

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

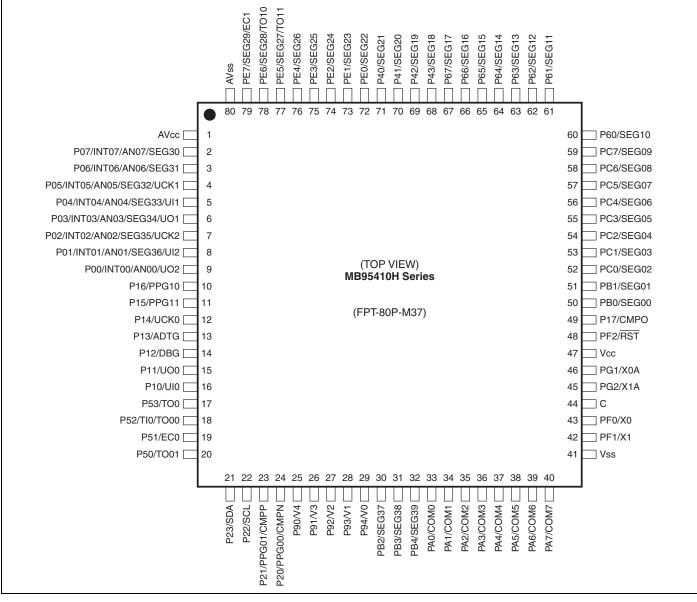
E·XFI

Details	
Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SIO, UART/USART
Peripherals	LCD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.98K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f478hpmc1-g-sne2

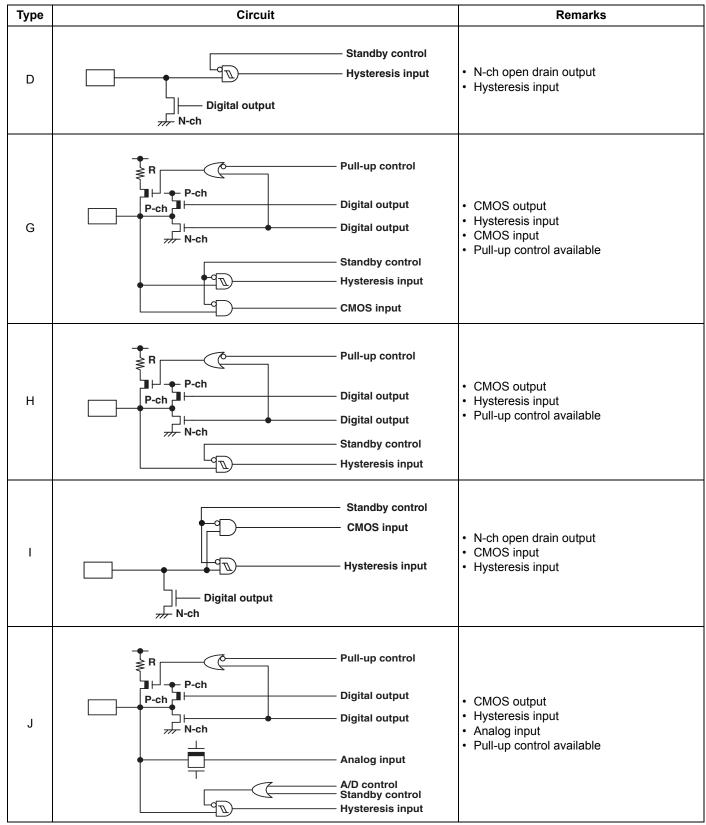
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

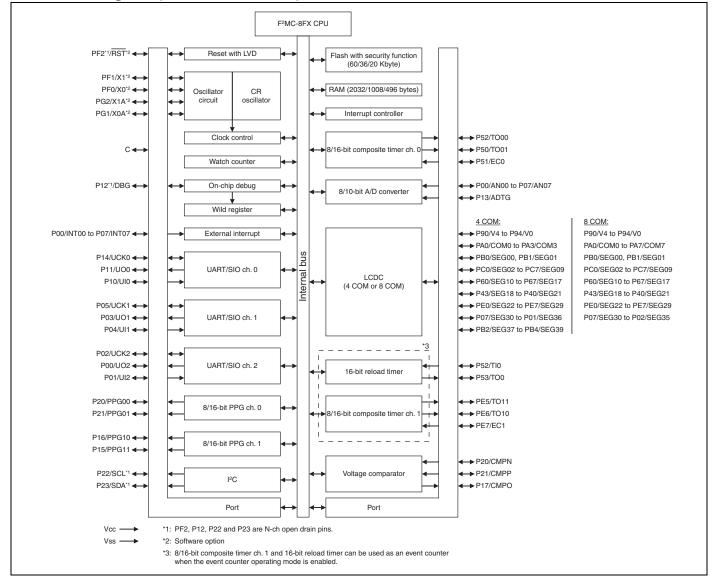
Part number								
	MB95F414H	MB95F416H	MB95F418H	MB95F414K	MB95F416K	MB95F418K		
Package								
	2 channels							
8/16-bit composite timer		er function, PWC f an be selected fror	unction, PWM fund	ction and input cap) ".		
LCD controller (LCDC)	 If the number of pixels that If the number 	or 40 (selectable) or of COM outputs is can be displayed r of COM outputs is can be displayed r supply (bias) pins ode esistor whose resis with the LCD mod	160 (4×40). s 8, the maximum r 288 (8×36). s: 5 (Max) stance value can b	number of SEG out	puts is 36, and the	maximum number maximum number pugh software		
	1 channel							
16-bit reload timer	 Two clock modes and two counter operating modes can be selected Square waveform output Count clock: it can be selected from internal clocks (seven types) and external clocks. Counter operating mode: reload mode or one-shot mode can be selected 							
Event counter		en the event counter			1, event counter further and the 8/16-b	unction can be bit composite timer		
	2 channels							
8/16-bit PPG	 Each channel of Counter operatir 				6-bit PPG × 1 chan	nel"		
Watch counter	 Count clock: For Counter value ca and the counter 	an be set from 0 to	sources (125 ms, 63. (Capable of co			ource is 1 second		
	8 channels							
External interrupt	 Interrupt by edge It can be used to 	e detection (The ris wake up the device	sing edge, falling e ce from the standb	dge, or both edges y mode.	can be selected.)			
On-chip debug		writing. (asynchro						
Watch prescaler	Eight different time (62.5 ms, 125 ms,	250 ms, 500 ms, 1	1 s, 2 s, 4 s, 8 s)					
Flash memory	commands. It has a flag indic 	cating the completi am/erase cycles: 1 me: 20 years	on of the operatior 100000	of Embedded Alg	se/erase-suspend/e	erase-resume		
Standby mode			e, time-base timer					
Package			EPT-8)P-M37				



MB95470H Series


Part number	MB95F474H	MB95F476H	MB95F478H	MB95F474K	MB95F476K	MB95F478K				
Package			Elach mor	hory product						
Clock supervisor	It supervises the n	nain clock oscillatio								
Program ROM capacity	20 Kbyte	20 Kbyte 36 Kbyte 60 Kbyte 20 Kbyte 36 Kbyte 6								
RAM capacity	496 bytes	1008 bytes	2032 bytes	496 bytes	1008 bytes	2032 bytes				
Low-voltage detection reset		No			Yes					
Reset input		Dedicated		Sel	ected through softw	vare				
CPU functions	 Instruction bit let Instruction lengt Data bit length Minimum instruction 	Number of basic instructions : 136 Instruction bit length : 8 bits Instruction length : 1 to 3 bytes								
General-purpose I/O	I/O ports (Max) : 58 • I/O ports (Max) : 59 CMOS I/O : 55 • CMOS I/O : 55 N-ch open drain : 3 • N-ch open drain : 4									
Time-base timer	Interval time: 0.25	6 ms - 8.3 s (exteri	nal clock frequency	/ = 4 MHz)						
Hardware/software watchdog timer		clock at 10 MHz: 1		f the hardware wate	chdog timer.					
Wild register	It can be used to r	eplace three bytes	of data.		-					
	1 channel									
I ² C	 Bus error function Detecting transmoster Start condition response 	 Master/Slave sending and receiving Bus error function and arbitration function Detecting transmitting direction function Start condition repeated generation and detection functions Built-in wake-up function 								
	3 channels									
UART/SIO	 It has a full duple detection functio It uses the NRZ LSB-first data tra 	n. type transfer forma ansfer and MSB-fir	ariable data length at. st data transfer are	(5/6/7/8 bits), a bui e available to use. clock-synchronous	-					
8/10-bit A/D	8 channels									
converter	8-bit or 10-bit reso	lution can be seled	cted.							
	2 channels									
8/16-bit composite timer	 It has built-in tim 	er function, PWC f an be selected fror	function, PWM fun	hannels" or a "16-b ction and input cap seven types) and ex	ture function.	(Continued)				

5. Pin Assignment



11. Block Diagram (MB95410H Series)

Address	Register abbreviation	Register name	R/W	Initial value
005F _H	RDR1	UART/SIO serial input data register ch. 1	R	00000000 _B
0060 _H	IBCR00	I ² C bus control register 0	R/W	00000001 _B
0061 _H	IBCR10	I ² C bus control register 1	R/W	00000000 _B
0062 _H	IBCR0	I ² C bus status register	R	00000000 _B
0063 _H	IDDR0	I ² C data register	R/W	00000000 _B
0064 _H	IAAR0	I ² C address register	R/W	00000000 _B
0065 _H	ICCR0	I ² C clock control register	R/W	00000000 _B
0066 _H	SMC12	UART/SIO serial mode control register 1 ch. 2	R/W	00000000 _B
0067 _H	SMC22	UART/SIO serial mode control register 2 ch. 2	R/W	00100000 _B
0068 _H	SSR2	UART/SIO serial status register ch. 2	R/W	00000001 _B
0069 _H	TDR2	UART/SIO serial output data register ch. 2	R/W	00000000 _B
006A _H	RDR2	UART/SIO serial input data register ch. 2	R	00000000 _B
006B _H	—	(Disabled)	—	_
006C _H	ADC1	8/10-bit A/D converter control register 1	R/W	00000000 _B
006D _H	ADC2	8/10-bit A/D converter control register 2	R/W	00000000 _B
006E _H	ADDH	8/10-bit A/D converter data register upper	R/W	00000000 _B
006F _H	ADDL	8/10-bit A/D converter data register lower	R/W	00000000 _B
0070 _H	WCSR	Watch counter status register	R/W	00000000 _B
0071 _H	FSR2	Flash memory status register 2	R/W	00000000 _B
0072 _H	FSR	Flash memory status register	R/W	000X0000 _B
0073 _H	SWRE0	Flash memory sector write control register 0	R/W	00000000 _B
0074 _H	FSR3	Flash memory status register 3	R	00000000 _B
0075 _H	—	(Disabled)	—	_
0076 _H	WREN	Wild register address compare enable register	R/W	00000000 _B
0077 _H	WROR	Wild register data test setting register	R/W	00000000 _B
0078 _H	—	Mirror of register bank pointer (RP) and direct bank pointer (DP)	—	_
0079 _H	ILR0	Interrupt level setting register 0	R/W	11111111 _B
007A _H	ILR1	Interrupt level setting register 1	R/W	11111111 _B
007B _H	ILR2	Interrupt level setting register 2	R/W	11111111 _B
007C _H	ILR3	Interrupt level setting register 3	R/W	11111111 _B
007D _H	ILR4	Interrupt level setting register 4	R/W	11111111 _B
007E _H	ILR5	Interrupt level setting register 5	R/W	11111111 _B
007F _H		(Disabled)	—	_
0F80 _H	WRARH0	Wild register address setting register (upper) ch. 0	R/W	00000000 _B
0F81 _H	WRARL0	Wild register address setting register (lower) ch. 0	R/W	00000000 _B
0F82 _H	WRDR0	Wild register data setting register ch. 0	R/W	00000000 _B

17. Electrical Characteristics

17.1 Absolute Maximum Ratings

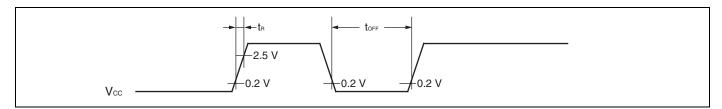
Parameter	Symphol	Rat	ting	Unit	Remarks
Parameter	Symbol	Min	Мах	Unit	Remarks
Power supply voltage*1	V _{CC}	V _{SS} - 0.3	V _{SS} + 6	V	
Input voltage*1	VI	$V_{SS} - 0.3$	$V_{SS} + 6$	V	*2
Output voltage*1	V _O	$V_{SS} - 0.3$	$V_{SS} + 6$	V	*2
Maximum clamp current	ICLAMP	-2	+2	mA	Applicable to specific pins ^{*3}
Total maximum clamp current	$\Sigma I_{CLAMP} $	—	20	mA	Applicable to specific pins ^{*3}
"L" level maximum output current	I _{CL}	—	15	mA	
"L" level average current	I _{CLAV}	—	4	mA	Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣI_{OL}	_	100	mA	
"L" level total average output current	ΣI_{OLAV}	_	50	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum output current	I _{CH}	—	-15	mA	
"H" level average current	I _{CHAV}	—	-4	mA	Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣI_{OH}	_	-100	mA	
"H" level total average output current	ΣI_{OHAV}	_	-50	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	Pd	—	320	mW	
Operating temperature	T _A	-40	+85	°C	
Storage temperature	T _{stg}	-55	+150	°C	

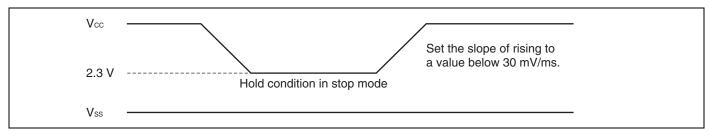
*1: These parameters are based on the condition that V_{SS} = 0.0 V.

*2: V_I and V_O must not exceed V_{CC} + 0.3 V. V_I must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V_I rating.

17.3 DC Characteristics

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$	$(V_{CC} = 5.0)$	V ±10%, V _{SS} =	= 0.0 V, T _A	= -40°C to +85°C
---	------------------	---------------------------	-------------------------	------------------

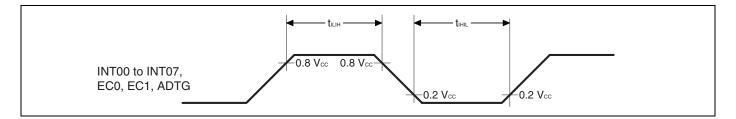

Domoniation	Cumhal	Din nome	Condition		Value		Unit	Bomorko	
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks	
	V _{IHI}	P01, P04, P10, P22, P23	*1	0.7 V _{CC}	_	V _{CC} + 0.3	V	When CMOS input level (hysteresis input) is selected	
"H" level input voltage	V _{IHS}	P00 to P07, P10 to P17, P20 to P23, P40 to P43 ^{*2} , P50 to P53 ^{*2} , P60 to P67, P90 to P93, P94 ^{*2} , PA0 to PA7, PB0, PB1, PB2 to PB4 ^{*2} , PC0 to PC3, PC4 to PC7 ^{*2} , PE0 to PE7, PE0 to PE7, PF0, PF1, PG1, PG2	*1	0.8 V _{CC}		V _{CC} + 0.3	V	Hysteresis input	
	V _{IHM}	PF2	—	0.7 V _{CC}		$V_{CC} + 0.3$	V	Hysteresis input	
	V _{IL}	P01, P04, P10, P22, P23	*1	V _{SS} - 0.3	_	0.3 V _{CC}	V	When CMOS input level (hysteresis input) is selected	
"L" level input voltage	V _{ILS}	P00 to P07, P10 to P17, P20 to P23, P40 to P43 ^{*2} , P50 to P53 ^{*2} , P60 to P67, P90 to P93, P94 ^{*2} , PA0 to PA7, PB0, PB1, PB2 to PB4 ^{*2} , PC0 to PC3, PC4 to PC7 ^{*2} , PE0 to PE7, PF0, PF1, PG1, PG2	*1	V _{SS} – 0.3		0.2 V _{CC}	V	Hysteresis input	
	V _{ILM}	PF2	_	$V_{SS}-0.3$	_	0.3 V _{CC}	V	Hysteresis input	
Open-drain output application voltage	V _D	P12, P22, P23, PF2	_	V _{SS} – 0.3	_	V _{SS} + 5.5	V		
"H" level output voltage	V _{OH1}	Output pins other than P12, P22, P23, PF2	I _{OH} = -4 mA	V _{CC} - 0.5	_	_	V	Continued	


17.4.4 Power-on Reset

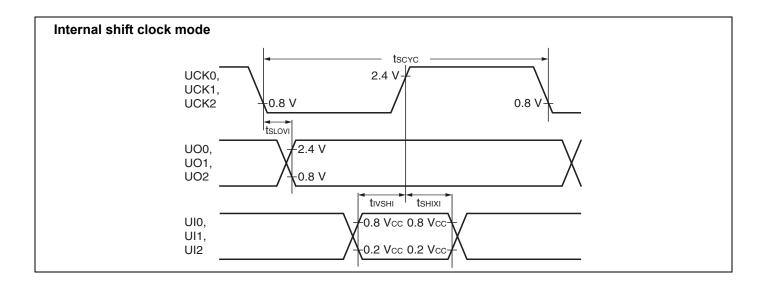
 $(V_{SS} = 0.0 \text{ V}, \text{ } \text{T}_{\text{A}} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

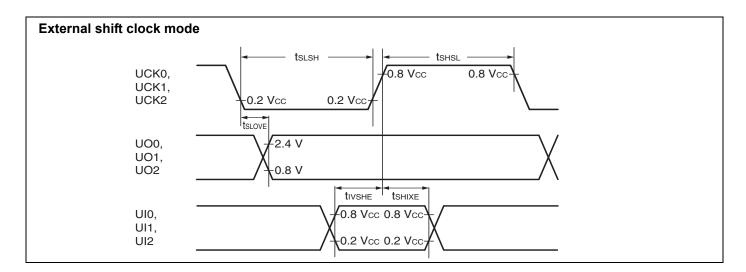
Parameter	Symbol	Condition	Val	lue	Unit	Remarks
Falailletei	Symbol	Condition	Min	Мах	Unit	Remarks
Power supply rising time	t _R	_	—	50	ms	
Power supply cutoff time	t _{OFF}	—	1		ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below.



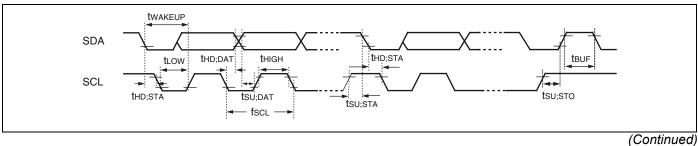
17.4.5 Peripheral Input Timing


 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$


Parameter	Symbol Pin name		Va	Unit	
Falameter	Symbol	Finname	Min	Max	Unit
Peripheral input "H" pulse width	t _{ILIH}	INT00 to INT07, EC0, EC1, ADTG	2 t _{MCLK} *	—	ns
Peripheral input "L" pulse width	t _{IHIL}	111100 10 111107, ECO, ECT, ADTO	2 t _{MCLK} *	—	ns

*: See "17.4.2. Source Clock/Machine Clock" for t_{MCLK}.

17.4.8 I²C Timing


			Conditions	Value				
Parameter	Symbol	Pin name		Standar	d-mode	Fast-mode		Unit
				Min	Max	Min	Max	
SCL clock frequency	f _{SCL}	SCL		0	100	0	400	kHz
(Repeat) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HD;STA}	SCL, SDA		4.0	_	0.6	_	μs
SCL clock "L" width	t _{LOW}	SCL		4.7	—	1.3	_	μs
SCL clock "H" width	t _{HIGH}	SCL		4.0	—	0.6	_	μs
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{SU;STA}	SCL, SDA	R = 1.7 kΩ,	4.7	_	0.6	_	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t _{HD;DAT}	SCL, SDA	C = 50 pF* ¹	0	3.45* ²	0	0.9* ³	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	t _{SU;DAT}	SCL, SDA		0.25	_	0.1	_	μs
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{su;sто}	SCL, SDA		4.0	_	0.6	_	μs
Bus free time between stop condition and start condition	t _{BUF}	SCL, SDA		4.7	_	1.3		μs

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

*2: The maximum t_{HD;DAT} in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (t_{I OW}) does not extend.

*3: A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, provided that the condition of t_{SU;DAT} ≥ 250 ns is fulfilled.

Symbol	Pin name	Conditions		Value* ²		
			Min	Мах	Unit	Remarks
t _{LOW}	SCL		(2 + nm / 2)t _{MCLK} – 20	_	ns	Master mode
t _{HIGH}	SCL		(nm / 2)t _{MCLK} – 20	(nm / 2)t _{MCLK} + 20	ns	Master mode
t _{hd;sta}	SCL, SDA		(– 1 + nm / 2)t _{MCLK} – 20	(- 1 + nm)t _{MCLK} + 20		Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.
t _{SU;STO}	SCL, SDA		(1 + nm / 2)t _{MCLK} - 20	(1 + nm / 2)t _{MCLK} + 20	ns	Master mode
	SCL, SDA		(1 + nm / 2)t _{MCLK} - 20	(1 + nm / 2)t _{MCLK} + 20	ns	Master mode
	SCL, SDA		(2 nm + 4)t _{MCLK} - 20	_	ns	
t _{HD;DAT}	SCL, SDA	R = 1.7 kΩ, C = 50 pF* ¹	3 t _{MCLK} – 20	_	ns	Master mode
t _{SU;DAT}	SCL, SDA		(– 2 + nm / 2)t _{MCLK} – 20	(– 1 + nm / 2)t _{MCLK} + 20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.
t _{SU;INT}	SCL		(nm / 2)t _{MCLK} – 20	(1 + nm / 2)t _{MCLK} + 20		Minimum value is applied to interrupt at 9th SCL↓. Maximum value is applied to interrupt at 8th SCL↓.
t _{LOW}	SCL		4 t _{MCLK} – 20	_	ns	At reception
t _{HIGH}	SCL		4 t _{MCLK} – 20	_	ns	At reception
	thd;sta tsu;sto tsu;sta tbuf thd;dat tsu;dat tsu;dat	thd;sta SCL, SDA tsu;sto SDA tsu;sta SDA tsu;sta SCL, tbuf SDA thd;dat SDA thd;dat SCL, tsu;dat SDA tsu;dat SCL, tsu;int SCL tsu;int SCL	thereSCL, SDAtu;STASCL, SDAtsu;STASCL, SDAtsu;STASCL, SDAtBUFSCL, SDAtHD;DATSCL, SDAtsu;DATSCL, SDAtsu;DATSCL, SDAtsu;INTSCL, SDAtureSCL, SDA	Instruction Instruction t_{HD} ;STA SCL, SDA $(-1 + nm / 2)t_{MCLK} - 20$ t_{SU} ;STO SCL, SDA $(1 + nm / 2)t_{MCLK} - 20$ t_{SU} ;STA SCL, SDA $(1 + nm / 2)t_{MCLK} - 20$ t_{BUF} SCL, SDA $(2 nm + 4)t_{MCLK} - 20$ t_{HD} ;DAT SCL, SDA $(2 nm + 4)t_{MCLK} - 20$ t_{HD} ;DAT SCL, SDA $(2 nm + 4)t_{MCLK} - 20$ t_{SU} ;DAT SCL, SDA $(-2 + nm / 2)t_{MCLK} - 20$ $t_{SU;INT}$ SCL $(nm / 2)t_{MCLK} - 20$ t_{LOW} SCL $4 t_{MCLK} - 20$	Indicident of the second s	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

(V_{CC} = 5.0 V ±10%, AV_{SS} = V_{SS} = 0.0 V, T_A = -40^{\circ}C to +85°C)

		Pin		Valu	ue* ²			
Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks	
Start condition detection	t _{HD;STA}	SCL, SDA		2 t _{MCLK} – 20	_	ns	Not detected when 1 t _{MCLK} is used at reception	
Stop condition detection	t _{su;sто}	SCL, SDA		2 t _{MCLK} – 20	_	ns	Not detected when 1 t _{MCLK} is used at reception	
Restart condition detection condition	t _{SU;STA}	SCL, SDA		2 t _{MCLK} – 20	_	ns	Not detected when 1 t _{MCLK} is used at reception	
Bus free time	t _{BUF}	SCL, SDA		2 t _{MCLK} – 20	_	ns	At reception	
Data hold time	t _{HD;DAT}	SCL, SDA	R = 1.7 kΩ, C = 50 pF* ¹	2 t _{MCLK} – 20	_	ns	At slave transmission mode	
Data setup time	t _{SU;DAT}	SCL, SDA		t _{LOW} - 3 t _{MCLK} - 20	_	ns	At slave transmission mode	
Data hold time	t _{HD;DAT}	SCL, SDA		0	_	ns	At reception	
Data setup time	t _{SU;DAT}	SCL, SDA		t _{MCLK} – 20	_	ns	At reception	
SDA↓→SCL↑ (at wakeup function)	t _{WAKEUP}	SCL, SDA		Oscillation stabilization wait time + 2 t _{MCLK} – 20	_	ns		

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

*2: • See "17.4.2. Source Clock/Machine Clock" for t_{MCLK}.

- m represents the CS4 bit and CS3 bit (bit4 and bit3) in the I²C clock control register (ICCR0).
- n represents the CS2 bit to CS0 bit (bit2 to bit0) in the I²C clock control register (ICCR0).
- The actual timing of I²C is determined by the values of m and n set by the machine clock (t_{MCLK}) and the CS4 to CS0 bits in the ICCR0 register.
- Standard-mode:

m and n can be set to values in the following range: $0.9 \text{ MHz} < t_{\text{MCLK}}$ (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

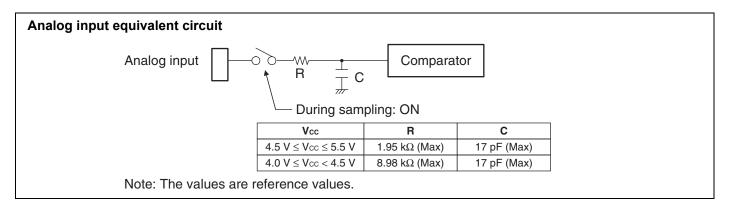
(m, n) = (1, 8)	$0.9 \text{ MHz} < t_{MCLK} \le 1 \text{ MHz}$
(m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4)	: 0.9 MHz < t _{MCLK} ≤ 2 MHz
(m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8)	: 0.9 MHz < t _{MCLK} ≤ 4 MHz
(m, n) = (1, 98), (5, 22), (6, 22), (7, 22)	: 0.9 MHz < t _{MCLK} ≤ 10 MHz
(m, n) = (8, 22)	: 0.9 MHz < t _{MCLK} ≤ 16.25 MHz
Fast-mode:	

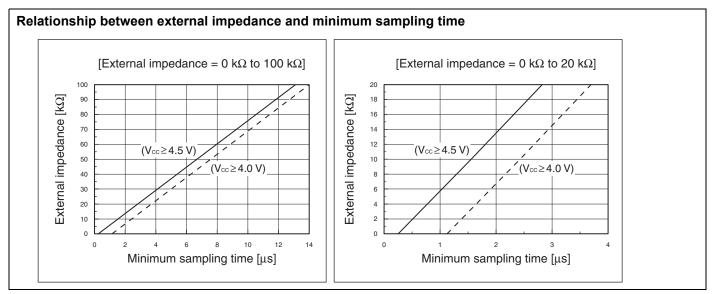
m and n can be set to values in the following range: $3.3 \text{ MHz} < t_{\text{MCLK}}$ (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

: 3.3 MHz < t _{MCLK} ≤ 4 MHz
: 3.3 MHz < t _{MCLK} ≤ 8 MHz
: 3.3 MHz < t _{MCLK} ≤ 10 MHz
: 3.3 MHz < t _{MCLK} ≤ 16.25 MHz

17.5 A/D Converter

17.5.1 A/D Converter Electrical Characteristics

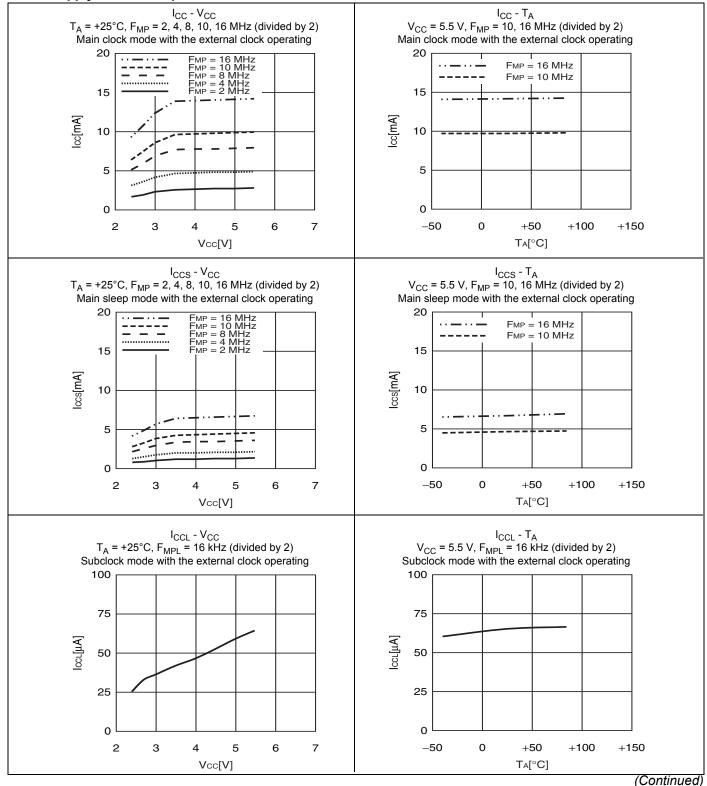

(7.0 CC - 4.0 V to 0.0 V, 7.0 SS - 4.0 V, 1 A - 4.0 O to 0.0 O						
Parameter	Symbol	Value			Unit	Remarks
		Min	Тур	Мах	Onit	Remarks
Resolution		—	—	10	bit	
Total error		-3	—	+3	LSB	
Linearity error		-2.5	—	+2.5	LSB	
Differential linear error		-1.9	—	+1.9	LSB	
Zero transition voltage	V _{OT}	AV _{SS} – 1.5 LSB	AV _{SS} + 0.5 LSB	AV_{SS} + 2.5 LSB	V	
Full-scale transition voltage	V _{FST}	AV _{CC} – 4.5 LSB	AV _{CC} – 2 LSB	AV _{CC} + 0.5 LSB	V	
Compare time	_	0.9	—	16500	μs	$4.5 \text{ V} \leq \text{ V}_{CC} \leq 5.5 \text{ V}$
		1.8	—	16500	μs	$4.0 \text{ V} \le \text{ V}_{\text{CC}} < 4.5 \text{ V}$
Sampling time	_	0.6	_	∞	μs	4.5 V \leq V _{CC} \leq 5.5 V, with external impedance $<$ 5.4 k Ω
		1.2	_	∞	μs	4.0 V \leq V _{CC} < 4.5 V, with external impedance < 2.4 k Ω
Analog input current	I _{AIN}	-0.3	—	+0.3	μA	
Analog input voltage	V _{AIN}	AV _{SS}	—	AV _{CC}	V	



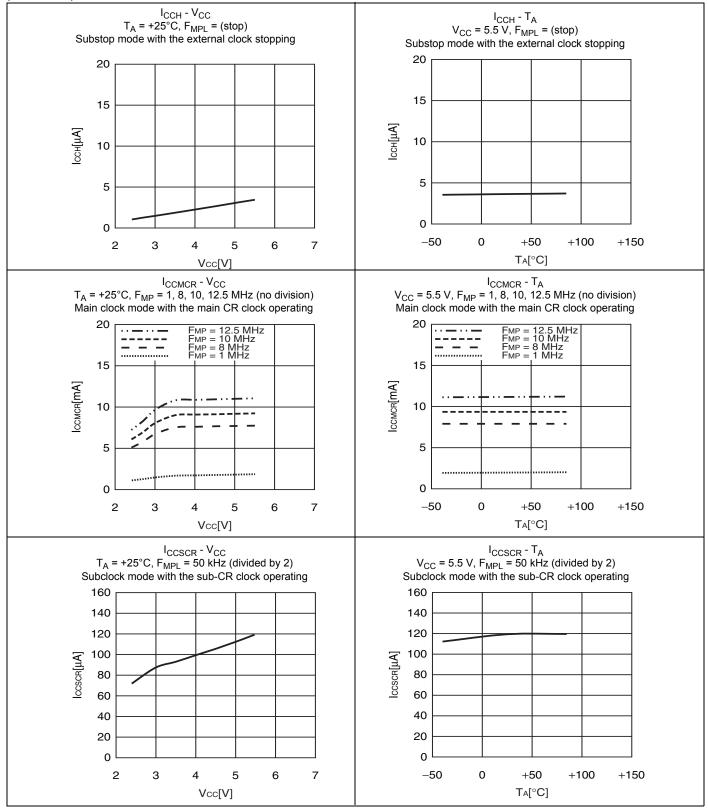
17.5.2 Notes on Using the A/D Converter

External impedance of analog input and its sampling time

The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 μ F to the analog input pin.

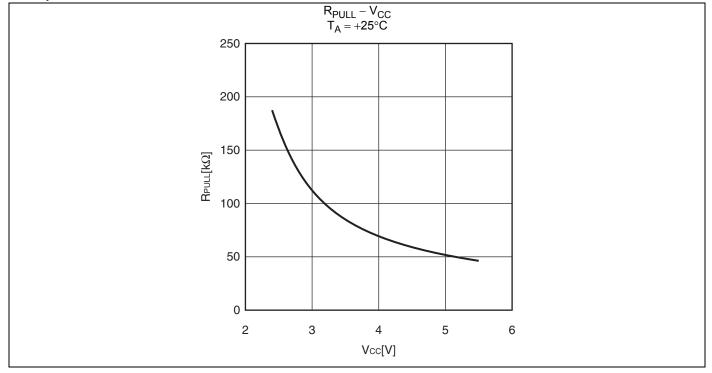

A/D conversion error

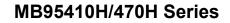
As $|V_{CC}-V_{SS}|$ decreases, the A/D conversion error increases proportionately.

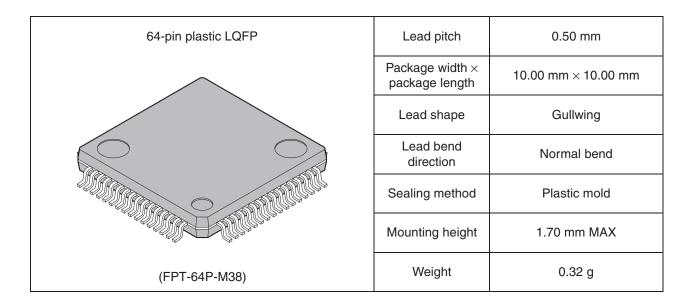


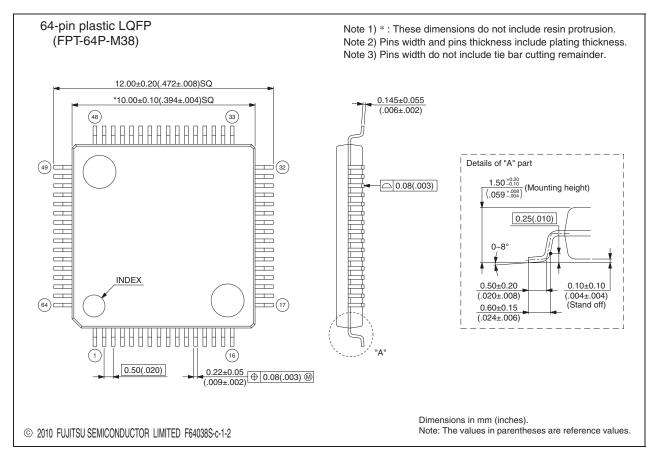
18. Sample Characteristics

Power supply current temperature characteristics








Pull-up characteristics

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation 2010-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hardby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system control and evice or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.