

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	86
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z32f38412als

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

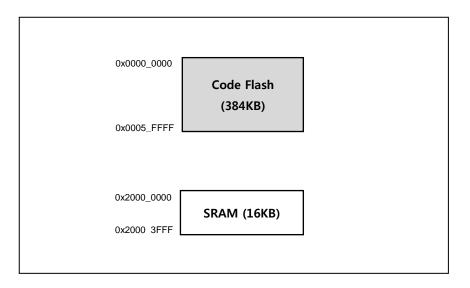
Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

Date	Revision Level	Description	Page
Jun 2017	03	Updated part numbers to include the Cortex M identifier.	All
Mar 2016	02	Update to reflect new part, revision B (0x0002); Added timing information for most of the peripherals; corrected typos.	All
Dec 2015	01	Original issue.	

MCCR4

Miscellaneous Clock Control Register 4

The Miscellaneous Clock Control Register 4 is the alterntative ADC and NMI Debounce Clock Control register.


																												0	x40	00_0	0A8
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						ADCCSEL						ADUCUIN										NMICSEL									
0	0	0	0	0		000					0x	00				0	0	0	0	0		000					0>	01			
						RW					R١	N										RW					R	w			
								2 2 1		A	DCC DCC MID	DIV CSEI	L		0 1 1 1 1 1 1 1 1 1 1 1 1 1	Dax 00 01 10 11 ADC Deboo Dax 00 01 10 11 ADC Deboo Dax 00 01 10 11	Cloc	RINO MCL INT Exte PLL k N e Clo RINO MCL INT Exte PLL	G OSC K (t OSC rnal Cloc divi divi divi G OSC K (t OSC rnal Cloc	GC 11 DUS (20N I Ma Ck der for N GC 11 DUS (20N I Ma Ck	MHz clock MHz in O	s) SC sour		elec	t bit						

8. Internal SRAM

Overview

The Z32F3841 MCU implements zero-wait on the chip's SRAM. The size of the SRAM is 16 KB. The SRAM base address is $0 \times 2000 _ 0000$.

3

Registers

The base address of the watchdog timer is $0 \times 4000_{0200}$ and the register map is listed in Table 10.1. Initial watchdog time-out period is set to 2000-miliseconds.

Name	Offset	R/W	Description	Reset
WDT.LR	0x0000	W	WDT Load register	0x00000000
WDT.CNT	0x0004	R	WDT Current counter register	0x0000FFFF
WDT.CON	0x0008	R/W	WDT Control register	0x0000805C

Table 10.1. Watchdog Timer Register Map

WDT.LR Watchdog Timer Load Register

The Watchdog Timer Load register is used to update the WDTCNT register. To update the WDTCNT register, the WEN bit of WDTCON should be set to 1 and written into the WDTLR register with a target value of WDTCNT.

																										w	DT.L	.R=0)x40	00_(0200)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
															WD	TLR																
														0x	000)_00	00															1
															R	w																
								3	31)	1	WDI	LR]	Keep	oing	WE	N bi	t as	d val '1', w 1 wri	vrite	e WI	DTLI	R reg	giste	er wi	ill up	odat	e		

WDT.CNT Watchdog Timer Current Counter Register

The Watchdog Timer Current Counter register represents the current count value of the 32-bit down counter .When the counter value reaches 0, the interrupt or reset is awoken.

																										WD	T.CI	NT=O)x40	00_(0204
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														١	WDT	CN	г														
														0x	0000)_FF	FF														
															R	w															
								3	1	W	/DT(CNT						0			ent			0							
								0							3	2-b	it do	wn	coui	nter	will	run	fro	m th	e w	ritte	n va	lue.			

Functional Description

The MCCR3 register must be configured to enable the clock source and divider for the Watch Dog Timer (WDT) to run. To prevent the WDT from resetting or interrupting, load a new value into the WDTLR register before the WDTCNT reaches 0.

The watchdog timer count is enabled by setting WDTEN (WDT.CON[4]) to 1. When the watchdog timer is enabled, the down counter starts counting from the load value. If WDTRE (WDT.CON[6]) is set to 1, WDT reset is asserted when the WDT counter value reaches 0 (underflow event) from the WDTLR value. Before the WDT counter goes down to 0, the software can write a certain value to the WDTLR register to reload the WDT counter.

Timing Diagram

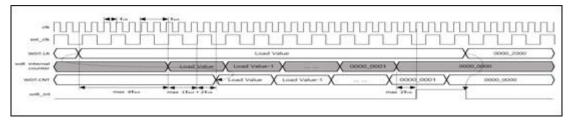


Figure 10.2. Timing Diagram in Interrupt Mode Operation when WDT Clock is External Clock

In WDT interrupt mode, after the WDT underflow occurs, a certain count value is reloaded to prevent the next WDT interrupt in a short time period. This reloading action can only be activated when the watchdog timer counter is set to Interrupt mode (set WDTIE of WDT.CON). It takes up to 5 cycles from the load value to the CNT value. The WDT interrupt signal and CNT value data might be delayed by a maximum of 2 system bus clocks in synchronous logic.

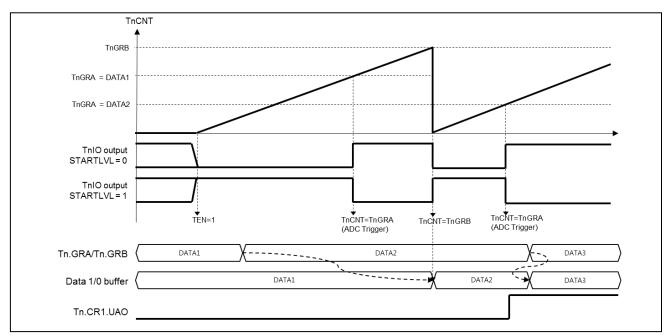
Prescale Table

The WDT includes a 32-bit down counter with programmable prescaler to define different time-out intervals.

The clock sources of the watchdog timer can include the peripheral clock (PCLK) or one of 3 external clock sources. An external clock source can be enabled by CKSEL (WDT.CON[3]) set to '1' and external clock source chosen in MCCR3 register of the System Control Unit block.

To make the WDT counter base clock, users can control the 3-bit prescaler WPRS [2:0] in the WDT.CON register and the maximum prescaled value is "clock source frequency/256". The prescaled WDT counter clock frequency values are listed in Table 10.2.

Selectable clock source (40 kHz ~ 16 MHz) and the time out interval when 1 count


Time out period = {(Load Value) * (1/pre-scaled WDT counter clock frequency) + max 5T_{ext}} + max 4T_{clk}

*Time out period (time out period from load Value to interrupt set '1')

PWM Timer Output

Figure 11.5 shows the timing diagram in PWM output mode. The Tn.GRB value decides the PWM pulse period. An additional comparison point is provided with the Tn.GRA register value which defines the pulse width of PWM output.

Figure 11.5. PWM Output Operation

The period of PWM pulse can be calculated as shown in the following equation:

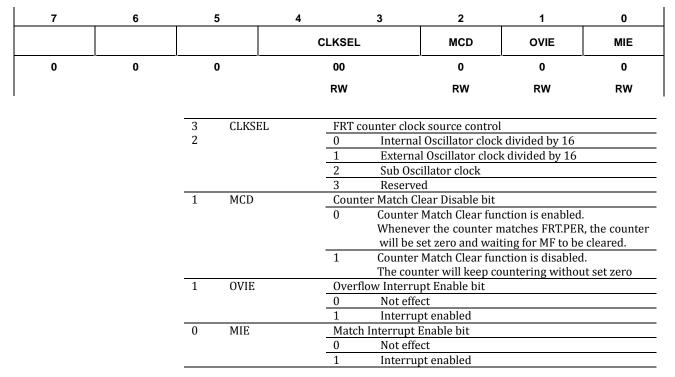
The period = TMCLK Period * Tn.GRB value Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even if TnCR2.TEN is "1" because the period is "0".

The value in Tn.GRA and Tn.GRB is loaded into the internal compare data buffer 0 and 1 when the loading condition occurs. In this periodic mode with TnCR1.UAO =0, the Tn.CR2.TCLR write operation and the GRB match event will load the compare data buffers.

When TnCR1.UAO is 1, the internal compare data buffer is updated when the Tn.GRA or Tn.GRB data is updated.

The TnIO output signal generates a PWM pulse. The Tn.GRB value defines the output pulse period and the Tn.GRA value defines the pulse width of one shot pulse. The active level of the PWM pulse can be controlled by the Tn.CR1.STARTLVL bit value.


ADC Trigger generation is available at Match A interrupt time.

Imer

FRT.MR FRT Mode Register

FRT is a 32-bit up counter. It can be used in power down mode. The SUB OSC clock is directly connected to FRT. The clock is uncontrollable in the SCU block. The FRT Mode Register is an 8-bit register.

FRTMR=0x4000_0600

FRT.CR FRT Control Register

The FRT Control register is an 8-bit register.

FRTCR=0x4000_3E04

7	6	5	4	3	2	1	0
				CNTREQ	FCLR	FHOLD	FEN
0	0	0	0	0	0	0	0
				RW	wo	R/W	R/W

3	CNTREQ	FRT Counter read request bit
		0 No
		1 Request to read FCNT (cleared when CNTACK(FSR[1]) is high)
2	FCLR	FRT Counter register clear bit
		0 No
		1 Clear the counter
1	FHOLD	FRT Counter register hold bit
		0 No
		1 Hold the counter
0	FEN	FRT enable bit
		0 FRT Disabled
		1 FRT Enabled

.....

FRT.PER FRT Period Match Register

The FRT Period Match register is a 32-bit register.

FRTPER=0x4000_3E08

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DA	TA															
														0x	000	0_00	00														
															R	W															
								3	2	D	ATA				F	RT 1	mate	ch da	ata												

FRT.CNT FRT Counter Register

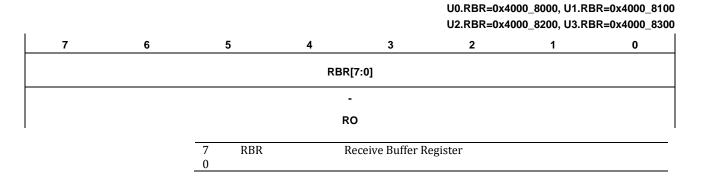
0

The FRT Counter Register is a 32-bit register.

FRTCNT=0x4000_3E0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															CI	Т															
														0x	000	0_00	00														
															R	0															
								3 0	2	C	NT				F	RT (Coui	nter													

FRT.SRFRT Status Register


				FRT Status	Register is an 8-	bit register.FRTS	SR=0x4000_06
7	6	5	4	3	2	1	0
					RACK	OVIF	MIF
0	0	0	0	0	0	0	0
					WC1	WC1	WC1
		2 R	АСК	Read Counter A	0		
					to read CNT value ead CNT value	е	
		1 0	VIF		upt flag bit nterrupt did not nterrupt occurre		
		0 M	IIF	1 Match Inte In Counter	flag bit prrupt did not occ rrupt occurred Match Clear mo cing the counter.		ld be cleared

Un.RBR

Receive Buffer Register

The UART Receive Buffer Register is an 8-bit read-only register.

Un.THR Transmit Data Hold Register

The UART Transmit Data Hold Register is an 8-bit write-only register.

U0.THR=0x4000_8000, U1.THR=0x4000_8100 U2.THR=0x4000_8200, U3.THR=0x4000_8300

7	6	5	4	3	2	1	0
			т	HR			
				-			
			v	10			
		7 T	HR	Fransmit Data H	old Register		
		0			-		

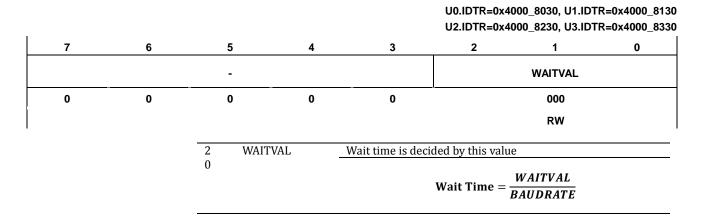
Un.LCR UART Line Control Register

The UART Line Control Register is an 8-bit register.

U0.LCR=0x4000_800C, U1.LCR=0x4000_810C	•
U2.LCR=0x4000_820C, U3.LCR=0x4000_830C	;

7	6	5	4	3	2	1	0		
	BREAK	STICKP	PARITY	PEN	STOPBIT	DL	EN		
0	0	0	0	0	0	0	0		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	6	BREAK	notice the	bit is set, TxD p alert to the reco ormal transfer m eak transmit mo	ode	at low state in c	order to		
	5	STICKP	Force pari 0 Pa	ty and it will be rity stuck is disa	effective when P		DADITY		
	4	PARITY	Parity mo 0 Od		and stuck parity s		JIL OF PARTY I.		
	3	PEN	Parity bit 0 Th	transfer enable e parity bit disa e parity bit enab					
	2	STOPBIT	The numb 0 1 s 1 1.5 In In	er of stop bit fol stop bit 5 / 2 stop bit	lowed by data bit a case, 1.5 stop bi		se of 6,7 or		
	1 0	DLEN	The data l 00 5 k 01 6 k 10 7 k	ength in one tra pit data pit data pit data pit data pit data					

The parity bit is generated according to bits 3,4,5 of the UnLCR register. Table 13.4 shows the variation of parity bit generation.


	Table 13.4. Parity Bit Generation									
STICKP	PARITY	PEN	Parity							
Х	Х	0	No Parity							
0	0	1	Odd Parity							
0	1	1	Even Parity							
1	0	1	Force parity as "1"							
1	1	1	Force parity as "0"							

Un.IDTR

Inter-frame Delay Time Register

The UART Inter-frame Time Register is an 8-bit register. A dummy delay can be inserted between two continuous transmits.

Functional Description

The UART module is compatible with the 16450 UART. Additionally, dedicated DMA channels and fractional baud rate compensation logic are provided. The UART does not have an internal FIFO block. Therefore, data transfers are established interactively or with DMA support.

Two DMA channels are provided for each UART module – one channel for TX transfer and the other channel for RX transfer. Each channel has a 32-bit memory address register and a 16-bit transfer counter register. Prior to the DMA operation, the DMA memory address register and transfer count register should be configured. For the RX operation, the memory address is the destination memory address and for the TX operation, the memory address.

The transfer counter register stores the number of data transfers. When a single transfer is done, the counter is decremented by 1. When the counter reaches zero, the DMA done flag is delivered to the UART control block. If the interrupt is enabled, this flag generates the interrupt.

Receiver Sampling Timing

The UART operates per the following timing:

If the falling edge is on the receive line, the UART judges it as the start bit. From the start timing, the UART oversamples 16 times of 1-bit and detects the bit value at the 7th sample of 16 samples.

Pin Description

PIN NAME	NAME TYPE DESCRIPTION					
SCL0	I/O	I ² C channel 0 Serial clock bus line (open-drain)				
SDA0	I/O	I ² C channel 0 Serial data bus line (open-drain)				
SCL1	I/O	I ² C channel 1 Serial clock bus line (open-drain)				
SDA1	I/O	l ² C channel 1 Serial data bus line (open-drain)				

Table 15.1. I²C Interface External Pins

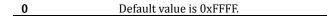
Registers

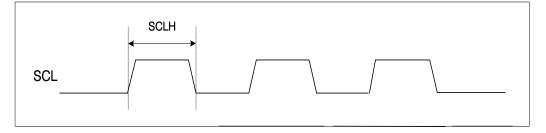
The base address of I^2C0 is $0x4000_A000$ and the base address of I^2C1 is $0x4000_A100$. The register map is described in Tables 15.2 and 15.3.

Table 15.2. I ² C Interface Base Address						
Channel Base address						
l ² C0	0x4000_A000					
l ² C1	0x4000_A100					

Name	Offset	R/W	Description	Reset	
IC0.DR	0xA000	R/W	I ² C0 Data Register	0xFF	
IC0.SR	0xA008	R, R/W	I ² C0 Status Register	0x00	
IC0.SAR	0xA00C	R/W	I ² C0 Slave Address Register	0x00	
IC0.CR	0xA014	R/W	I ² C0 Control Register	0x00	
IC0.SCLL	0xA018	R/W	I ² C0 SCL LOW duration Register	0xFFFF	
IC0.SCLH	0xA01C	R/W	I ² C0 SCL HIGH duration Register	0xFFFF	
IC0.SDH	0xA020	R/W	I ² C0 SDA Hold Register	0x7F	
IC1.DR	0xA100	R/W	I ² C1 Data Register	0xFF	
IC1.SR	0xA108	R, R/W	I ² C1 Status Register	0x00	
IC1.SAR	0xA10C	R/W	I ² C1 Slave Address Register	0x00	
IC1.CR	0xA114	R/W	I ² C1 Control Register	0x00	
IC1.SCLL	0xA118	R/W	I ² C1 SCL LOW duration Register	0xFFFF	
IC1.SCLH	0xA11C	R/W	I ² C1 SCL HIGH duration Register 0xf		
IC1.SDH	0xA120	R/W	I ² C1 SDA Hold Register 0x0		

Table 15.3. I²C Register Map




ICn.SCLH

I²C SCL HIGH Duration Register

ICnSCLH is a 16-bit read/write register. The SCL HIGH time is set by writing this register in master mode.

									IC	CO.SDLH	=0x400	D_A01C,	IC1.SDL	.H=0x40	00_A11C
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							sc	LH							
							0xF	FFF							
							R	w							
			15	SCLH			uration								
					SCL	H = (P)	CLK * SC	LH[15:0)])+3I	PCLKs					

A message which starts with such an address can be terminated by generation of a STOP conditions, even during the transmission of a byte. In this case, no acknowledge is generated.

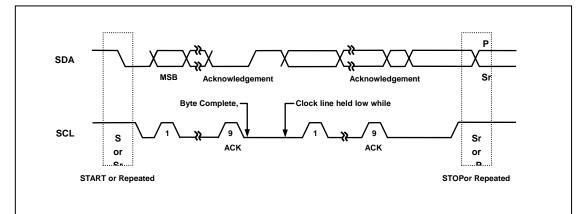


Figure 15.7. I²C Bus Data Transfer

Slave Transmitter

The slave transmitter shows the flow of the transmitter in Slave mode, as shown in Figure 15.13.

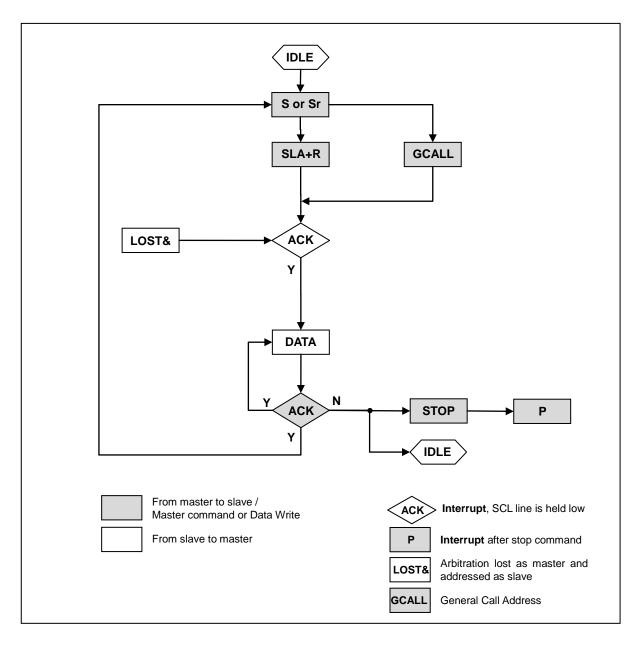


Figure 15.13. Transmitter Flowchart in Slave Mode

Slave Receiver

The slave receiver shows the flow of the receiver in Slave mode, as shown in Figure 15.14.

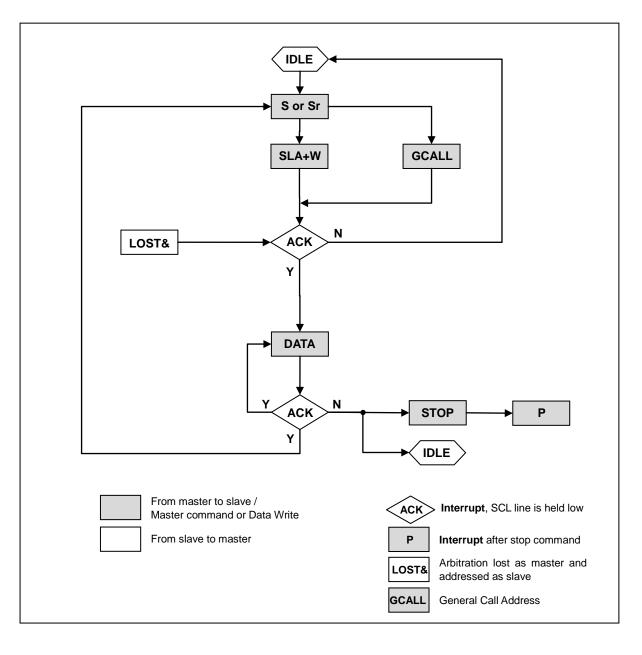
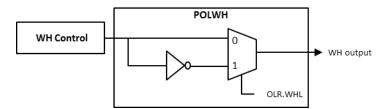


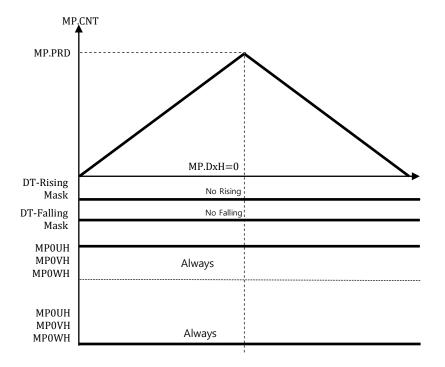
Figure 15.14. Receiver Flowchart in Slave Mode

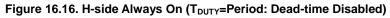
Z32F3841 Product Specification

	Table 16.1. MPWM Register Map									
	Level	NORM	IAL mode	MOTOR mode						
PWM Output	Levei	UP mode	UPDOWN mode	MOTOR mode						
WH	Default level	LOW	HIGH	LOW						
VVI	Active level	HIGH	LOW	HIGH						
WL	Default level	LOW	LOW	HIGH						
VVL	Active level	HIGH	HIGH	LOW						
VH	Default level	LOW	HIGH	LOW						
VП	Active level	HIGH	LOW	HIGH						
VL	Default level	LOW	LOW	HIGH						
VL	Active level	HIGH	HIGH	LOW						
UH	Default level	LOW	HIGH	LOW						
ОП	Active level	HIGH	LOW	HIGH						
UL	Default level	LOW	LOW	HIGH						
UL	Active level	HIGH	HIGH	LOW						

Figure 16.2 shows the polarity control block. This is an example of WH signal polarity control.




Figure 16.2 Polarity Control Block


MPn.FOR MPWM Force Output Level Register

The PWM force output register is an 8-bit register. The PWM output level can be forced by an abnormal event from an external or user-intended condition. When the forced condition occurs, each PWM output level which is programmed in the FOLR register will be forced.

7	6		5	4	3	2	1	0
		W	HFL	VHFL	UHFL	WLFL	VLFL	ULFL
0	0		0	0	0	0	0	0
		F	w	RW	RW	RW	RW	RW
		5	WHFL		Select WH Outp	ut Force Level		
						rce Level is 'L'		
					1 Output For	rce Level is 'H'		
		4	VHFL		Select VH Outpu	it Force Level		
) Output For	rce Level is 'L'		
					1 Output For	rce Level is 'H'		
		3	UHFL		Select UH Outpu	ıt Force Level		
) Output For	rce Level is 'L'		

MP0.FOR=0x4000_4008, MP1.FOR=0x4000_5008,

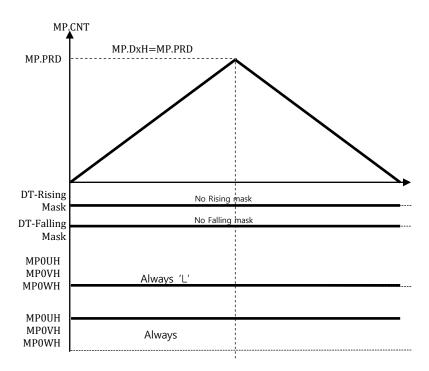


Figure 16.17. L-side Always On (T_{DUTY}='0': Dead-time Disabled)

Symmetrical Mode vs Asymmetrical Mode

In symmetrical mode, the wave form is symmetrical on both sides of the mid-point of the period. The duty comparison is performed twice in both up and down count periods.

ADn.SR

ADCn Status Register

The ADC Status Register is a 32-bit register.

AD0.SR=0x4000_B024, AD1.SR=0x4000_B124

7	6	5	4	3	2	1	0
EOC	ABUSY	DOVR	JN DMAIRQ	TRGIRQ	EOSIRQ	-	EOCIRC
0	0	0	0	0	0	-	0
RO	RO	RO	RO	RC	RC	-	RC
		7	EOC		-of-Conversion fla Conversion made	0	lears this bi
		6 ABUSY ADC conversion busy flag					
		5 DOVRUN DMA overrun flag (not interrupt) (DMA ACK didn't come until end of next conversion					onversion)
		4	DMAIRQ		e received (DMA		
		3	TRGIRQ		ger interrupt flag		ear flag)
		2	EOSIRQ		will be set up " to clear flag)	on final end o	f a sequend
				0 Nor 1 End	ne. I-of-Sequence(bu	rst) Interrupt o	occurred
		0	EOCIRQ		g will be set u is occurred(Wri		
				0 Nor 1 End	ne. I-of-Conversion I	nterrupt occurr	ed

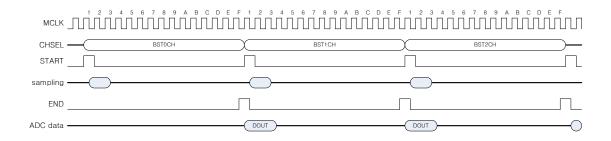
AD*n.*IER

Interrupt Enable Register

AD0.IER=0x4000_B028, AD1.IER=0x4000_B128

7	6	5	4	3	2	1	0
			DMAIRQE	TRGIRQE	EOSIRQE	-	EOCIRQE
			0	0	0	-	0
			RW	RW	RW	-	RW

4	DMAIRQE	DMA done interrupt enable 0: interrupt disable 1: interrupt enable
3	TRGIRQE	ADC trigger conversion interrupt enable
2	EOSIRQE	ADC sequence conversion interrupt enable
0	EOCIRQE	ADC single conversion interrupt enable


General ADC Setup Procedure

- 1. Allow the modification of the I/O pins to use the ADC inputs needed by writing the unlock sequence as described in PORT CONTROL UNIT (PCU), no pullups enabled.
- 2. Enable the ADC peripherals needed in PER2 register.
- 3. Enable the ADC peripheral clock in the PCER2 register.
- 4. Select the alternating function for the ADC inputs (Port n MUX registers).
- 5. Configure the ADC Pins to Analog
- 6. Configure the ADC mode in the ADCnMODE register and enabled the channel ADCn.
- 7. Configure the ADCnCR1 register and write an appropriate clock divider value.
- 8. Configure any special features such as triggers, sequencing, etc.
- 9. Start ADC conversion

ADC Single Mode Timing Diagram

MCLK	
START	
sampling -	sample
END	
ADC data -	DOUT

ADC Sequencing Mode Timing Diagram

