Silicon Labs - C8051F350 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x24b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f350

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. System Overview

C8051F350/1/2/3 devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 50 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- 24 or 16-bit single-ended/differential ADC with analog multiplexer
- Two 8-bit Current Output DACs
- Precision programmable 24.5 MHz internal oscillator
- 8 kB of on-chip Flash memory
- 768 bytes of on-chip RAM
- SMBus/I2C, Enhanced UART, and SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable counter/timer array (PCA) with three capture/compare modules and watchdog timer function
- On-chip power-on reset, V_{DD} monitor, and temperature sensor
- On-chip voltage comparator
- 17 Port I/O (5 V tolerant)

With on-chip power-on reset, V_{DD} monitor, watchdog timer, and clock oscillator, the C8051F350/1/2/3 devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for 2.7 V-to-3.6 V operation over the industrial temperature range (-45 to +85 °C). The Port I/O and /RST pins are tolerant of input signals up to 5 V. The C8051F350/1/2/3 are available in 28-pin MLP or 32-pin LQFP packaging, as shown in Figure 1.1 through Figure 1.4.

1.2. On-Chip Debug Circuitry

The C8051F350/1/2/3 devices include on-chip Silicon Labs 2-Wire (C2) debug circuitry that provides non-intrusive, full speed, in-circuit debugging of the production part *installed in the end application*.

Silicon Labs' debugging system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, timers, or communications channels are required. All the digital and analog peripherals are functional and work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F350DK development kit provides all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8051F350/1/2/3 MCUs. The kit includes software with a developer's studio and debugger, an integrated 8051 assembler, and an RS-232 to C2 serial adapter. It also has a target application board with the associated MCU installed and prototyping area, plus the RS-232 and C2 cables, and wall-mount power supply. The Development Kit requires a Windows 95/98/NT/ME/2000 computer with one available RS-232 serial port. As shown in Figure 1.5, the PC is connected via RS-232 to the Serial Adapter. A six-inch ribbon cable connects the Serial Adapter to the user's application board, picking up the two C2 pins, V_{DD} , and GND. The Serial Adapter takes its power from the application board. For applications where there is not sufficient power available from the target board, the provided power supply can be connected directly to the Serial Adapter.

The Silicon Labs IDE interface is a vastly superior developing and debugging configuration, compared to standard MCU emulators that use on-board "ICE Chips" and require the MCU in the application board to be socketed. Silicon Labs' debug paradigm increases ease of use and preserves the performance of the precision analog peripherals.

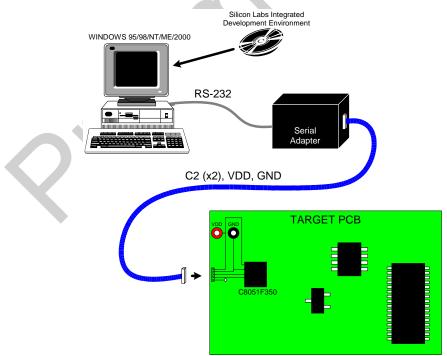


Figure 1.5. Development/In-System Debug Diagram

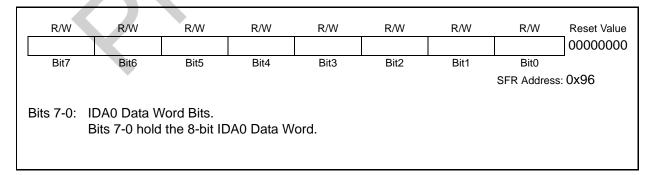
Figure 5.20. /	ADC0H: ADC0 C	conversion Regis	ster (SINC3 Filter) High Byte
		<u> </u>		/

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
			AD	C0H				0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xC5
Bits 7-0:	ADC0H: AD	C0 Convers	sion Registe	er (SINC3 F	ilter) Hiah B	svte.		

Figure 5.21. ADC0M: ADC0 Conversion Register (SINC3 Filter) Middle Byte

5.44	5 444	5.44	-	5.44		5.4.4	-	5
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
			AD	COM				00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xC4
Bits 7-0:	ADC0M: AD0 C8051F350/ result. C8051F352/3 result.	1: This regi	ster contain	s bits 15-8 d	of the 24-bit	ADC SIN		

Figure 5.22. ADC0L: ADC0 Conversion Register (SINC3 Filter) Low Byte


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
			AD	COL				0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xC3
Bits 7-0:	ADC0L: ADC C8051F350/ result. C8051F352/	1: This regi	ster contair	s bits 7-0 o	f the 24-bit	ADC SINC	3 filter conv	version

R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	Reset Value
IDA0EN		IDA0CM		IDA0CSC	-	-		01110000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xB9
Bit 7:	IDA0EN: ID	A0 Enable.						
	0: IDA0 Dis	abled.						
	1: IDA0 Ena	abled.						
Bits 6-4:		0]: IDA0 Upda						
		utput update						
		utput update						
		utput update						
		utput update						
		utput update	•	•				
		utput update						
		utput updates			STR.			
D'' O		utput updates						
Bit 3:		DA0 Constar				I		
		draw on V _{DD} i						
		draw on V _{DD} i			Output We	ord.		
Bit 2:		ead = 0b, Wri						
Bits 1:0:		1:0]: IDA0 Ou						
		A full-scale ou						
		full-scale out						
		full-scale out						
	11: 2.0 mA	full-scale out	out current	t.				

Figure 6.3. IDA0CN: IDA0 Control Register

Figure 6.4. IDA0: IDA0 Data Word Register

Mnemonic	Description	Bytes	Clock
MOV @Ri, direct	Move direct byte to indirect RAM	2	Cycles 2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
	Boolean Manipulation		
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
	Program Branching		
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4

Table 10.1. CIP-51 Instruction Set Summary (Continued)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ET3	Reserved	ECP0	EPCA0	EADC0	Reserved	Reserved	ESMB0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	: 0xE6
Bit 7:	ET3: Enable	Timer 3 In	terrupt.					
	This bit sets	the maskin	g of the Tim	ner 3 interru	ıpt.			
	0: Disable Tir							
	1: Enable inte				TF3L or TF	3H flags.		
Bit 6:	RESERVED.			-				
Bit 5:	ECP0: Enabl		· · ·					
	This bit sets		•	0 interrupt.				
	0: Disable Cl			atod by the				
Bit 4:	1: Enable inte EPCA0: Enal						5.	
DIL 4.	This bit sets					snupt.		
	0: Disable all			Ao interiup				
	1: Enable inte			ated by PC/	AO.			
Bit 3:	EADC0: Ena		•	-				
	This bit sets					ete interrupt		
	0: Disable A	DC0 Conve	ersion Comp	olete interru	pt.			
	1: Enable inte	errupt requ	ests genera	ated by the	AD0INT flag	J.		
Bits 2-1:	RESERVED.							
Bit 0:	ESMB0: Ena							
	This bit sets			IB0 interrup	t.			
	0: Disable all							
	1: Enable inte	errupt requ	ests genera	ated by SMI	30.			

Figure 12.3. EIE1: Extended Interrupt Enable 1

14. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pull-ups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the /RST pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to Section "17. Oscillators" on page 125 for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (Section "23.3. Watchdog Timer Mode" on page 216 details the use of the Watchdog Timer). Program execution begins at location 0x0000.

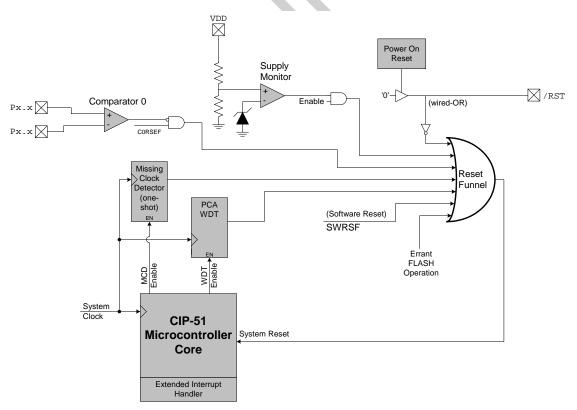
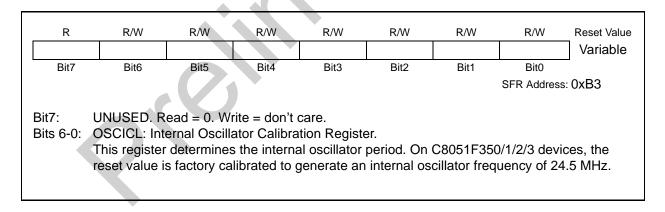


Figure 14.1. Reset Sources

- FERROR CORSEF SWRSF WDTRSF MCDRSF PORSF PINRSF Variable Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0xEF Bit6 FERROR: Flash Error Indicator. 0: Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. Bit5 CORSEF: Comparator0 Reset Enable and Flag. 0: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was comparator0. Write: Comparator0 is a reset source (active-low). Bit4 SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WDT timeout. 1: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. 1: Source of last reset was a WDT timeout. 1: Source of last reset was a wite to the SWRSF bit. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Condition is detected. Bit2 MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was a mot a Missing Clock condition is detected.	R	R	R/W	R/W	R	R/W	R/W	R	Reset Value
 SFR Address: 0xEF Bit7: UNUSED. Read = 0. Write = don't care. Bit6: FERROR: Flash Error Indicator. D: Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was a Flash read/write/erase error. Bit5: CORSEF: Comparator0 Reset Enable and Flag. D: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. D: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WDT timeout. 1: Source of last reset was a write to the SWRSF bit. Write: Forces a system reset. Bit3: WDTRSF: Watchdog Timer Reset Flag. D: Source of last reset was not a WDT timeout. 1: Source of last reset was not a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. D: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset of a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is not a a and stabilized may cause a system reset. See register VDMOCN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 	-	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable
 Bit7: UNUSED. Read = 0. Write = don't care. Bit6: FERROR: Flash Error Indicator. O: Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was a Flash read/write/erase error. Bit5: CORSEF: Comparator0 Reset Enable and Flag. O: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. O: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WDT timeout. Bit3: WDTRSF: Watchdog Timer Reset Flag. O: Source of last reset was a WDT timeout. Bit4: MCDRSF: Missing Clock Detector Flag. O: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. Bit1: PORSF: Power-On Reset Force and Flag. Bit1: PORSF: Power-On Reset Force and Flag. Dit5: Bowre on flast reset was a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. Bit1: PORSF: Power-On Reset Force and Flag. Dit5: Power-On Reset Force and Flag. Dit6: Source of last reset was a Missing Clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. Dit5: Bowre-On Reset Force and Flag. Dit6: Still set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDMOCN (Figure 14.3) D: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_D	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_ _
 Bit6: FERROR: Flash Error Indicator. 0: Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was a Flash read/write/erase error. Bit5: CORSEF: Comparator0 Reset Enable and Flag. 0: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WDT timeout. 1: Source of last reset was not a WDT timeout. 1: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. Dit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is not a 								SFR Address	0xEF
 Bit6: FERROR: Flash Error Indicator. 0: Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was a Flash read/write/erase error. Bit5: CORSEF: Comparator0 Reset Enable and Flag. 0: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WDT timeout. 1: Source of last reset was not a WDT timeout. 1: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. Dit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is not a 									
 Bit6: FERROR: Flash Error Indicator. 0: Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was a Flash read/write/erase error. Bit5: CORSEF: Comparator0 Reset Enable and Flag. 0: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WDT timeout. 1: Source of last reset was not a WDT timeout. 1: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. Dit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is not a 									
 0: Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was a Flash read/write/erase error. Bit5: CORSEF: Comparator0 Reset Enable and Flag. 0: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WDT timeout. 1: Source of last reset was not a WDT timeout. 1: Source of last reset was not a WIDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was a Nissing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDMOCN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 					care.				
 1: Source of last reset was a Flash read/write/erase error. Bit5: CORSEF: Comparator0 Reset Enable and Flag. 0: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WRSF bit. Write: Forces a system reset. Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 	DILO.				lach road/w	rita/arasa ar	ror		
 Bit5: CORSEF: Comparator0 Reset Enable and Flag. 0: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was not a WDT timeout. Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDMOCN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 							101.		
 0: Read: Source of last reset was not Comparator0. Write: Comparator0 is not a reset source. 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was a write to the SWRSF bit. Write: Forces a system reset. Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDMOCN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 	Bit5:								
 1: Read: Source of last reset was Comparator0. Write: Comparator0 is a reset source (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last reset was a write to the SWRSF bit. Write: Forces a system reset. Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDMOCN (Figure 14.3) 0: Read: Last reset was not a power-on rV_{DD} monitor reset. Write: V_{DD} monitor is not a 							: Compara	tor0 is not a	reset
 (active-low). Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last was a write to the SWRSF bit. Write: Forces a system reset. Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 									
 Bit4: SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last was a write to the SWRSF bit. Write: Forces a system reset. Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 				reset was	Comparator	0. Write: Co	omparator0	is a reset s	ource
 0: Read: Source of last reset was not a write to the SWRSF bit. Write: No Effect. 1: Read: Source of last was a write to the SWRSF bit. Write: Forces a system reset. Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 	D'14	```						×	
 1: Read: Source of last was a write to the SWRSF bit. Write: Forces a system reset. Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 	Bit4:					o the SM/DS			
 Bit3: WDTRSF: Watchdog Timer Reset Flag. 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 									
 0: Source of last reset was not a WDT timeout. 1: Source of last reset was a WDT timeout. Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 	Bit3:							a system it	
 Bit2: MCDRSF: Missing Clock Detector Flag. 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 			•		-				
 0: Read: Source of last reset was not a Missing Clock Detector timeout. Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 		1: Source of	last reset w	vas a WDT	timeout.				
 Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 	Bit2:								
 1: Read: Source of last reset was a Missing Clock Detector timeout. Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 					not a Missin	g Clock Det	ector timed	out. Write: N	lissing
 Detector enabled; triggers a reset if a missing clock condition is detected. Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 					n Minning C	look Dotoot	or timoout	Mrite Mice	ing Clock
 Bit1: PORSF: Power-On Reset Force and Flag. This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V_{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V_{DD} monitor reset. Write: V_{DD} monitor is not a 									
This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the V _{DD} monitor as a reset source. Note: writing '1' to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V _{DD} monitor reset. Write: V _{DD} monitor is not a	Bit1:								
and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V _{DD} monitor reset. Write: V _{DD} monitor is not a					•	s. Writing thi	s bit enable	es/disables	the V _{DD}
and stabilized may cause a system reset. See register VDM0CN (Figure 14.3) 0: Read: Last reset was not a power-on or V _{DD} monitor reset. Write: V _{DD} monitor is not a			-			-			66
0: Read: Last reset was not a power-on or V _{DD} monitor reset. Write: V _{DD} monitor is not a					-		-		
						•	•	•	
reset source.		reset source							
1: Read: Last reset was a power-on or V _{DD} monitor reset; all other reset flags indeterminate.		1: Read: Las	st reset was	a power-or	n or V _{DD} mo	nitor reset; a	all other res	et flags ind	eterminate.
Write: V _{DD} monitor is a reset source.		Write: V _{DD} r	nonitor is a	reset source	ce.				
Bit0: PINRSF: HW Pin Reset Flag.	Bit0:			•					
0: Source of last reset was not /RST pin.									
1: Source of last reset was /RST pin.		1: Source of	last reset w	vas /RST p	ın.				


Figure 14.4. RSTSRC: Reset Source Register

R/W	R	R	R	R	R	R/W	R/W	Reset Value			
IOSCE	N IFRDY	-	-	-	-	IFCN1	IFCN0	11000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	J			
							SFR Address	: 0xB2			
Bit7: Bit6:	0: Internal Oscillator Disabled. 1: Internal Oscillator Enabled. Bit6: IFRDY: Internal Oscillator Frequency Ready Flag.										
Dito.	O: Internal Oscillator Frequency Ready Flag. O: Internal Oscillator is not running at programmed frequency. 1: Internal Oscillator is running at programmed frequency.										
Bits5-2:											
Bits1-0:											
	00: SYSCLK derived from Internal Oscillator divided by 8.										
	01: SYSCLK derived from Internal Oscillator divided by 4. 10: SYSCLK derived from Internal Oscillator divided by 2.										
	11: SYSCLK derived from Internal Oscillator divided by 1.										

Figure 17.2. OSCICN: Internal Oscillator Control Register

Figure 17.3. OSCICL: Internal Oscillator Calibration Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
							SFR Addres	s: 0xA4		
Bits7-0:	 7-0: Output Configuration Bits for P0.7-P0.0 (respectively): ignored if corresponding bit in register P0MDIN is logic 0. 0: Corresponding P0.n Output is open-drain. 1: Corresponding P0.n Output is push-pull. (Note: When SDA and SCL appear on any of the Port I/O, each are open-drain regardless 									
	(Note: vynen	SDA and a	SUL ADDEAL	on any of f	ne Port I/U	each are c	ppen-drain	regardless		

Figure 18.9. P0MDOUT: Port0 Output Mode Register

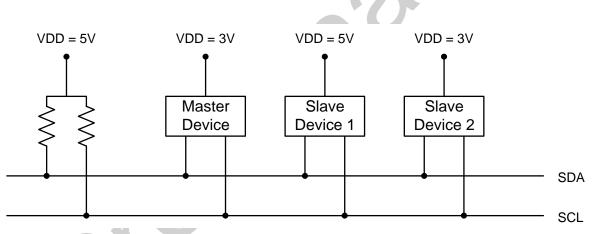
Figure 18.10. P0SKIP: Port0 Skip Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xD4
Bits7-0:	P0SKIP[7:0]: These bits se log inputs (fo lator circuit, (0: Correspon 1: Correspon	elect Port p or ADC or C CNVSTR in nding P0.n	ins to be ski comparator) put) should pin is not ski	pped by th or used as be skipped ipped by th	e Crossbar special fund d by the Cro ne Crossbar.	ctions (VR ssbar.		

Table 18.1. Port I/O DC Electrical Characteristics

V_{DD} = 2.7 to 3.6 V, -40 to +85 °C unless otherwise specified

Parameters	Conditions	Min	Тур	Max	Units
	I _{OH} = -3mA, Port I/O push-pull	V _{DD} -0.7			
Output High Voltage	I _{OH} = -10μA, Port I/O push-pull	V _{DD} -0.1			V
	I _{OH} = -10mA, Port I/O push-pull		V _{DD} -0.8		
	I _{OL} = 8.5mA			0.6	
Output Low Voltage	I _{OL} = 10μA			0.1	V
	I _{OL} = 25mA		1.0		
Input High Voltage		2.0			V
Input Low Voltage				0.8	V
Input Leakage Cur-	Weak Pull-up Off			±1	μA
rent	Weak Pull-up On, V _{IN} = 0 V		25	50	μΛ


19.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I2C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I2C-Bus Specification -- Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.

19.2. SMBus Configuration

Figure 19.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

Figure 19.2. Typical SMBus Configuration

19.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see Figure 19.6). The higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER and TXMODE indicate the master/slave state and transmit/receive modes, respectively.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a '1' to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a '1' to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 19.3 for more details.

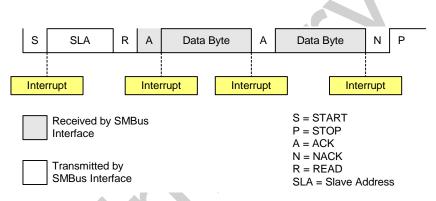

Important note about the SI bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

Table 19.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 19.4 for SMBus status decoding using the SMB0CN register.

19.5.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. After each byte is received, ACKRQ is set to '1' and an interrupt is generated. Software must write the ACK bit (SMB0CN.1) to define the outgoing acknowledge value (Note: writing a '1' to the ACK bit generates an ACK; writing a '0' generates a NACK). Software should write a '0' to the ACK bit after the last byte is received, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. Note that the interface will switch to Master Transmitter Mode if SMB0DAT is written while an active Master Receiver. Figure 19.9 shows a typical Master Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK cycle in this mode.

Figure 19.9. Typical Master Receiver Sequence

	Frequency: 1	1.0592 MHz					
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select) [†]	T1M [†]	Timer 1 Reload Value (hex)
	230400	0.00%	48	SYSCLK	XX	1	0xE8
	115200	0.00%	96	SYSCLK	XX	1	0xD0
	57600	0.00%	192	SYSCLK	XX	1	0xA0
from Osc.	28800	0.00%	384	SYSCLK	XX	1	0x40
	14400	0.00%	768	SYSCLK / 12	00	0	0xE0
al LK	9600	0.00%	1152	SYSCLK / 12	00	0	0xD0
SYSCLK External	2400	0.00%	4608	SYSCLK / 12	00	0	0x40
Y X	1200	0.00%	9216	SYSCLK / 48	10	0	0xA0
	230400	0.00%	48	EXTCLK / 8	11	0	0xFD
from Sc.	115200	0.00%	96	EXTCLK/8	11	0	0xFA
K froi Osc.	57600	0.00%	192	EXTCLK / 8	11	0	0xF4
al	28800	0.00%	384	EXTCLK / 8	11	0	0xE8
SYSCLI	14400	0.00%	768	EXTCLK/8	11	0	0xD0
SY	9600	0.00%	1152	EXTCLK/8	11	0	0xB8

Table 20.5. Timer Settings for Standard Baud Rates Using an External Oscillator

X = Don't care

[†]SCA1-SCA0 and T1M bit definitions can be found in Section 22.1.

Table 20.6. Timer Settings for S	Standard Ba	aud Rates Using an	External Oscillator

	Frequency: 3	8.6864 MHz					
	Target Baud Rate (bps)	Baud Rate% Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select) [†]	T1M [†]	Timer 1 Reload Value (hex)
	230400	0.00%	16	SYSCLK	XX	1	0xF8
	115200	0.00%	32	SYSCLK	XX	1	0xF0
	57600	0.00%	64	SYSCLK	XX	1	0xE0
from Osc.	28800	0.00%	128	SYSCLK	XX	1	0xC0
\sim	14400	0.00%	256	SYSCLK	XX	1	0x80
SYSCLK External	9600	0.00%	384	SYSCLK	XX	1	0x40
SC ter	2400	0.00%	1536	SYSCLK / 12	00	0	0xC0
Ϋ́S	1200	0.00%	3072	SYSCLK / 12	00	0	0x80
	230400	0.00%	16	EXTCLK / 8	11	0	0xFF
from Sc.	115200	0.00%	32	EXTCLK / 8	11	0	0xFE
K fror Osc.	57600	0.00%	64	EXTCLK / 8	11	0	0xFC
	28800	0.00%	128	EXTCLK / 8	11	0	0xF8
SYSCL Internal	14400	0.00%	256	EXTCLK / 8	11	0	0xF0
SY Int	9600	0.00%	384	EXTCLK / 8	11	0	0xE8

X = Don't care

[†]SCA1-SCA0 and T1M bit definitions can be found in Section 22.1.

176

R	R/W	R/W	R/W	R	R	R	R	Reset Value
SPIBSY		CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000112
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Address:	~
Bit 7:	SPIBSY: SP	l Busy (read	d only).				SFR Address.	UXA I
	This bit is se			l transfer is i	n progress	(Master or	Slave Mode	e).
Bit 6:	MSTEN: Ma							
	0: Disable m 1: Enable ma				e.			
Bit 5:	CKPHA: SPI			s a master.				
	This bit cont			ase.				
	0: Data cente		•					
	1: Data cent		0	•	d.†			
Bit 4:	CKPOL: SPI							
	This bit cont			arity.				
	0: SCK line I							
Bit 3:	1: SCK line h SLVSEL: Sla							
511 5.	This bit is se				is low indic:	ating SPI0 i	s the select	ed slave
	is cleared to							
	instantaneou	•		•	,	,		
Bit 2:	NSSIN: NSS							
	This bit mim					the NSS po	ort pin at the	e time that
Bit 1:	the register i SRMT: Shift			•				
אני.	This bit will b						t of the shift	register
	and there is							
	receive buffe	er. It returns	to logic 0 v	vhen a data	byte is tran	nsferred to t	he shift regi	ister from
	the transmit							
	NOTE: SRM							
Bit 0:	RXBMT: Rec This bit will b						nd containe	
	information.							
	this bit will re							
	NOTE: RXB	•		r Mode.				

Figure 21.6. SPI0CFG: SPI0 Configuration Register

R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value		
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable		
							SFR Address	:: 0xF8		
D:+ 7.										
Bit 7:	SPIF: SPI0 I This bit is se			o at the one	l of a data tr	anofor If in	torrupto or	onablad		
	setting this b									
	automatically					•				
Bit 6:	WCOL: Write	•			,					
	This bit is se									
	the SPI0 dat						gress. This	bit is not		
Bit 5:	automatically MODF: Mod	•		It must be	cleared by s	software.				
ыгэ.	This bit is se			e (and dene	erates a SPI	0 interrupt)	when a ma	aster mode		
	collision is de									
	matically cle	· ·			· · · · · · · · · · · · · · · · · · ·	/				
Bit 4:	RXOVRN: R	eceive Ove	errun Flag (S	Slave Mode	only).					
	This bit is se									
	buffer still ho									
	shifted into the cleared b			i his dit is no	ot automatic	ally cleared	a by nardwa	are. It must		
Bits 3-2:	NSSMD1-NS			Inde						
Dito 0 2.					modes:					
	Selects between the following NSS operation modes: (See Section "21.2, SPI0 Master Mode Operation" on page 179 and Section "21.3, SPI0									
	Slave Mode Operation" on page 181).									
	00: 3-Wire S									
	01: 4-Wire S									
	1x: 4-Wire S assume the			s signal is	mapped as	an output ir	om the dev	ice and will		
Bit 1:	TXBMT: Trai									
				new data ha	is been writt	en to the tr	ansmit buff	er. When		
	This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1,									
	indicating the		to write a ne	ew byte to t	he transmit	buffer.		-		
Bit 0:	SPIEN: SPIC									
	This bit enab		s the SPI.							
	0: SPI disabl 1: SPI enabl									
	T. OF LEHADI	eu.								

Figure 21.7. SPI0CN: SPI0 Control Register

23.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

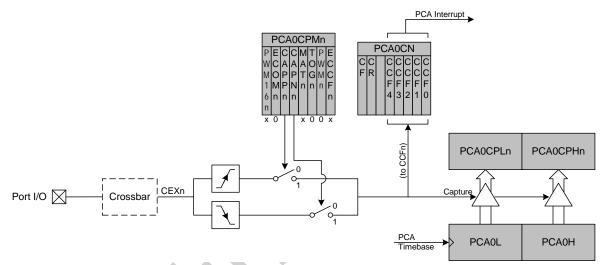


Figure 23.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

210