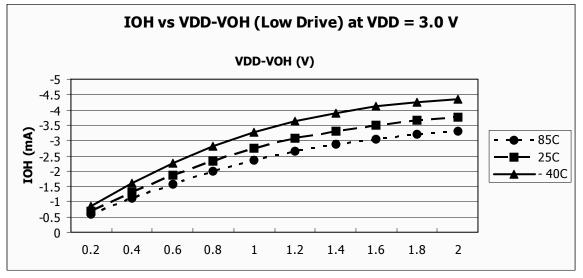


Figure 21. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 3 V (Low Drive)

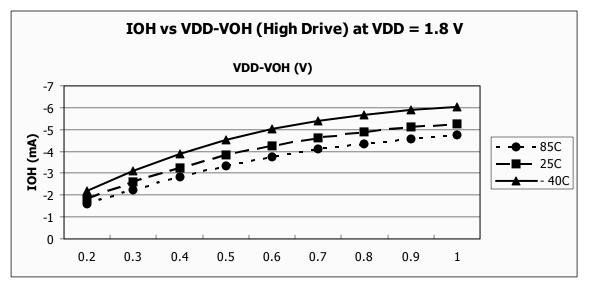


Figure 22. Typical I_{OH} vs. V_{DD}–V_{OH} V_{DD} = 1.8 V (High Drive)

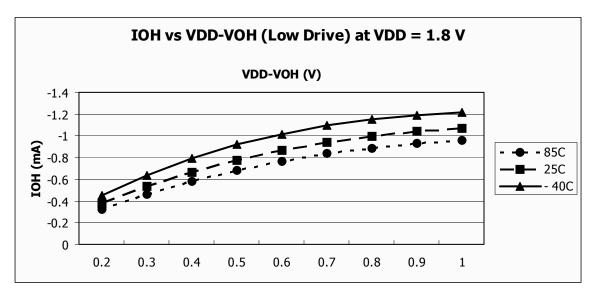


Figure 23. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 1.8 V (Low Drive)

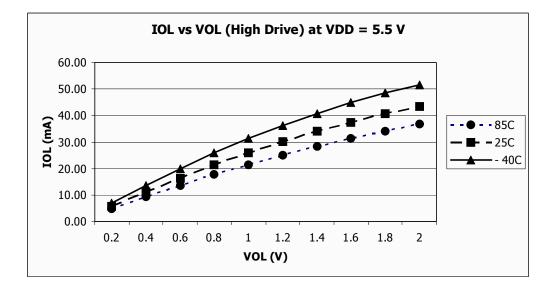


Figure 24. Typical I_{OL} vs. V_{OL} V_{DD} = 5.5 V (High Drive)

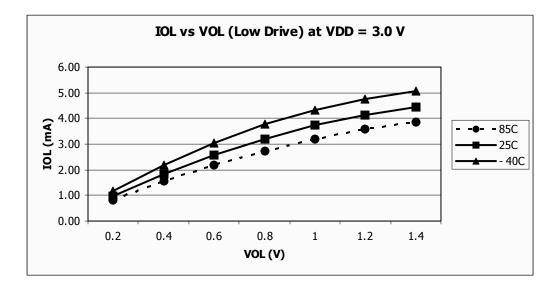


Figure 27. Typical I_{OL} vs. V_{OL} V_{DD} = 3 V (Low Drive)

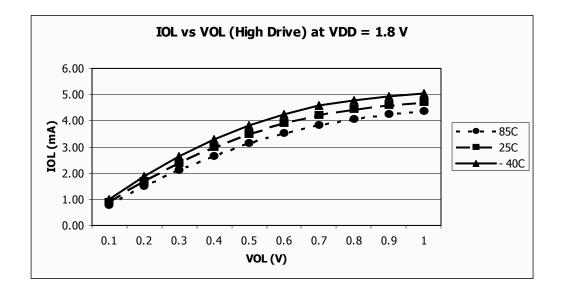


Figure 28. Typical I_{OL} vs. V_{OL} V_{DD} = 1.8 V (High Drive)

MC9RS08KB12 Series MCU Data Sheet, Rev. 5

Ν	С	Parameter	Symbol	V _{DD} (V)	Typical	Max ¹	Temp. (°C)	Unit	
22	С			5	0.10 0.10		-40 25		
22	0			5	0.17		85		
		DTL adder from stop with 1 kHz			0.02		-40		
23	Т	RTI adder from stop with 1 kHz clock source enabled ⁴	—	3	0.06	—	25	μA	
		clock source enabled			0.02		85		
					0.40		-40		
24	Т			1.80	0.45	_	25		
					0.20		85		
					0.70		-40		
25	Т			5	1.08	_	25		
					1.94		85		
			RTI adder from stop with			0.56		-40	
26	Т	32.768KHz external clock source	_	3	0.56	—	25	μA	
		reference enabled			0.62		85		
					0.70		-40		
27	Т			1.80	0.86	—	25		
					0.50		85		
					58.93		-40		
28	С			5	68.27	—	25		
					76.60		85		
		LVI adder from stop			58.89		-40		
29	Т	(LVDE = 1 and LVDSE = 1)	—	3	61.98	—	25	μA	
					63.45		85		
					52.84		-40		
30	Т			1.80	54.52	—	25		
					52.49		85		

Table 8. Supply Current Characteristics	(continued)
rabie el cappiy carrent characterietes	(oominaoa)

¹ Maximum value is measured at the nominal V_{DD} voltage times 10% tolerance. Values given here are preliminary estimates prior to completing characterization.

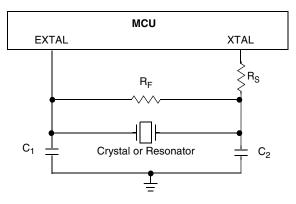
² Not include any DC loads on port pins.

³ Required asynchronous ADC clock and LVD to be enabled.

⁴ Most customers are expected to find that auto-wakeup from stop can be used instead of the higher current wait mode. Wait mode typical is 672.79 μ A at 3 V and 509.28 μ A at 1.8 V with f_{Bus} = 1 MHz.

3.8 External Oscillator (XOSC) Characteristics

Table 9. Oscillator Electrical Specifications (Temperature Range = -40 to 85°C Ambient)


Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1, HGO = 1) FBELP mode High range (RANGE = 1, HGO = 0) FBELP mode	f _{lo} f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 5 16 8	kHz MHz MHz MHz
2	D	Load capacitors	C _{1,} C ₂	1	crystal or r manufactur	er's	or
3	D	Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F	_	10 1		MΩ
4	D	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S	 	0 100 0 0 0 0		kΩ
5	С	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTL-LP t CSTL-HGO t CSTH-LP t CSTH-HGO	 	200 400 5 20		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² FBELP mode	f _{extal}	0.03125 0		5 40	MHz

¹ Typical data was characterized at 5.0 V, 25 °C or is recommended value.

² The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁴ 4 MHz crystal.

3.9 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
9	Ρ	Analog Comparator bandgap reference voltage	V_{BG}	1.1	1.208	1.3	V

Table 12. Analog Comparator Electrical Specifications (continued)

¹ These data are characterized but not production tested.

3.11 Internal Clock Source Characteristics

Table 13. Internal Clock Source Specifications

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Average internal reference frequency — untrimmed	f _{int_ut}	25	31.25	41.66	kHz
2	Ρ	Average internal reference frequency — trimmed	f _{int_t}	31.25	32.768	39.0625	kHz
3	С	DCO output frequency range — untrimmed	f _{dco_ut}	12.8	16	21.33	MHz
4	Ρ	DCO output frequency range — trimmed	f _{dco_t}	16	16.77	20	MHz
5	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature	$\Delta f_{dco_res_t}$	_	_	0.2	%fdco
6	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	_	2	%fdco
7	С	FLL acquisition time ^{2,3}	t _{acquire}	_	—	1	ms
8	С	Stop recovery time (FLL wakeup to previous acquired frequency) IREFSTEN = 0 IREFSTEN = 1	t_wakeup	_	100 86	_	μS

¹ Data in typical column was characterized at 3.0 V and 5.0 V, 25 °C or is typical recommended value.

² This parameter is characterized and not tested on each device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBILP) to FLL enabled (FEI, FBI).

3.12 ADC Characteristics

Table 14. 10-Bit ADC Operating Conditions

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V _{DDAD}	1.8	—	5.5	V	
Input voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
Input capacitance		C _{ADIN}		4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	
Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_	_	5 10	kΩ	External to MCU
	8-bit mode (all valid f _{ADCK})			_	10		

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	—	8.0	MHz	
conversion clock Freq.	Low power (ADLPC=1)		0.4	_	4.0		

Typical values assume $V_{DDAD} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

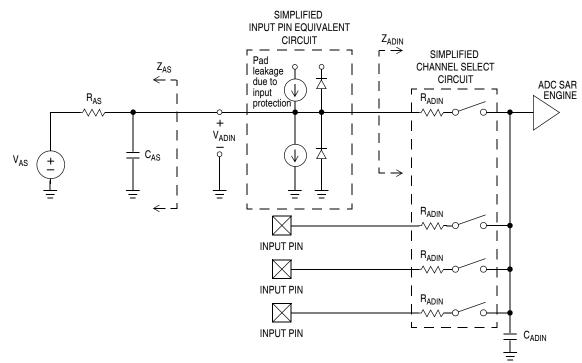


Figure 34. ADC Input Impedance Equivalency Diagram

Table 15. 10-Bit ADC Characteristics	(V _{REFH} = V _D	DAD, V _{REFL} = V _{SSAD}	, 2.7 V < V _{DDAD} < 5.5 V)
--------------------------------------	-------------------------------------	--	--------------------------------------

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDAD}		133		μA	
Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1		I _{DDAD}		218		μA	
Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDAD}		327		μA	

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment		
C	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDAD}		0.582	1	mA			
С	ADC Asynchronous Clock Source	High Speed (ADLPC = 0) Low Power (ADLPC = 1)	f _{ADACK}	2 1.25	3.3	5 3.3	MHz	t _{ADACK} = 1/f _{ADACK}		
D	Conversion Time (Including	Short Sample (ADLSMP = 0)	t _{ADC}		20		ADCK cycles	See reference manual for conversion time variances		
	sample time) Sample Time	Long Sample (ADLSMP = 1) Short Sample (ADLSMP = 0)	t _{ADS}	_	40 3.5		ADCK			
D		Long Sample (ADLSMP = 1)			23.5		cycles			
С	Total Unadjusted Error	10-bit mode 8-bit mode	E _{TUE}		±1.5 ±0.7	±3.5 ±1.5	LSB ²	Includes quantization		
Т	Differential Non-Linearity	10-bit mode	DNL		±0.5	±1.0	LSB ²			
		8-bit mode - ±0.3 ±0.5 Monotonicity and No-Missing-Codes guaranteed								
С	Integral Non-Linearity	10-bit mode	INL		±0.5	±1.0	LSB ²			
	-	8-bit mode	_		±0.3	±0.5	1.052			
Ρ	Zero-Scale Error	10-bit mode 8-bit mode	E _{ZS}		±1.5 ±0.5	±2.5 ±0.7	LSB ²	V _{ADIN} = V _{SSA}		
Ρ	Full-Scale Error	10-bit mode	E _{FS}		±1	±1.5	LSB ²	$V_{ADIN} = V_{DDA}$		
D	Quantization	8-bit mode 10-bit mode	E _Q		±0.5	±0.5 ±0.5	LSB ²			
D	Error Input Leakage	8-bit mode 10-bit mode	E _{IL}	_		±0.5 ±2.5	LSB ²	Pad leakage ² *		
2	Error	8-bit mode			±0.2	±2.5		R _{AS}		

Table 15. 10-Bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$, 2.7 V < V_{DDAD} < 5.5 V)

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² Based on input pad leakage current. Refer to pad electricals.

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1	8-bit mode	I _{DDAD}	_	88	_	μA	
Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1	8-bit mode	I _{DDAD}		152	_	μΑ	
Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1	8-bit mode	I _{DDAD}		214		μΑ	
Т	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1	8-bit mode	I _{DDAD}		390	_	μΑ	
С	ADC	High Speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
	Asynchronous Clock Source	Low Power (ADLPC = 1)		1.25	2	3.3		1/f _{ADACK}
D	Conversion Time (Including sample time)	Short Sample (ADLSMP = 0)	t _{ADC}		20		ADCK	See reference manual for conversion
		Long Sample (ADLSMP = 1)		_	40	_	cycles	
_	Sample Time	Short Sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK	time variances
D		Long Sample (ADLSMP = 1)		_	23.5	_	cycles	
С	Total Unadjusted Error	10-bit mode	E _{TUE}		_		LSB ²	Includes quantization
		8-bit mode			±3.5			
Т	Differential Non-Linearity	10-bit mode	DNL	_	_	_	LSB ²	
		8-bit mode			±1.0			
		Mon	otonicity and	d No-Missi	ng-Codes (guarantee	d	
С	Integral Non-Linearity	10-bit mode	INL			_	LSB ²	
		8-bit mode		-	±1.5			
С	Zero-Scale Error	10-bit mode	E _{ZS}		_		LSB ²	$V_{ADIN} = V_{SSA}$
		8-bit mode		_	±1.5	_		
С	Full-Scale Error	10-bit mode	E _{FS}		_		LSB ²	$V_{ADIN} = V_{DDA}$
		8-bit mode		_	±1.0	_		
D	Quantization Error	10-bit mode	EQ	_	_		LSB ²	
		8-bit mode	1			±0.5		

3.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

NP

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9RS08KB12 Rev. 5 1/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2012. All rights reserved.

