

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 3x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c22345h-24pvxa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY8C21345/CY8C21645 CY8C22345/CY8C22345H/CY8C22645

Contents

PSoC Functional Overview	3
PSoC Core	3
Digital System	3
Analog System	4
Haptics TS2000 Controller	4
Additional System Resources	5
PSoC Device Characteristics	5
Getting Started	6
Application Notes	6
Development Kits	6
Training	6
CYPros Consultants	6
Solutions Library	6
Technical Support	6
Development Tools	6
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	7
Select User Modules	7
Configure User Modules	7
Organize and Connect	7
Generate, Verify, and Debug	7
Pinouts	8
28-pin Part Pinout	8
48-pin Part Pinout	9
Registers	10
Register Conventions	10
Register Mapping Tables	10
Absolute Maximum Ratings	13
Operating Temperature	13
Electrical Specifications	14
DC Electrical Characteristics	15
AC Electrical Characteristics	21

Development Tool Selection	29
Software	
Development Kits	29
Evaluation Tools	29
Device Programmers	30
Accessories (Emulation and Programming)	30
Ordering Information	31
Ordering Code Definitions	32
Packaging Information	33
Package Dimensions	33
Thermal Impedances	34
Capacitance on Crystal Pins	34
Solder Reflow Specifications	34
Tape and Reel Information	35
Tube Information	37
Acronyms	39
Reference Documents	39
Document Conventions	40
Units of Measure	40
Numeric Conventions	40
Glossary	40
Errata	45
Part Numbers Affected	45
CY8C21x45, CY8C22x45 Qualification Status	45
Errata Summary	45
Document History Page	47
Sales, Solutions, and Legal Information	49
Worldwide Sales and Design Support	49
Products	49
PSoC® Solutions	49
Cypress Developer Community	49
Technical Support	49

The digital blocks may be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This provides a choice of system resources for your application. Family resources are shown in Table 1 on page 5.

Analog System

The Analog System of CY8C21x45 and CY8C22x45 PSoC devices consists of a 10-bit SAR ADC and six configurable analog blocks.

The programmable 10-bit SAR ADC is an optimized ADC with a fast maximum sample rate. External filters are required on ADC input channels for antialiasing. This ensures that any out-of-band content is not folded into the input signal band.

Reconfigurable analog resources allow creating complex analog signal flows. Analog peripherals are very flexible and may be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are:

- Analog-to-digital converters (single or dual, with up to 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to four) with absolute (1.3 V) reference or DAC reference
- Precision voltage reference (1.3 V nominal)

CY8C21x45 and CY8C22x45 devices have six limited-functionality Type 'E' analog blocks. These analog blocks are arranged in four columns. Each column contains one continuous time (CT) Type E block. The first two columns also have a switched capacitor (SC) type E block. Refer to the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices for detailed information on the Type E analog blocks.

Figure 2. Analog System Block Diagram

Haptics TS2000 Controller

The CY8C22x45H family of devices features an easy-to-use Haptics controller resource with up to 14 different effects. These effects are available for use with three different, selectable ERM modules.

Additional System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful for complete systems. Additional resources include a MAC, low voltage detection, and power on reset. The merits of each system resource are:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Additional digital resources and clocks dedicated to and optimized for CapSense.

- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.
- The I²C module provides 0 to 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power on reset (POR) circuit eliminates the need for a system supervisor.
- An internal voltage reference provides an absolute reference for the analog system, including ADCs and DACs.

RTC hardware block.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have varying numbers of digital and analog blocks. The following table lists the resources available for specific PSoC device groups. The PSoC families covered by this datasheet are highlighted in the table.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66 ^[2]	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[3]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94 ^[2]	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A ^[2]	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45 ^[2]	up to 38	2	8	up to 38	0	4	6 ^[3]	1 K	16 K
CY8C21x45 ^[2]	up to 24	1	4	up to 24	0	4	6 ^[3]	512	8 K
CY8C21x34 ^[2]	up to 28	1	4	up to 28	0	2	4 [3]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 [3]	256	4 K
CY8C20x34 ^[2]	up to 28	0	0	up to 28	0	0	3 ^[3, 4]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[3, 4]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Notes

2. Automotive qualified devices available in this group.

3. Limited analog functionality.

4. Two analog blocks and one $\mathsf{CapSense}^{\texttt{®}}$ block.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality In-Circuit Emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24-MHz) operation.

Designing with PSoC Designer

The development process for the PSoC[®] device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a pulse width modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

CY8C21345/CY8C21645 CY8C22345/CY8C22345H/CY8C22645

48-pin Part Pinout

Table 3. 48-pin Part Pinout (SSOP)

Pin	l IX	pe	Din Mana	Description					
No.	Digital	Analog	Fin Name	Description					
1	I/O	I, MR	P0[7]	Analog column mux input, C _{MOD} capacitor pin					
2	I/O	I, ML	P0[5]	Analog column mux input, C _{MOD} capacitor pin					
3	I/O	I, ML	P0[3]	Analog column mux input					
4	I/O	I, ML	P0[1]	Analog column mux input					
5	I/O	I, ML	P2[7]	Direct input to analog block					
6	I/O	ML	P2[5]	Optional SAR ADC external reference					
7	I/O	ML	P2[3]						
8	I/O	ML	P2[1]						
9	Po	wer	V _{DD}	Supply voltage					
10	I/O	ML	P4[5]						
11	I/O	ML	P4[3]						
12	I/O	ML	P4[1]						
13	Po	wer	V _{SS}	Ground connection					
14	I/O	ML	P3[7]						
15	I/O	ML	P3[5]						
16	I/O	ML	P3[3]						
17	I/O	ML	P3[1]						
18			NC	Not connected					
19			NC	Not connected					
20	I/O	ML	P1[7]	I ² C serial clock					
21	I/O	ML	P1[5]	I ² C serial data					
22	I/O	ML	P1[3]						
23	I/O	ML	P1[1]	Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[6]					
24	Po	wer	V _{SS}	_					
25	I/O	MR	P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[6]					
26	I/O	MR	P1[2]						
27	I/O	MR	P1[4]	Optional external clock input					
28	I/O	MR	P1[6]						
29			NC	Not connected					
30			NC	Not connected					
31	I/O	MR	P3[0]						
32	I/O	MR	P3[2]						
33	I/O	MR	P3[4]						
34	I/O	MR	P3[6]						
35	In	put	XRES	Active high external reset with internal pull-down					
36	I/O	MR	P4[0]						
37	I/O	MR	P4[2]						
38	I/O	MR	P4[4]						
39	Po	wer	V _{SS}	Ground connection					
40	I/O	MR	P2[0]						
41	I/O	MR	P2[2]						
42	I/O	MR	P2[4]						

Figure 4. CY8C21645 and CY8C22645 48-pin PSoC Device

				-
AI, MR, P0[7] 🗖	• 1		48	- V _{DD}
AI, ML, P0[5] 🖛	2		47	= P0[6], MR, Al
AI, ML, P0[3] 🗖	3		46	P0[4], MR, AI
AI, ML, P0[1] 🗖	4		45	= P0[2], MR, AI
AI, ML, P2[7] 🗖	5		44	= P0[0], MR, AI
EXTREF, ML, P2[5] 🖛	6		43	P2[6], MR, AI
ML, P2[3] 🗖	7		42	= P2[4], MR
ML, P2[1] 🗖	8		41	= P2[2], MR
V _{DD} 🗖	9		40	= P2[0], MR
ML, P4[5] 🗖	10		39	Vss
ML, P4[3] 🗖	11		38	= P4[4], MR
ML, P4[1] 🗖	12	SSOD	37	= P4[2], MR
Vss 🖛	13	330F	36	= P4[0], MR
ML, P3[7] 🗖	14		35	XRES
ML, P3[5] 🗖	15		34	= P3[6], MR
ML, P3[3] 🗖	16		33	= P3[4], MR
ML, P3[1] 🗖	17		32	= P3[2], MR
NC 🖛	18		31	= P3[0], MR
NC 🗖	19		30	NC
I2C SCL, ML, P1[7] 🗖	20		29	NC
I2C SDA, ML, P1[5] 🗖	21		28	= P1[6], MR
ML, P1[3] 🗖	22		27	P1[4], MR, EXTCLK
XTALin, I2C SCL, ML, P1[1]	23		26	= P1[2], MR
V _{SS} 🗖	24		25	P1[0], MR, I2C SDA, XTALout

Note

6. These are the ISSP pins, which are not High Z after exiting a reset state. See the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices for details.

Pin	Ту	pe	Pin Name	Description
No.	Digital	Analog	1 III Name	Description
43	I/O	I, MR	P2[6]	Direct input to analog block
44	I/O	I, MR	P0[0]	Analog column mux input
45	I/O	I, MR	P0[2]	Analog column mux input
46	I/O	I, MR	P0[4]	Analog column mux input
47	I/O	I, MR	P0[6]	Analog column mux input
48	Power		V _{DD}	Supply voltage

Table 3. 48-pin Part Pinout (SSOP) (continued)

LEGEND: A = Analog, I = Input, O = Output, MR= Right analog mux bus input, ML= Left analog mux bus input

Registers

This section lists the registers of this PSoC device family by mapping tables. For detailed register information, refer to the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices.

Register Conventions

The register conventions specific to this section are listed in the following table.

Table 4. Abbreviations

Convention	Description
RW	Read and write register or bit(s)
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XIO bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

Table 5. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRT0IE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
PRT2DR	08	RW		48			88		PWMVREF0	C8	#
PRT2IE	09	RW		49			89		PWMVREF1	C9	#
PRT2GS	0A	RW		4A			8A		IDAC_MODE	CA	RW
PRT2DM2	0B	RW		4B			8B		PWM_SRC	CB	#
PRT3DR	0C	RW		4C			8C		TS_CR0	CC	RW
PRT3IE	0D	RW		4D			8D		TS_CMPH	CD	RW
PRT3GS	0E	RW		4E			8E		TS_CMPL	CE	RW
PRT3DM2	0F	RW		4F			8F		TS_CR1	CF	RW
PR14DR	10	RW	CSD0_DR0_L	50	R		90		CUR PP	DO	RW
PR14IE	11	RW	CSD0_DR1_L	51	W		91		SIK_PP	D1	RW
PR14GS	12	RW	CSD0_CN1_L	52	R "		92			D2	DW/
PR14DM2	13	RW	CSD0_CR0	53	#		93			D3	RW
	14		CSD0_DR0_H	54	R M		94		MVAL PP	D4	RW
	10		CSD0_DR1_H	55 56	VV P		95			Do	RW
	10			57			90		12C0_CFG	DO	#
	17			58	R		97		12C0_3CK	D8	# RW
	10		CSD1_DR1_L	59	W		99		12C0_DIX	D0	#
	13		CSD1_CNT_L	54	R		94		INT CLR0	DA	# RW
	10A 1B		CSD1_CR0	5B	#		9B		INT_CLR1	DB	RW
	10		CSD1_DR0_H	50	" R		90			DC	RW
	1D		CSD1_DR1_H	5D	W		9D		INT_CLR3	DD	RW
	1E		CSD1 CNT H	5E	R		9E		INT MSK3	DE	RW
	1F		CSD1 CR1	5F	RW		9F		INT MSK2	DF	RW
DBC00DR0	20	#	AMX IN	60	RW		A0		INT MSK0	E0	RW
DBC00DR1	21	W	AMUX_CFG	61	RW		A1		INT_MSK1	E1	RW
DBC00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBC00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBC01DR0	24	#	CMP_CR0	64	#		A4				
DBC01DR1	25	W	ASY_CR	65	#		A5				
DBC01DR2	26	RW	CMP_CR1	66	RW		A6		DEC _CR0	E6	RW
DBC01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCC02DR0	28	#	ADC0_CR	68	#		A8		MUL0_X	E8	W
DCC02DR1	29	W	ADC1_CR	69	#		A9		MUL0_Y	E9	W
DCC02DR2	2A	RW	SADC_DH	6A	RW		AA		MUL0_DH	EA	R
DCC02CR0	2B	#	SADC_DL	6B	RW		AB		MUL0_DL	EB	R
DCC03DR0	2C	#	TMP_DR0	6C	RW		AC		ACC0_DR1	EC	RW
DCC03DR1	2D	W	TMP_DR1	6D	RW		AD		ACC0_DR0	ED	RW
DCC03DR2	2E	RW	TMP_DR2	6E	RW		AE		ACC0_DR3	EE	RW
DCC03CR0	2F	#	TMP_DR3	6F	RW		AF		ACC0_DR2	EF	RW
DBC10DR0	30	#		70		RDIORI	B0	RW		F0	
DBC10DR1	31	W	1050005	71		RDIOSYN	B1	RW		F1	
DBC10DR2	32	RW	ACE00CR1	72	RW	RDIOIS	B2	RW		F2	
DBC10CR0	33	#	ACEUUCR2	73	RW		B3	RW		+3	
DBC11DR0	34	#		/4			B4	RW		F4	
	35	W	ACE01004	75	DW		85	RW		F5	
DBC110K2	30	KVV	ACEUICKI	/b 77	RVV	RDIUKUT	80	RW	CDU E	F0	
	3/	#	AGEUIGKZ	70	RVV		B/ P ⁰	RW DW/	GPU_F	F/	KL
	38 20	#		70 70			DO PO	RW DW/		FÖ	
	39	VV D\A/		79			B9 DA	RW		F9 EA	
DCC12DR2	3A 2P	KVV #		7A 7P			DA PP	RW DW/		FA	
DCC13DR0	30	#		70		RDI1LT1	BD	RW/	IDACR D	FD	R\//
DCC13DR1	30	# W		70			RD	RW/	IDACL D	FD	RW/
DCC13DR2	3E	RW/		75		RDI1RO1	RF	RW/	CPU_SCR1	FF	#
DCC13CR0	3E	#		7F		RDI1DSM	BF	RW	CPU SCR0	FF	#
Blank fields are Res	erved and mu	st not he a	cressed			# Access is hit spec	fic				

DC Electrical Characteristics

DC Chip Level Specifications

Table 9 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage A-grade devices E-grade devices	3.0 4.75		5.25 5.25	V V	See Table 15 on page 19
I _{DD}	Supply current A-grade devices, $3.0 V \le V_{DD} \le 3.6 V$	_	4	7	mA	CPU = 3 MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, Analog blocks
	A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	_	7 8	12 15	mA mA	disabled
I _{SB}	Sleep (mode) current A-grade devices, $3.0 V \le V_{PD} \le 3.6 V$	_	3	12	μΑ	Everything disabled except ILO, POR, LVD, Sleep Timer, and WDT circuits
	A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	-	4	25 25	μΑ	
I _{SBXTL}	Sleep (mode) current with ECO A-grade devices,	_	4	13	μΑ	Everything disabled except ECO, POR, LVD, Sleep Timer, and WDT
	A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	-	5 5	26 26	μA uA	
V _{REF}	Reference voltage (Bandgap)	1.275	1.30	1.325	V	Trimmed for appropriate V _{DD} setting.

Table 9. DC Chip Level Specifications

DC Operational Amplifier Specifications

The following table lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25°C, unless specified otherwise, and are for design guidance only.

Table 11. DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15	mV	
I _{SOA}	Supply current (absolute value) A-grade devices E-grade devices	-		30 35	μA μA	
TCV _{OSOA}	Average input offset voltage drift	_	10	-	μV/°C	
I _{EBOA} ^[7]	Input leakage current (Port 0 analog pins)	_	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. T _A = 25 °C
V _{CMOA}	Common mode voltage range	0.5	_	V _{DD} – 1	V	

DC IDAC Specifications

The following table lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 12. DC IDAC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC _{GAIN}	IDAC gain	-	75.4	218	nA/bit	IDAC gain at 1x current gain
		-	335	693	nA/bit	IDAC gain at 4x current gain
		-	1160	2410	nA/bit	IDAC gain at 16x current gain
		-	2340	5700	nA/bit	IDAC gain at 32x current gain
	Monotonicity	No	-	-	-	IDAC gain is non-monotonous at step intervals of (0x10)
IDAC _{GAIN_VAR}	IDAC gain variation over temperature –40 °C to 85 °C	-	3.22	-	nA	at 1x current gain
		-	18.1	-	nA	at 4x current gain
		-	59.9	-	nA	at 16x current gain
		-	120	-	nA	at 32x current gain
I _{IDAC}	IDAC current at maximum code (0xFF)	-	19.2	-	μA	at 1x current gain
		-	85.4	-	μA	at 4x current gain
		-	295	-	μA	at 16x current gain
		_	596	_	μA	at 32x current gain

Note

7. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1 – 7 for the lowest leakage of 200 nA.

DC POR and LVD Specifications

Table 15 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 15. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR1} V _{PPOR2}	V _{DD} value for PPOR trip PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.82 4.55	2.95 4.73	V V	V_{DD} must be greater than or equal to 3.0 V during startup, reset from the XRES pin, or reset from Watchdog.
$\begin{array}{c} V_{LVD2} \\ V_{LVD3} \\ V_{LVD4} \\ V_{LVD5} \\ V_{LVD6} \\ V_{LVD7} \end{array}$	$V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ VM[2:0] = 110b \\ VM[2:0] = 100 \\ VM[2:0] =$	2.95 3.06 4.37 4.50 4.62 4.71	3.02 3.13 4.48 4.64 4.73 4.81	3.09 3.20 4.55 4.75 4.83 4.95	V V V V V V	

DC Programming Specifications

Table 16 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 16. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify A-grade devices E-grade devices	3.0 4.7	3.1 4.8	3.2 4.9	V V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation A-grade devices E-grade devices	3.0 4.75		5.25 5.25	V V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	Ι	-	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	_	_	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	-	-	0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block) ^[8, 9] A-grade devices E-grade devices	1,000 100			-	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[9, 10] CY8C21x45 A-grade devices CY8C22x45 A-grade devices CY8C21x45 E-grade devices CY8C22x45 E-grade devices	128,000 256,000 12,800 25,600		- - - -	_ _ _	Erase/write cycles
Flash _{DR}	Flash data retention ^[9] A-grade devices E-grade devices	10 10			Years Years	

Notes

The erase/write cycle limit per block (Flash_{ENPB}) is only guaranteed if the device operates within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.

9. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

10. The maximum total number of allowed erase/write cycles is the minimum Flash ENPB value multiplied by the number of flash blocks in the device.

AC Digital Block Specifications

The following tables list the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Function	Description	Min	Тур	Max	Units	Notes
All functions	Block Input Clock Frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	V _{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
Timer	Input Clock Frequency					
	No Capture, $V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	No Capture, V _{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
	With Capture	-	-	25.2 ^[15]	MHz	
	Capture Pulse Width	50 ^[14]	-	-	ns	
Counter	Input Clock Frequency					
	No Enable Input, $V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	No Enable Input, V_{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
	With Enable Input	-	-	25.2 ^[15]	MHz	
	Enable Input Pulse Width	50 ^[14]	-	-	ns	
Dead Band	Kill Pulse Width					
	Asynchronous Restart Mode	20	-	-	ns	
	Synchronous Restart Mode	50 ^[14]	-	-	ns	
	Disable Mode	50 ^[14]	-	-	ns	
	Input Clock Frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	V _{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
CRCPRS	Input Clock Frequency			-	1	
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4 ^[15]	MHz	
	V _{DD} < 4.75 V	-	-	25.2 ^[15]	MHz	
CRCPRS (CRC Mode)	Input Clock Frequency	-	-	25.2 ^[15]	MHz	
SPIM	Input Clock Frequency	-	_	8.4 ^[15]	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input Clock (SCLK) Frequency	_	-	4.2 ^[15]	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_Negated Between Transmissions	50 ^[14]	-	-	ns	

Table 20. AC Digital Block Specifications

Note

14.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC Programming Specifications

Table 23 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Description	Min	Тур	Max	Units	Notes
Rise time of SCLK	1	-	20	ns	
Fall time of SCLK	1	-	20	ns	
Data setup time to falling edge of SCLK	40	-	-	ns	
Data hold time from falling edge of SCLK	40	-	-	ns	
Frequency of SCLK	0	-	8	MHz	
Frequency of SCLK	0	-	6	MHz	$V_{DD} \le 3.6 \text{ V}$
Flash erase time (block)	-	10	40 ^[16]	ms	
Flash block write time	-	40	160 ^[16]	ms	
Data out delay from falling edge of SCLK	-	-	55	ns	V _{DD} > 3.6 V, 30 pF load
Data out delay from falling edge of SCLK	-	-	65	ns	3.0 V \leq V_{DD} \leq 3.6 V, 30 pF load
Total flash block program time (t _{ERASEB} + t _{WRITE}), hot	-	_	100 ^[16]	ms	$T_{J} \ge 0 \ ^{\circ}C$
Total flash block program time (t _{ERASEB} + t _{WRITE}), cold	_	_	200 ^[16]	ms	T _J < 0 °C
	DescriptionRise time of SCLKFall time of SCLKData setup time to falling edge of SCLKData hold time from falling edge of SCLKFrequency of SCLKFrequency of SCLKFlash erase time (block)Flash block write timeData out delay from falling edge of SCLKData out delay from falling edge 	DescriptionMinRise time of SCLK1Fall time of SCLK1Data setup time to falling edge of SCLK40Data hold time from falling edge of SCLK40Frequency of SCLK0Frequency of SCLK0Flash erase time (block)-Flash block write time-Data out delay from falling edge of SCLK-Data out delay from falling edge of SCLK-Total flash block program time (t _{ERASEB} + t _{WRITE}), hot-Total flash block program time (t _{ERASEB} + t _{WRITE}), cold-	DescriptionMinTypRise time of SCLK1-Fall time of SCLK1-Data setup time to falling edge of SCLK40-Data hold time from falling edge of SCLK40-Frequency of SCLK0-Frequency of SCLK0-Flash erase time (block)-10Flash block write time-40Data out delay from falling edge of SCLKData out delay from falling edge of SCLKTotal flash block program time (t _{ERASEB} + t _{WRITE}), hotTotal flash block program time (t _{ERASEB} + t _{WRITE}), cold	DescriptionMinTypMaxRise time of SCLK1-20Fall time of SCLK1-20Data setup time to falling edge of SCLK40Data hold time from falling edge of SCLK40Data hold time from falling edge of SCLK0-8Frequency of SCLK0-6Flash erase time (block)-1040 [16]Flash erase time (block)-10160 [16]Data out delay from falling edge of SCLK55Data out delay from falling edge of SCLK65Total flash block program time (t _{ERASEB} + t _{WRITE}), hot100 [16]Total flash block program time (t _{ERASEB} + t _{WRITE}), cold200 [16]	DescriptionMinTypMaxUnitsRise time of SCLK1-20nsFall time of SCLK1-20nsData setup time to falling edge of SCLK40nsData hold time from falling edge of SCLK40nsData hold time from falling edge of SCLK40nsFrequency of SCLK0-8MHzFrequency of SCLK0-6MHzFlash erase time (block)-1040 [¹⁶]msFlash block write time-40160 [¹⁶]msData out delay from falling edge of SCLK65nsData out delay from falling edge of SCLK65nsTotal flash block program time (t _{ERASEB} + t _{WRITE}), hot200 [¹⁶]ms

Table 23. AC Programming Specifications

Note

16. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows the user to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Accessories (Emulation and Programming)

Table 25. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. This software is free and can be downloaded from http://www.cypress.com. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240-V power supply, Euro-Plug adapter
- USB 2.0 cable

Part Number	Pin Package	Pod Kit ^[19]	Foot Kit ^[20]	Prototyping Module	Adapter ^[21]
CY8C21345-24PVXA CY8C21345-12PVXE CY8C22345-24PVXA CY8C22345H-24PVXA CY8C22345H-24PVXA CY8C22345-12PVXE	28-pin SSOP	CY3250-22345	CY3250-28SSOP-FK	_	AS-28-28-02SS-6ENP-GANG
CY8C21645-24PVXA CY8C21645-12PVXE CY8C22645-24PVXA CY8C22645-12PVXE	48-pin SSOP	-	_	_	AS-48-48-01SS-6-GANG

Notes

19. Pod kit contains an emulation pod, a flex-cable (connects the pod to the ICE), two feet, and device samples.

- 20. Foot kit includes surface mount feet that can be soldered to the target PCB.
- 21. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Ordering Code Definitions

Glossary (continued)

block	1. A functional unit that performs a single function, such as an oscillator.
	 A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows the user to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.
digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.
duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.

Glossary (continued)

external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls below a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .
microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.

Glossary (continued)

modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.

Errata

This section describes the errata for the CY8C21x45, CY8C22x45 family of PSoC devices. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Device Characteristics
CY8C21345	All Variants
CY8C21645	All Variants
CY8C22345	All Variants
CY8C22645	All Variants

CY8C21x45, CY8C22x45 Qualification Status

Product Status: In Production

Errata Summary

The following table defines the errata applicable for this PSoC family device.

Items	Part Number	Silicon Revision	Fix Status
1. Free Running Nonstop Reading cause 7 LSB Pseudo Code Variation in SAR10ADC	All CY8C21x45, CY8C22x45 devices affected	All	Silicon fix not planned. Use workaround.
2. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes	All CY8C21x45, CY8C22x45 devices affected	All	Silicon fix not planned. Use workaround.

1. Free Running Nonstop Reading cause 7 LSB Pseudo Code Variation in SAR10ADC

Problem Definition

In free running mode, there can be a variation of up to 7 LSB in the digital output of SAR10 ADC.

Parameters Affected

Code Variation. This is not a specified parameter.

It is defined as the number of unique output codes generated by the ADC for a given constant input voltage, in addition to the correct code. For example, for an input voltage of 2.000 V, the expected code is 190hex and the ADC generates three codes: 191hex, 190hex, and 192hex. The code variation is 2 LSB.

Trigger Condition(S)

SAR10 ADC is configured in the free running mode. When ADC is operated in free running mode, for a constant input voltage output of ADC can have a variation of up to 7LSB. This can be resolved by using the averaging technique or by disabling the free running mode before reading the data and enabling again after reading the data.

Scope of Impact

Inaccurate output is possible.

Workaround

This issue can be averted by using one or both of the following workarounds. Consult a Cypress representative for additional assistance.

- Use the averaging technique. That is, take multiple samples of the input, and use a digital averaging filter.
- Disable the free running mode before reading data out, and enable the free running mode after completing the read operation.

Fix Status

No silicon fix is planned.

2. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes

Problem Definition

Asynchronous Digital Communications Interfaces may fail framing beyond 0 to 70 °C. This problem does not affect end-product usage between 0 and 70 °C.

Parameters Affected

The IMO frequency tolerance. The worst case deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is ±5%.

Trigger Condiiton(S)

The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the datasheet limit of $\pm 2.5\%$ when operated beyond the temperature range of 0 to ± 70 °C.

Scope of Impact

This problem may affect UART, IrDA, and FSK implementations.

Workaround

Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.

Fix Status

The cause of this problem and its solution has been identified. No silicon fix is planned to correct the deficiency in silicon.