

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/rochester-electronics/cy8c21645-24pvxat

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The digital blocks may be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This provides a choice of system resources for your application. Family resources are shown in Table 1 on page 5.

Analog System

The Analog System of CY8C21x45 and CY8C22x45 PSoC devices consists of a 10-bit SAR ADC and six configurable analog blocks.

The programmable 10-bit SAR ADC is an optimized ADC with a fast maximum sample rate. External filters are required on ADC input channels for antialiasing. This ensures that any out-of-band content is not folded into the input signal band.

Reconfigurable analog resources allow creating complex analog signal flows. Analog peripherals are very flexible and may be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are:

- Analog-to-digital converters (single or dual, with up to 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to four) with absolute (1.3 V) reference or DAC reference
- Precision voltage reference (1.3 V nominal)

CY8C21x45 and CY8C22x45 devices have six limited-functionality Type 'E' analog blocks. These analog blocks are arranged in four columns. Each column contains one continuous time (CT) Type E block. The first two columns also have a switched capacitor (SC) type E block. Refer to the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices for detailed information on the Type E analog blocks.

Figure 2. Analog System Block Diagram

Haptics TS2000 Controller

The CY8C22x45H family of devices features an easy-to-use Haptics controller resource with up to 14 different effects. These effects are available for use with three different, selectable ERM modules.

Additional System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful for complete systems. Additional resources include a MAC, low voltage detection, and power on reset. The merits of each system resource are:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Additional digital resources and clocks dedicated to and optimized for CapSense.

- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.
- The I²C module provides 0 to 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power on reset (POR) circuit eliminates the need for a system supervisor.
- An internal voltage reference provides an absolute reference for the analog system, including ADCs and DACs.

RTC hardware block.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have varying numbers of digital and analog blocks. The following table lists the resources available for specific PSoC device groups. The PSoC families covered by this datasheet are highlighted in the table.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66 ^[2]	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[3]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94 ^[2]	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A ^[2]	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45 ^[2]	up to 38	2	8	up to 38	0	4	6 ^[3]	1 K	16 K
CY8C21x45 ^[2]	up to 24	1	4	up to 24	0	4	6 ^[3]	512	8 K
CY8C21x34 ^[2]	up to 28	1	4	up to 28	0	2	4 [3]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 [3]	256	4 K
CY8C20x34 ^[2]	up to 28	0	0	up to 28	0	0	3 ^[3, 4]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[3, 4]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Notes

2. Automotive qualified devices available in this group.

3. Limited analog functionality.

4. Two analog blocks and one $\mathsf{CapSense}^{\texttt{®}}$ block.

Getting Started

For in depth information, along with detailed programming details, see the *PSoC[®]* Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Development Tools

PSoC Designer[™] is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
 - □ Hardware and software I²C slaves and masters
 - □ Full-speed USB 2.0
 - Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for a given application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

CY8C21345/CY8C21645 CY8C22345/CY8C22345H/CY8C22645

48-pin Part Pinout

Table 3. 48-pin Part Pinout (SSOP)

Pin	l IX	pe	Din Mana	Description					
No.	Digital	Analog	Fin Name	Description					
1	I/O	I, MR	P0[7]	Analog column mux input, C _{MOD} capacitor pin					
2	I/O	I, ML	P0[5]	Analog column mux input, C _{MOD} capacitor pin					
3	I/O	I, ML	P0[3]	Analog column mux input					
4	I/O	I, ML	P0[1]	Analog column mux input					
5	I/O	I, ML	P2[7]	Direct input to analog block					
6	I/O	ML	P2[5]	Optional SAR ADC external reference					
7	I/O	ML	P2[3]						
8	I/O	ML	P2[1]						
9	Po	wer	V _{DD}	Supply voltage					
10	I/O	ML	P4[5]						
11	I/O	ML	P4[3]						
12	I/O	ML	P4[1]						
13	Po	wer	V _{SS}	Ground connection					
14	I/O	ML	P3[7]						
15	I/O	ML	P3[5]						
16	I/O	ML	P3[3]						
17	I/O	ML	P3[1]						
18			NC	Not connected					
19			NC	Not connected					
20	I/O	ML	P1[7]	I ² C serial clock					
21	I/O	ML	P1[5]	I ² C serial data					
22	I/O	ML	P1[3]						
23	I/O	ML	P1[1]	Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[6]					
24	Po	wer	V _{SS}	_					
25	I/O	MR	P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[6]					
26	I/O	MR	P1[2]						
27	I/O	MR	P1[4]	Optional external clock input					
28	I/O	MR	P1[6]						
29			NC	Not connected					
30			NC	Not connected					
31	I/O	MR	P3[0]						
32	I/O	MR	P3[2]						
33	I/O	MR	P3[4]						
34	I/O	MR	P3[6]						
35	In	put	XRES	Active high external reset with internal pull-down					
36	I/O	MR	P4[0]						
37	I/O	MR	P4[2]						
38	I/O	MR	P4[4]						
39	Po	wer	V _{SS}	Ground connection					
40	I/O	MR	P2[0]						
41	I/O	MR	P2[2]						
42	I/O	MR	P2[4]						

Figure 4. CY8C21645 and CY8C22645 48-pin PSoC Device

				-
AI, MR, P0[7] 🗖	• 1		48	- V _{DD}
AI, ML, P0[5] 🖛	2		47	= P0[6], MR, Al
AI, ML, P0[3] 🗖	3		46	P0[4], MR, AI
AI, ML, P0[1] 🗖	4		45	= P0[2], MR, AI
AI, ML, P2[7] 🗖	5		44	= P0[0], MR, AI
EXTREF, ML, P2[5]	6		43	P2[6], MR, AI
ML, P2[3] 🗖	7		42	= P2[4], MR
ML, P2[1] 🗖	8		41	= P2[2], MR
V _{DD} 🗖	9		40	= P2[0], MR
ML, P4[5] 🗖	10		39	Vss
ML, P4[3] 🗖	11		38	= P4[4], MR
ML, P4[1] 🗖	12	SSOD	37	= P4[2], MR
Vss 🖛	13	330F	36	= P4[0], MR
ML, P3[7] 🗖	14		35	XRES
ML, P3[5] 🗖	15		34	= P3[6], MR
ML, P3[3] 🗖	16		33	= P3[4], MR
ML, P3[1] 🗖	17		32	= P3[2], MR
NC 🖛	18		31	= P3[0], MR
NC 🗖	19		30	NC
I2C SCL, ML, P1[7] 🗖	20		29	NC
I2C SDA, ML, P1[5] 🗖	21		28	= P1[6], MR
ML, P1[3] 🗖	22		27	P1[4], MR, EXTCLK
XTALin, I2C SCL, ML, P1[1]	23		26	= P1[2], MR
V _{SS} 🗖	24		25	P1[0], MR, I2C SDA, XTALout

Note

6. These are the ISSP pins, which are not High Z after exiting a reset state. See the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices for details.

Pin	Ту	pe	Pin Name	Description
No.	Digital	Analog	1 III Name	Description
43	I/O	I, MR	P2[6]	Direct input to analog block
44	I/O	I, MR	P0[0]	Analog column mux input
45	I/O	I, MR	P0[2]	Analog column mux input
46	I/O	I, MR	P0[4]	Analog column mux input
47	I/O	I, MR	P0[6]	Analog column mux input
48	Power		V _{DD}	Supply voltage

Table 3. 48-pin Part Pinout (SSOP) (continued)

LEGEND: A = Analog, I = Input, O = Output, MR= Right analog mux bus input, ML= Left analog mux bus input

Registers

This section lists the registers of this PSoC device family by mapping tables. For detailed register information, refer to the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices.

Register Conventions

The register conventions specific to this section are listed in the following table.

Table 4. Abbreviations

Convention	Description
RW	Read and write register or bit(s)
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XIO bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Мах	Units	Notes
T _{STG}	Storage temperature	-55	25	+150	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C \pm 25 °C. Time spent in storage at a temperature greater than 65 °C counts toward the Flash _{DR} electrical specification in Table 16 on page 20.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
^t BAKETIME	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied A-grade devices E-grade devices	-40 -40	-	+85 +125	℃ ℃	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
V _{IOz}	DC voltage applied to tristate	V _{SS} – 0.5	_	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	_	_	V	Human body model ESD
LU	Latch up current	_	_	200	mA	

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature A-grade devices E-grade devices	-40 -40		+85 +125	°C °C	
Τ _J	Junction temperature A-grade devices E-grade devices	-40 -40		+100 +135	°C °C	The temperature rise from ambient to junction is package specific. See Table 27 on page 34. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip Level Specifications

Table 9 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage A-grade devices E-grade devices	3.0 4.75		5.25 5.25	V V	See Table 15 on page 19
I _{DD}	Supply current A-grade devices, $3.0 V \le V_{DD} \le 3.6 V$	_	4	7	mA	CPU = 3 MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, Analog blocks
A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	_	7 8	12 15	mA mA	disabled
I _{SB}	Sleep (mode) current A-grade devices, $3.0 V \le V_{PD} \le 3.6 V$	_	3	12	μΑ	Everything disabled except ILO, POR, LVD, Sleep Timer, and WDT circuits
	A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	-	4	25 25	μΑ	
I _{SBXTL}	Sleep (mode) current with ECO A-grade devices,	_	4	13	μΑ	Everything disabled except ECO, POR, LVD, Sleep Timer, and WDT
	A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	-	5 5	26 26	μA uA	
V _{REF}	Reference voltage (Bandgap)	1.275	1.30	1.325	V	Trimmed for appropriate V _{DD} setting.

Table 9. DC Chip Level Specifications

DC GPIO Specifications

Table 10 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 10. DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	Also applies to the internal pull-down resistor on the XRES pin
V _{OH}	High output level	V _{DD} – 1.0	_	_	V	I_{OH} = 10 mA, V_{DD} = 4.75 to 5.25 V (80 mA maximum combined I_{OH} budget)
V _{OL}	Low output level	-	_	0.75	V	I_{OL} = 25 mA, V_{DD} = 4.75 to 5.25 V (100 mA maximum combined I_{OL} budget)
		_	-	0.65	V	I_{OL} = 5 mA, V_{DD} = 3.0 to 3.6 V
I _{ОН}	High-level source current	10	_	-	mA	$V_{OH} \ge V_{DD} - 1.0 \text{ V}$, see the limitations of the total current in the note for V_{OH} .
I _{OL}	Low-level sink current	25	_	_	mA	$V_{OL} \le 0.75$ V, see the limitations of the total current in the note for V_{OL} .
V _{IL}	Input low level	_	-	0.8	V	
V _{IH}	Input high level	2.1	_		V	
V _H	Input hysteresis	_	60	_	mV	
IIL	Input leakage (absolute value)	_	1	_	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	_	3.5	10	pF	Package and pin dependent. T _A = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent. $T_A = 25 \text{ °C}$

DC Programming Specifications

Table 16 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 16. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify A-grade devices E-grade devices	3.0 4.7	3.1 4.8	3.2 4.9	V V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation A-grade devices E-grade devices	3.0 4.75		5.25 5.25	V V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	Ι	-	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	_	_	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	-	-	0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block) ^[8, 9] A-grade devices E-grade devices	1,000 100			-	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[9, 10] CY8C21x45 A-grade devices CY8C22x45 A-grade devices CY8C21x45 E-grade devices CY8C22x45 E-grade devices	128,000 256,000 12,800 25,600		- - - -	_ _ _	Erase/write cycles
Flash _{DR}	Flash data retention ^[9] A-grade devices E-grade devices	10 10			Years Years	

Notes

The erase/write cycle limit per block (Flash_{ENPB}) is only guaranteed if the device operates within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.

9. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

10. The maximum total number of allowed erase/write cycles is the minimum Flash ENPB value multiplied by the number of flash blocks in the device.

Table 17. AC Chip-Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
t _{JIT_IMO} ^[13]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	700	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	900	ps	N = 32
	24 MHz IMO period jitter (RMS)	_	100	400	ps	
t _{JIT_PLL} ^[13]	PLL cycle-to-cycle jitter (RMS)	_	200	800	ps	
	PLL long term N cycle-to-cycle jitter (RMS)	-	300	1200	ps	N = 32
	PLL period jitter (RMS)	-	100	700	ps	

Note

13. Refer to Cypress Jitter Specifications document, Understanding Datasheet Jitter Specifications for Cypress Timing Products for more information.

AC Digital Block Specifications

The following tables list the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Function	Description Min Typ Max Units		Notes			
All functions	Block Input Clock Frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	V _{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
Timer	Input Clock Frequency					
	No Capture, $V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	No Capture, V _{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
	With Capture	-	-	25.2 ^[15]	MHz	
	Capture Pulse Width	50 ^[14]	-	-	ns	
Counter	Input Clock Frequency					
	No Enable Input, $V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	No Enable Input, V_{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
	With Enable Input	-	-	25.2 ^[15]	MHz	
	Enable Input Pulse Width	50 ^[14]	-	-	ns	
Dead Band	Kill Pulse Width					
	Asynchronous Restart Mode	20	-	-	ns	
	Synchronous Restart Mode	50 ^[14]	-	-	ns	
	Disable Mode	50 ^[14]	-	-	ns	
	Input Clock Frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	V _{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
CRCPRS	Input Clock Frequency			-	1	
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	V _{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
CRCPRS (CRC Mode)	Input Clock Frequency	-	-	25.2 ^[15]	MHz	
SPIM	Input Clock Frequency	-	_	8.4 ^[15]	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input Clock (SCLK) Frequency	-	-	4.2 ^[15]	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_Negated Between Transmissions	50 ^[14]	-	_	ns	

Table 20. AC Digital Block Specifications

Note

14.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC External Clock Specifications

The following tables list the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 21. AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz	
-	High period	20.0	-	5300	ns	
-	Low period	20.0	-	-	ns	
-	Power-up IMO to switch	150	-	-	μs	

AC SAR10 ADC Specifications

Table 22 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 22. AC SAR10 ADC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{INADC}	SAR ADC input clock frequency	_	-	2	MHz	The sample rate of the SAR10 ADC is equal to F _{INADC} divided by 13.

AC Programming Specifications

Table 23 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Description	Min	Тур	Max	Units	Notes
Rise time of SCLK	1	-	20	ns	
Fall time of SCLK	1	-	20	ns	
Data setup time to falling edge of SCLK	40	-	-	ns	
Data hold time from falling edge of SCLK	40	-	-	ns	
Frequency of SCLK	0	-	8	MHz	
Frequency of SCLK	0	-	6	MHz	$V_{DD} \le 3.6 \text{ V}$
Flash erase time (block)	-	10	40 ^[16]	ms	
Flash block write time	-	40	160 ^[16]	ms	
Data out delay from falling edge of SCLK	-	-	55	ns	V _{DD} > 3.6 V, 30 pF load
Data out delay from falling edge of SCLK	-	-	65	ns	3.0 V \leq V_{DD} \leq 3.6 V, 30 pF load
Total flash block program time (t _{ERASEB} + t _{WRITE}), hot	-	_	100 ^[16]	ms	$T_{J} \ge 0 \ ^{\circ}C$
Total flash block program time (t _{ERASEB} + t _{WRITE}), cold	_	_	$- 200^{[16]} ms T_{\rm J} < 0 \ ^{\circ}{\rm C}$		T _J < 0 °C
	DescriptionRise time of SCLKFall time of SCLKData setup time to falling edge of SCLKData hold time from falling edge of SCLKFrequency of SCLKFrequency of SCLKFlash erase time (block)Flash block write timeData out delay from falling edge of SCLKData out delay from falling edge 	DescriptionMinRise time of SCLK1Fall time of SCLK1Data setup time to falling edge of SCLK40Data hold time from falling edge of SCLK40Frequency of SCLK0Frequency of SCLK0Flash erase time (block)-Flash block write time-Data out delay from falling edge of SCLK-Data out delay from falling edge of SCLK-Total flash block program time (t _{ERASEB} + t _{WRITE}), hot-Total flash block program time (t _{ERASEB} + t _{WRITE}), cold-	DescriptionMinTypRise time of SCLK1-Fall time of SCLK1-Data setup time to falling edge of SCLK40-Data hold time from falling edge of SCLK40-Frequency of SCLK0-Frequency of SCLK0-Flash erase time (block)-10Flash block write time-40Data out delay from falling edge of SCLKData out delay from falling edge of SCLKTotal flash block program time (t _{ERASEB} + t _{WRITE}), hotTotal flash block program time (t _{ERASEB} + t _{WRITE}), cold	DescriptionMinTypMaxRise time of SCLK1-20Fall time of SCLK1-20Data setup time to falling edge of SCLK40Data hold time from falling edge of SCLK40Data hold time from falling edge of SCLK0-8Frequency of SCLK0-6Flash erase time (block)-1040 [16]Flash erase time (block)-10160 [16]Data out delay from falling edge of SCLK55Data out delay from falling edge of SCLK65Total flash block program time (t _{ERASEB} + t _{WRITE}), hot100 [16]Total flash block program time (t _{ERASEB} + t _{WRITE}), cold200 [16]	DescriptionMinTypMaxUnitsRise time of SCLK1-20nsFall time of SCLK1-20nsData setup time to falling edge of SCLK40nsData hold time from falling edge of SCLK40nsData hold time from falling edge of SCLK40nsFrequency of SCLK0-8MHzFrequency of SCLK0-6MHzFlash erase time (block)-1040 [¹⁶]msFlash block write time-40160 [¹⁶]msData out delay from falling edge of SCLK65nsData out delay from falling edge of SCLK65nsTotal flash block program time (t _{ERASEB} + t _{WRITE}), hot200 [¹⁶]ms

Table 23. AC Programming Specifications

Note

16. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

AC I²C Specifications

Table 24 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 24. AC Characteristics of the I ² C SDA and SCL P
--

Symbol	Description	Standar	rd Mode	Fast Mode		Unite
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100 ^[17]	0	400 ^[17]	kHz
^t HDSTAI2C	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μS
t _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS
t _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	0.6	-	μS
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μS
t _{HDDATI2C}	Data hold time	0	-	0	-	μS
t _{SUDATI2C}	Data setup time	250	-	100 ^[18]	-	ns
t _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μS
t _{BUFI2C}	Bus-free time between a STOP and START condition	4.7	-	1.3	-	μS
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter	_	-	0	50	ns

Figure 9. Definition for Timing for Fast/Standard Mode on the I²C Bus

Notes

18. A Fast-Mode I²C-bus device can be used in a Standard-Mode I²C-bus system, but the requirement $t_{SUDATI2C} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{rmax} + t_{SUDATI2C} = 1000 + 250 = 1250$ ns (according to the standard-mode I²C-bus specification) before the SCL line is released.

^{17.} F_{SCLI2C} is derived from SysClk of the PSoC. This specification assumes that SysClk is operating at 24 MHz, nominal. If SysClk is at a lower frequency, then the F_{SCLI2C} specification adjusts accordingly.

Development Tool Selection

This section presents the development tools available for the automotive CY8C21x45 and CY8C22x45 families.

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for years. PSoC Designer is available free of charge at http://www.cypress.com. PSoC Designer comes with a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store. The online store also has the most up to date information on kit contents, descriptions, and availability.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface allows users to run, halt, and single step the processor and view the contents of specific memory locations. Advanced emulation features are also supported through PSoC Designer. The kit includes:

- ICE-Cube unit
- 28-pin PDIP emulation pod for CY8C29466-24PXI
- 28-pin CY8C29466-24PXI PDIP PSoC device samples (two)
- PSoC Designer software CD
- ISSP cable
- MiniEval socket programming and evaluation board
- Backward compatibility cable (for connecting to legacy pods)
- Universal 110/220 power supply (12 V)
- European plug adapter
- USB 2.0 cable
- Getting Started guide
- Development kit registration form

CY3280-22X45 Universal CapSense Controller Board

The CY3280-22X45 controller board is an additional controller board for the CY3280-BK1 Universal CapSense Controller Kit. The Universal CapSense Controller kit is designed for easy prototyping and debug of CapSense designs with pre-defined control circuitry and plug-in hardware. The CY3280-22X45 kit contains no plug-in hardware. Therefore, it is only usable if plug-in hardware is purchased as part of the CY3280-BK1 kit or other separate kits. The kit includes:

- CY3280-22X45 universal CapSense controller board
- CY3280-22X45 universal CapSense controller board CD
- DC power supply
- Printed documentation

CY3280-CPM1 CapSensePlus Module

The CY3280-CPM1 CapSensePlus Module is a plug-in module board for the CY3280-22X45 CapSense controller board kit. This plug-in module has no capacitive sensors on it. Instead, it has other general circuitry (such as a seven-segment display, potentiometer, LEDs, buttons, thermistor) that can be used to develop applications that require capacitive sensing along with other additional functionality. To use this kit, a CY3280-22X45 kit is required.

Evaluation Tools

All evaluation tools can be purchased from the Cypress online store. The online store also has the most up-to-date information on kit contents, descriptions, and availability.

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, an RS-232 port, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- 28-pin CY8C29466-24PXI PDIP PSoC device sample (two)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY8C21345/CY8C21645 CY8C22345/CY8C22345H/CY8C22645

Tape and Reel Information

Figure 12. 28-pin SSOP (209 Mils) Carrier Tape, 51-51100

NOTES:

6 Supplier P/N: SSOP28-3 CL3 22B3 Lxx W16

51-51100 *D

CY8C21345/CY8C21645 CY8C22345/CY8C22345H/CY8C22645

Figure 15. 48-pin SSOP (300 Mils) Tube, 51-51000

NOTES:

51-51000 *L

SOIC16/20/24/28, 300 MILS, GREEN

S0/20/24/28/32,SS0P48/56,S0(C16/20/24/28, 300 MLS, ORANGE WITH BLUE PRINT

SOJ20/24/28/32,SSOP48/56,SOIC%/20/24/28, 300 MLS, SLOTTED RED TUBE WITH BLUE PRINT

S0J20/24/28/32,SS0 PINK PREPLUGGED

SOTB3-G-PNK

SOTB3-0

SOTB3-R

Document Conventions

Units of Measure

Table 32 lists the units of measure that are used in this document.

Table 32. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
kВ	1024 bytes	ms	millisecond
°C	degree Celsius	mV	millivolt
kHz	kilohertz	nA	nanoampere
kΩ	kilohm	ns	nanosecond
LSbit	least-significant bit	W	ohm
MHz	megahertz	%	percent
μA	microampere	pF	picofarad
μs	microsecond	ps	picosecond
μV	microvolt	pА	picoampere
mA	milliampere	V	volt
mm	millimeter	W	watt

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
API (Application Programming Interface)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias	1. A systematic deviation of a value from a reference value.
	2. The amount by which the average of a set of values departs from a reference value.
	3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

Glossary (continued)

SRAM	An acronym for static random access memory. A memory device allowing users to store and retrieve data at a high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level Application Programming Interface (API) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Document History Page (continued)

Document System-or Document	Document Title: CY8C21345/CY8C21645/CY8C22345/CY8C22345H/CY8C22645, Automotive PSoC [®] Programmable System-on-Chip™ Document Number: 001-55397						
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
*J	3341627	BTK/NJF	08/11/2011	Updated I ² C timing diagram to improve clarity. Updated wording, formatting, and notes of the AC Digital Block Specifications table to improve clarity. Added V_{DDP} , V_{DDLV} , and V_{DDHV} electrical specifications to give more infor- mation for programming the device. Updated solder reflow temperature specifications to give more clarity. Updated the jitter specifications. Updated PSoC Device Characteristics table. Updated the F _{32KU} electrical specification. Updated note for R _{PD} electrical specification. Updated note for the T _{STG} electrical specification to add more clarity. Removed CY8C22345H-24PVXA(T) devices from datasheet.			
*К	3732256	MASJ	10/04/2012	Updated Features (Included CY8C22345H device related information). Updated PSoC Functional Overview (Updated Digital System (Changed PWM description string from "8- to 32-bit" to "8- and 16-bit"), added Haptics TS2000 Controller). Updated Development Tool Selection (Updated Accessories (Emulation and Programming) (Updated Table 25)). Updated Electrical Specifications (Updated DC Electrical Characteristics (Updated DC GPIO Specifications (Updated Table 10 (To include the V _{OL} specification for V _{DD} = 3.0 to 3.6 V condition)))). Updated Ordering Information (Updated part numbers). Updated Packaging Information (Updated Package Dimensions (spec 51-85061 (Changed revision from *D to *F), spec 51-51100 (Changed revision from *B to *C)), updated Tube Information (spec 51-511029, spec 51-51000)).			
*L	4479445	ASRI	08/20/2014	Updated Electrical Specifications: Updated DC Electrical Characteristics: Added DC IDAC Specifications. Updated Packaging Information: Updated Tape and Reel Information: spec 51-51100 – Changed revision from *C to *D. spec 51-51104 – Changed revision from *D to *E. Updated in new template. Completing Sunset Review.			
*M	4513128	ASRI	09/25/2014	Updated Packaging Information: Updated Tube Information: spec 51-51000 – Changed revision from *K to *L. Added Errata.			