

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	RS08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	254 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9rs08kb8cwj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number		
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D		
MC9S08AC16					
MC9S908AC60					
MC9S08AC128					
MC9S08AW60					
MC9S08GB60A					
MC9S08GT16A					
MC9S08JM16					
MC9S08JM60					
MC9S08LL16					
MC9S08QE128					
MC9S08QE32					
MC9S08RG60					
MCF51CN128					
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D		
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D		
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D		
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D		
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D		
MC9S08QB8					
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D		
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D		
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D		
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D		
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D		
MC9S08QG8					
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D		

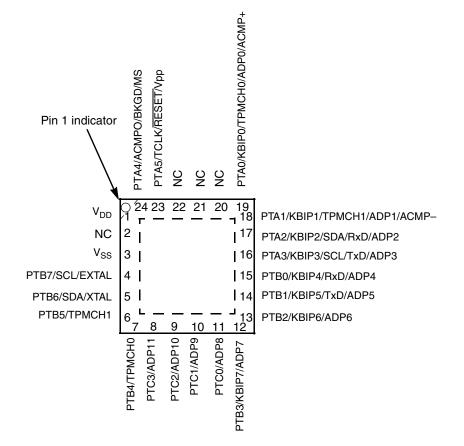
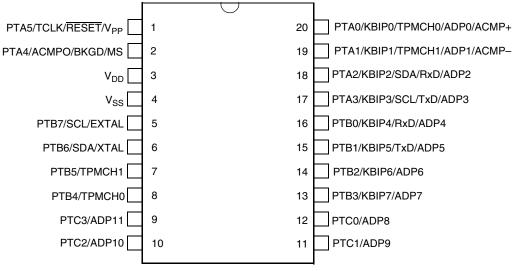



Figure 2. MC9RS08KB12 Series 24-Pin QFN Package

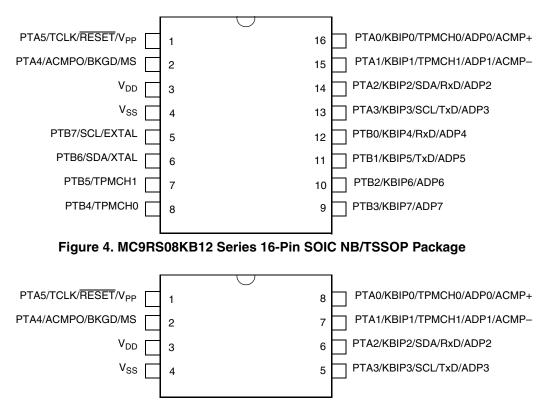


Figure 5. MC9RS08KB12 Series 8-Pin SOIC/DFN Package

3 Electrical Characteristics

3.1 Introduction

This chapter contains electrical and timing specifications for the MC9RS08KB12 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 2. Parameter CI	assifications
-----------------------	---------------

Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.

Table 2. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this chapter.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	±25	mA
Storage temperature range	T _{stg}	-55 to 150	°C

Table 3. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

² All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except the $\overline{\text{RESET}}/V_{PP}$ pin which is internally clamped to V_{SS} only.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of

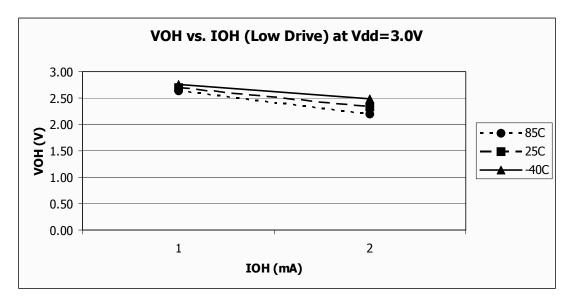
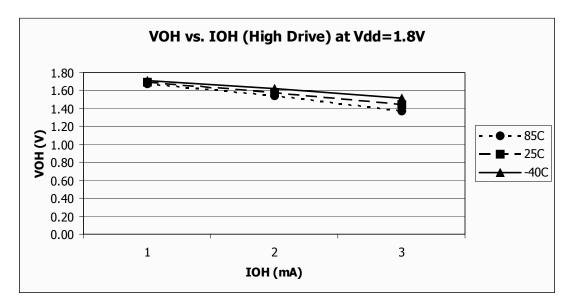
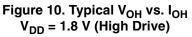




Figure 9. Typical V_{OH} vs. I_{OH} V_{DD} = 3.0 V (Low Drive)

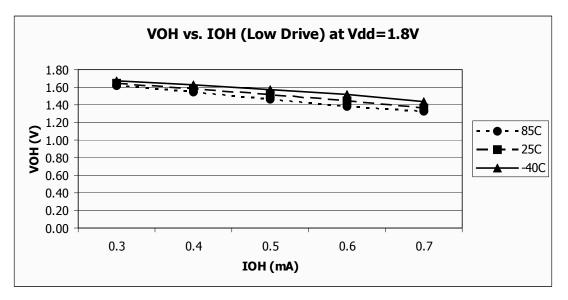


Figure 11. Typical V_{OH} vs. I_{OH} V_{DD} = 1.8 V (Low Drive)

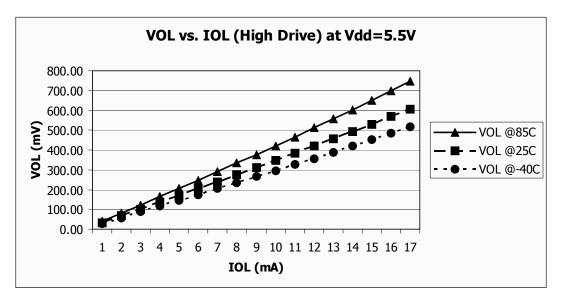


Figure 12. Typical V_{OL} vs. I_{OL} V_{DD} = 5.5 V (High Drive)

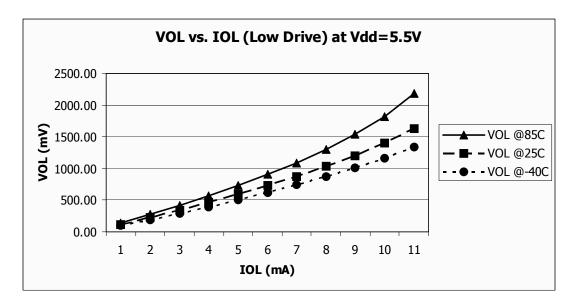


Figure 13. Typical V_{OL} vs. I_{OL} V_{DD} = 5.5 V (Low Drive)

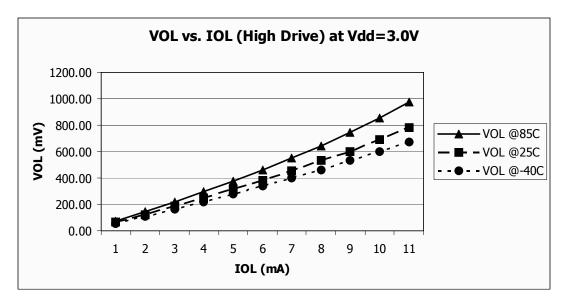


Figure 14. Typical V_{OL} vs. I_{OL} V_{DD} = 3.0 V (High Drive)

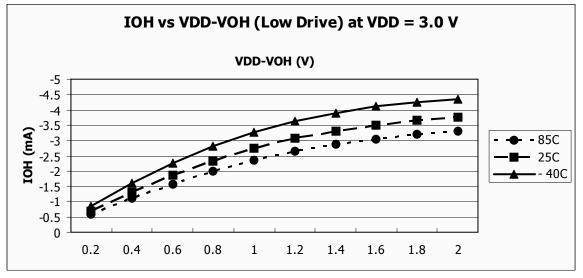


Figure 21. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 3 V (Low Drive)

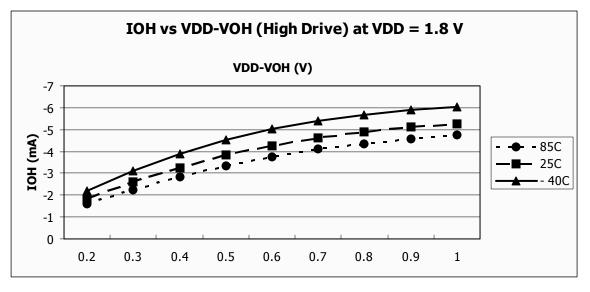


Figure 22. Typical I_{OH} vs. V_{DD}–V_{OH} V_{DD} = 1.8 V (High Drive)

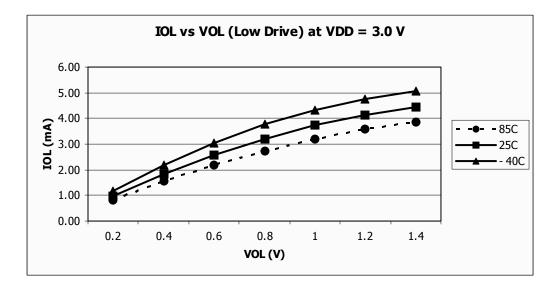


Figure 27. Typical I_{OL} vs. V_{OL} V_{DD} = 3 V (Low Drive)

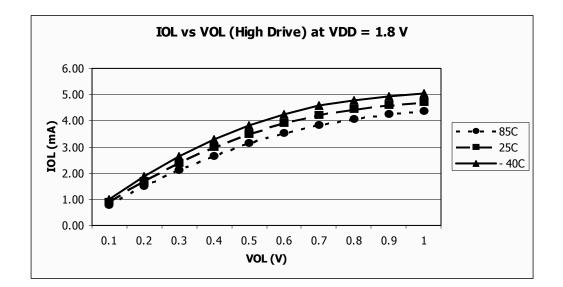


Figure 28. Typical I_{OL} vs. V_{OL} V_{DD} = 1.8 V (High Drive)

MC9RS08KB12 Series MCU Data Sheet, Rev. 5

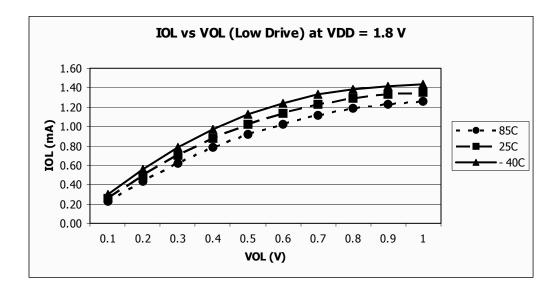


Figure 29. Typical I_{OL} vs. V_{OL} V_{DD} = 1.8 V (Low Drive)

3.7 Supply Current Characteristics

 Table 8. Supply Current Characteristics

Ν	С	Parameter	Symbol	V _{DD} (V)	Typical	Max ¹	Temp. (°C)	Unit			
1	Ρ	Run supply current ² measured at (f _{Bus} = 10 MHz)		5	3.45 3.48 3.53	7	-40 25 85				
2	С		RI _{DD10}	RI _{DD10}	RI _{DD10}	RI _{DD10}	3	3.39 3.42 3.49	_	-40 25 85	mA
3	С			1.80	2.40 2.42 2.44	_	-40 25 85				
4	С			5	0.93 0.96 0.99	_	-40 25 85				
5	Т	Run supply current ³ measured at (f _{Bus} = 1.25 MHz)	RI _{DD1}	3	0.91 0.92 0.92	_	-40 25 85	mA			
6	Т			1.80	0.66 0.67 0.68	_	-40 25 85				

Ν	С	Parameter	Symbol	V _{DD} (V)	Typical	Max ¹	Temp. (°C)	Unit						
22	С			5	0.10 0.10		-40 25							
22	0			5	0.17		85							
		DTL adder from stop with 1 kHz			0.02		-40							
23	Т	RTI adder from stop with 1 kHz clock source enabled ⁴	—	3	0.06	—	25	μA						
		clock source enabled			0.02		85							
					0.40		-40							
24	Т			1.80	0.45	_	25							
					0.20		85							
					0.70		-40							
25	Т			5	1.08	_	25							
					1.94		85							
		RTI adder from stop with					0.56		-40					
26	Т	32.768KHz external clock source	_	3	0.56	—	25	μA						
		reference enabled	reference enabled	reference enabled							0.62		85	
					0.70		-40							
27	Т			1.80	0.86	—	25							
					0.50		85							
					58.93		-40							
28	С			5	68.27	—	25							
					76.60		85							
		LVI adder from stop			58.89		-40							
29	Т	(LVDE = 1 and LVDSE = 1)	—	3	61.98	—	25	μA						
					63.45		85							
					52.84		-40							
30	Т			1.80	54.52	—	25							
					52.49		85							

Table 8. Supply Current Characteristics	(continued)
rabie el cappiy carrent characterietes	(oominaoa)

¹ Maximum value is measured at the nominal V_{DD} voltage times 10% tolerance. Values given here are preliminary estimates prior to completing characterization.

² Not include any DC loads on port pins.

³ Required asynchronous ADC clock and LVD to be enabled.

⁴ Most customers are expected to find that auto-wakeup from stop can be used instead of the higher current wait mode. Wait mode typical is 672.79 μ A at 3 V and 509.28 μ A at 1.8 V with f_{Bus} = 1 MHz.

3.9.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Num	С	Rating	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	D	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

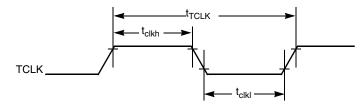


Figure 32. Timer External Clock

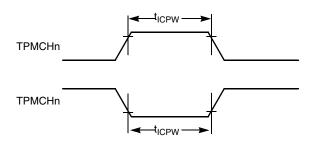


Figure 33. Timer Input Capture Pulse

3.10 Analog Comparator (ACMP) Electrical

Table 12. Analog Comparator Electrical Specifications

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DD}	1.80		5.5	V
2	Р	Supply current (active)	I _{DDAC}	_	20	35	μA
3	D	Analog input voltage ¹	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
4	С	Analog input offset voltage ¹	V _{AIO}	_	20	40	mV
5	С	Analog Comparator hysteresis ¹	V _H	3.0	9.0	15.0	mV
6	С	Analog source impedance ¹	R _{AS}	_	_	10	kΩ
7	Р	Analog input leakage current	I _{ALKG}	—	—	1.0	μA
8	С	Analog Comparator initialization delay	t _{AINIT}	_	—	1.0	μS

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	—	8.0	MHz	
conversion clock Freq.	Low power (ADLPC=1)		0.4	_	4.0	1	

Typical values assume $V_{DDAD} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

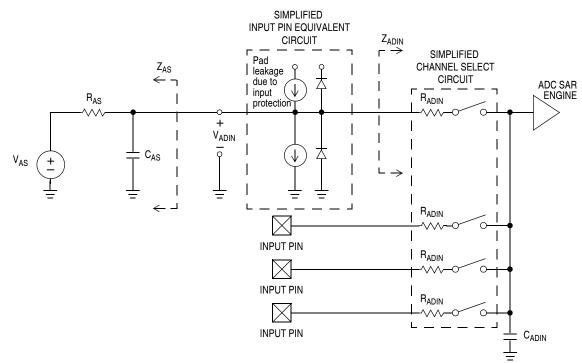


Figure 34. ADC Input Impedance Equivalency Diagram

Table 15. 10-Bit ADC Characteristics	(V _{REFH} = V _D	DAD, V _{REFL} = V _{SSAD}	, 2.7 V < V _{DDAD} < 5.5 V)
--------------------------------------	-------------------------------------	--	--------------------------------------

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDAD}		133		μA	
Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1		I _{DDAD}		218		μA	
Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDAD}		327		μA	

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
C	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDAD}		0.582	1	mA	
С	ADC Asynchronous Clock Source	High Speed (ADLPC = 0) Low Power (ADLPC = 1)	f _{ADACK}	2 1.25	3.3	5 3.3	MHz	t _{ADACK} = 1/f _{ADACK}
D	Conversion Time (Including	Short Sample (ADLSMP = 0)	t _{ADC}		20		ADCK cycles	See reference manual for
	sample time) Sample Time	Long Sample (ADLSMP = 1) Short Sample (ADLSMP = 0)	t _{ADS}	_	40 3.5	_	ADCK	conversion time variances
D		Long Sample (ADLSMP = 1)			23.5		cycles	
С	Total Unadjusted Error	10-bit mode 8-bit mode	E _{TUE}		±1.5 ±0.7	±3.5 ±1.5	LSB ²	Includes quantization
Т	Differential Non-Linearity	10-bit mode 8-bit mode	DNL		±0.5	±1.0	LSB ²	
		8-bit mode - ±0.3 ±0.5 Monotonicity and No-Missing-Codes guaranteed						
С	Integral Non-Linearity	10-bit mode	INL		±0.5	±1.0	LSB ²	
	-	8-bit mode			±0.3	±0.5	1.052	
Ρ	Zero-Scale Error	10-bit mode 8-bit mode	E _{ZS}		±1.5 ±0.5	±2.5 ±0.7	LSB ²	V _{ADIN} = V _{SSA}
Ρ	Full-Scale Error	10-bit mode	E_{FS}		±1	±1.5	LSB ²	$V_{ADIN} = V_{DDA}$
	Quantization	8-bit mode			±0.5	±0.5	LSB ²	
D	Quantization Error	10-bit mode 8-bit mode	EQ			±0.5 ±0.5	LOB-	
D	Input Leakage	10-bit mode	E _{IL}		±0.2	±2.5	LSB ²	Pad leakage ² *
	Error	8-bit mode		_	±0.1	±1		R _{AS}

Table 15. 10-Bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$, 2.7 V < V_{DDAD} < 5.5 V)

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² Based on input pad leakage current. Refer to pad electricals.

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1	8-bit mode	I _{DDAD}	_	88	_	μA	
Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1	8-bit mode	I _{DDAD}		152	_	μΑ	
Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1	8-bit mode	I _{DDAD}		214		μΑ	
Т	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1	8-bit mode	I _{DDAD}		390	_	μΑ	
С	ADC	High Speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
	Asynchronous Clock Source	Low Power (ADLPC = 1)		1.25	2	3.3		1/f _{ADACK}
D	Conversion Time (Including sample time)	Short Sample (ADLSMP = 0)	t _{ADC}		20		ADCK	See reference
		Long Sample (ADLSMP = 1)		_	40	_	cycles	manual for conversion
_	Sample Time	Short Sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK	time variances
D		Long Sample (ADLSMP = 1)			23.5		cycles	
С	Total	10-bit mode	E _{TUE}		_		LSB ²	Includes
	Unadjusted Error	8-bit mode		_	±3.5	_		quantization
Т	Differential	10-bit mode	DNL	_	_	_	LSB ²	
	Non-Linearity	8-bit mode			±1.0			
		Mon	otonicity and	d No-Missi	ng-Codes (guarantee	d	
С	Integral	10-bit mode	INL			_	LSB ²	
	Non-Linearity	8-bit mode			±1.5			
С	Zero-Scale	10-bit mode	E _{ZS}		_		LSB ²	$V_{ADIN} = V_{SSA}$
	Error	8-bit mode		_	±1.5	_		
С	Full-Scale Error	10-bit mode	E _{FS}		—		LSB ²	$V_{ADIN} = V_{DDA}$
		8-bit mode		_	±1.0			
D	Quantization Error	10-bit mode	EQ	_		_	LSB ²	
	Error	8-bit mode		—	—	±0.5		

Table 16. 10-Bit ADC Characteristics (V_{REFH} = V_{DDAD}, V_{REFL} = V_{SSAD}, 1.8 V < V_{DDAD} < 2.7 V)

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
D	Input Leakage	10-bit mode	E _{IL}	—			LSB ²	Pad leakage ² *
	Error	8-bit mode		—	±0.1	±1		R _{AS}

¹ Typical values assume V_{DDAD} = 1.8 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² Based on input pad leakage current. Refer to pad electricals.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory. For detailed information about program/erase operations, see the reference manual.

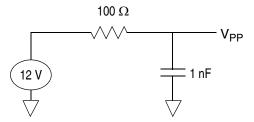
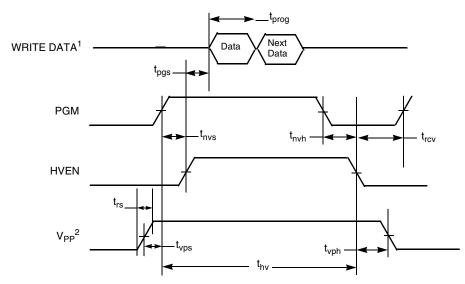
No.	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	D	Supply voltage for program/erase	V _{DD}	2.7	—	5.5	V
2	D	Program/Erase voltage	V _{PP}	11.8	12	12.2	V
3	С	VPP current Program Mass erase	I _{VPP_prog} I _{VPP_erase}	_	_	200 100	μ Α μ Α
4	D	Supply voltage for read operation 0 < f _{Bus} < 10 MHz	V _{Read}	1.8	_	5.5	V
5	Р	Byte program time	t _{prog}	20	—	40	μS
6	Р	Mass erase time	t _{me}	500	—	_	ms
7	С	Cumulative program HV time ²	t _{hv}		—	8	ms
8	С	Total cumulative HV time (total of tme & thv applied to device)	t _{hv_total}	_	_	2	hours
9	D	HVEN to program setup time	t _{pgs}	10	—	_	μS
10	D	PGM/MASS to HVEN setup time	t _{nvs}	5	—	_	μS
11	D	HVEN hold time for PGM	t _{nvh}	5	—	_	μS
12	D	HVEN hold time for MASS	t _{nvh1}	100	—	_	μS
13	D	V _{PP} to PGM/MASS setup time	t _{vps}	20	—	_	ns
14	D	HVEN to V _{PP} hold time	t _{vph}	20	—	_	ns
15	D	V _{PP} rise time ³	t _{vrs}	200	—	—	ns
16	D	Recovery time	t _{rcv}	1	—	—	μS
17	D	Program/erase endurance T∟ to TH = −40 °C to 85 °C	—	1000	—	_	cycles
18	С	Data retention	t _{D_ret}	15	—	—	years

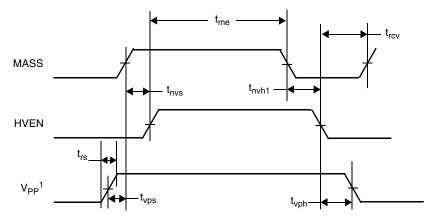
Table 17. Flash Characteristics

¹ Typicals are measured at 25 °C.

² t_{hv} is the cumulative high voltage programming time to the same row before next erase. Same address can not be programmed more than twice before next erase.

³ Fast V_{PP} rise time may potentially trigger the ESD protection structure, which may result in over current flowing into the pad and cause permanent damage to the pad. External filtering for the V_{PP} power source is recommended. An example V_{PP} filter is shown in Figure 35.


Figure 35. Example V_{PP} Filtering

¹ Next Data applies if programming multiple bytes in a single row, refer to *MC9RS08KB12 Series Reference Manual.*

 $^2~V_{DD}$ must be at a valid operating voltage before voltage is applied or removed from the V_{PP} pin.

Figure 36. Flash Program Timing

 $^1\,V_{\text{DD}}$ must be at a valid operating voltage before voltage is applied or removed from the V_{PP} pin.

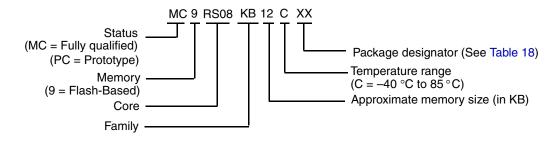
Figure 37. Flash Mass Erase Timing

MC9RS08KB12 Series MCU Data Sheet, Rev. 5

3.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.14.1 Radiated Emissions


Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

Ordering Information

4 Ordering Information

This section contains ordering numbers for MC9RS08KB12 series devices. See below for an example of the device numbering system.

5 Package Information and Mechanical Drawings

Table 18 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9RS08KB12 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 18, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 18) in the "Enter Keyword" search box at the top of the page.

Device Number	Mer	nory	Package				
	Flash	RAM	Туре	Designator	Document No.		
			24 QFN	FK	98ASA00087D		
MC9RS08KB12 MC9RS08KB8		20 SOIC WB	WJ	98ASB42343B			
MC9RS08KB4	4 KB				16 SOIC NB	SG	98ASB42566B
			16 TSSOP	TG	98ASH70247A		
MC9RS08KB2	2 KB		8 SOIC NB	SC	98ASB42564B		
MOST SUCKEZ	2 KB 126 bytes	8 DFN	DC	98ARL10557D			

Table 18. Device Numbering System

NP

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9RS08KB12 Rev. 5 1/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2012. All rights reserved.

