

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x16b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-MLP (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f353r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures and Tables

1.	System Overview	13
	Table 1.1. Product Selection Guide	14
	Figure 1.1. C8051F350 Block Diagram	15
	Figure 1.2. C8051F351 Block Diagram	
	Figure 1.3. C8051F352 Block Diagram	17
	Figure 1.4. C8051F353 Block Diagram	18
	Figure 1.5. Development/In-System Debug Diagram	20
	Figure 1.6. Memory Map	21
	Figure 1.7. ADC0 Block Diagram	22
	Figure 1.8. IDAC Block Diagram	
	Figure 1.9. Comparator0 Block Diagram	24
	Figure 1.10. Port I/O Functional Block Diagram	
	Figure 1.11. PCA Block Diagram	
2.	Absolute Maximum Ratings	
	Table 2.1. Absolute Maximum Ratings*	
3.	Global DC Electrical Characteristics	
	Table 3.1. Global DC Electrical Characteristics	
4.	Pinout and Package Definitions	
	Table 4.1. Pin Definitions for the C8051F350/1/2/3	
	Figure 4.1. LQFP-32 Pinout Diagram (Top View)	
	Figure 4.2. MLP-28 Pinout Diagram (Top View)	
	Figure 4.3. LQFP-32 Package Diagram	
	Table 4.2. LQFP-32 Package Dimensions	34
	Figure 4.4. MLP-28 Package Drawing	35
	Table 4.3. MLP-28 Package Dimensions	
	Figure 4.5. Typical MLP-28 Landing Diagram	36
	Figure 4.6. Typical MLP-28 Solder Paste Diagram	
5.	24 or 16-Bit Analog to Digital Converter (ADC0)	
	Figure 5.1. ADC0 Block Diagram	
	Figure 5.2. ADC0 Buffer Control	
	Figure 5.3. ADC0 Offset Calibration Register Coding	
	Figure 5.4. ADC0 Gain Calibration Register Coding	
	Table 5.1. ADC0 Unipolar Output Word Coding (AD0POL = 0)	
	Table 5.2. ADC0 Bipolar Output Word Coding (AD0POL = 1)	
	Figure 5.5. ADC0CN: ADC0 Control Register	46
	Figure 5.6. ADC0CF: ADC0 Configuration Register	47
	Figure 5.7. ADC0MD: ADC0 Mode Register	48
	Figure 5.8. ADC0CLK: ADC0 Modulator Clock Divisor	
	Figure 5.9. ADC0DECH: ADC0 Decimation Ratio Register High Byte	
	Figure 5.10. ADC0DECL: ADC0 Decimation Ratio Register Low Byte	
	Figure 5.11. ADC0DAC: ADC0 Offset DAC Register	
	Figure 5.12. ADC0BUF: ADC0 Input Buffer Control Register	
	Figure 5.13. ADC0STA: ADC0 Status Register	52

Table 20.6. Timer Settings for Standard Baud Rates Using an External Oscillato	or 176
21. Serial Peripheral Interface (SPI0)	
Figure 21.1. SPI Block Diagram	
Figure 21.2. Multiple-Master Mode Connection Diagram	
Figure 21.3. 3-Wire Single Master and Single Slave Mode Connection Diagram	
Figure 21.4. 4-Wire Single Master and Slave Mode Connection Diagram	
Figure 21.5. Data/Clock Timing Relationship	
Figure 21.6. SPI0CFG: SPI0 Configuration Register	
Figure 21.7. SPI0CN: SPI0 Control Register	
Figure 21.8. SPI0CKR: SPI0 Clock Rate Register	
Figure 21.9. SPI0DAT: SPI0 Data Register	
Figure 21.10. SPI Master Timing (CKPHA = 0)	187
Figure 21.11. SPI Master Timing (CKPHA = 1)	
Figure 21.12. SPI Slave Timing (CKPHA = 0)	
Figure 21.13. SPI Slave Timing (CKPHA = 1)	
Table 21.1. SPI Slave Timing Parameters	189
22. Timers	191
22. Timers Figure 22.1. T0 Mode 0 Block Diagram	192
Figure 22.2. T0 Mode 2 Block Diagram	193
Figure 22.3. T0 Mode 3 Block Diagram	
Figure 22.4. TCON: Timer Control Register	
Figure 22.5. TMOD: Timer Mode Register	
Figure 22.6. CKCON: Clock Control Register	
Figure 22.7. TL0: Timer 0 Low Byte	
Figure 22.8. TL1: Timer 1 Low Byte	
Figure 22.9. TH0: Timer 0 High Byte	
Figure 22.10. TH1: Timer 1 High Byte	
Figure 22.11. Timer 2 16-Bit Mode Block Diagram	
Figure 22.12. Timer 2 8-Bit Mode Block Diagram	
Figure 22.13. TMR2CN: Timer 2 Control Register	
Figure 22.14. TMR2RLL: Timer 2 Reload Register Low Byte	
Figure 22.15. TMR2RLH: Timer 2 Reload Register High Byte	
Figure 22.16. TMR2L: Timer 2 Low Byte	
Figure 22.17. TMR2H Timer 2 High Byte	
Figure 22.18. Timer 3 16-Bit Mode Block Diagram	
Figure 22.19. Timer 3 8-Bit Mode Block Diagram	204
Figure 22.20. TMR3CN: Timer 3 Control Register	
Figure 22.21. TMR3RLL: Timer 3 Reload Register Low Byte	
Figure 22.22. TMR3RLH: Timer 3 Reload Register High Byte	
Figure 22.23. TMR3L: Timer 3 Low Byte	
Figure 22.24. TMR3H Timer 3 High Byte	
23. Programmable Counter Array	
Figure 23.1. PCA Block Diagram	
Figure 23.2. PCA Counter/Timer Block Diagram	
Table 23.1. PCA Timebase Input Options	
	200

1. System Overview

C8051F350/1/2/3 devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 50 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- 24 or 16-bit single-ended/differential ADC with analog multiplexer
- Two 8-bit Current Output DACs
- Precision programmable 24.5 MHz internal oscillator
- 8 kB of on-chip Flash memory
- 768 bytes of on-chip RAM
- SMBus/I2C, Enhanced UART, and SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable counter/timer array (PCA) with three capture/compare modules and watchdog timer function
- On-chip power-on reset, V_{DD} monitor, and temperature sensor
- On-chip voltage comparator
- 17 Port I/O (5 V tolerant)

With on-chip power-on reset, V_{DD} monitor, watchdog timer, and clock oscillator, the C8051F350/1/2/3 devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for 2.7 V-to-3.6 V operation over the industrial temperature range (-45 to +85 °C). The Port I/O and /RST pins are tolerant of input signals up to 5 V. The C8051F350/1/2/3 are available in 28-pin MLP or 32-pin LQFP packaging, as shown in Figure 1.1 through Figure 1.4.

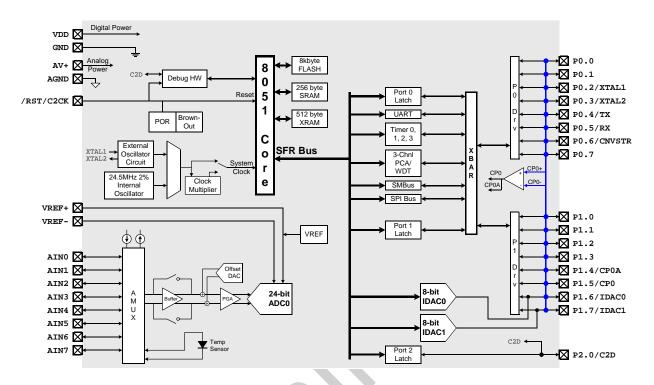


Figure 1.1. C8051F350 Block Diagram

1.9. Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or an external clock signal on the External Clock nput (ECI) input pin.

Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM. Additionally, PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. The PCA Capture/Compare Module I/O and the External Clock Input may be routed to Port I/O using the digital crossbar.

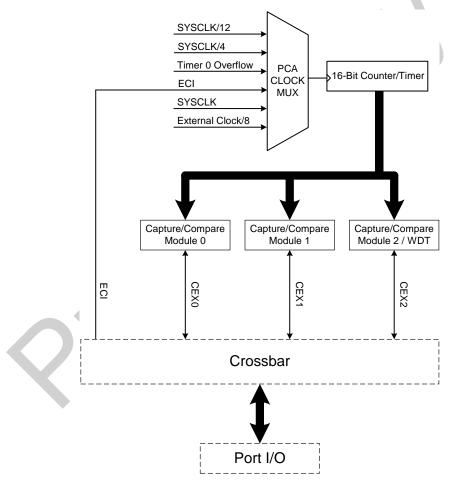


Figure 1.11. PCA Block Diagram

	Pin Numbers					
Name	'F350 'F352	'F351 'F353	Туре	Description		
P0.6/	19	15	D I/O or A In	Port 0.6. See Port I/O Section for a complete description.		
CNVSTR	15	19	D In	External Convert Start Input for IDACs (See IDAC Section for complete description).		
P0.7	20	16	D I/O or A In	Port 0.7. See Port I/O Section for a complete description.		
P1.0/	00	40	D I/O or A In	Port 1.0. See Port I/O Section for a complete description.		
AIN0.4	23	19	A In	ADC0 Input Channel 4 (C8051F351/3 - See ADC0 Section for complete description).		
P1.1/	24 20		D I/O or A In	Port 1.1. See Port I/O Section for a complete description.		
AIN0.5	24	20	A In	ADC0 Input Channel 5 (C8051F351/3 - See ADC0 Section for complete description).		
P1.2/	05		D I/O or A In	Port 1.2. See Port I/O Section for a complete description.		
AIN0.6	25	21	A In	ADC0 Input Channel 6 (C8051F351/3 - See ADC0 Section for complete description).		
P1.3/	26	22	D I/O or A In	Port 1.3. See Port I/O Section for a complete description.		
AIN0.7	20	22	A In	ADC0 Input Channel 7 (C8051F351/3 - See ADC0 Section for complete description).		
P1.4	27	23	D I/O or A In	Port 1.4. See Port I/O Section for a complete description.		
P1.5	28	24	D I/O or A In	Port 1.5. See Port I/O Section for a complete description.		
P1.6/	29	25	D I/O or A In	Port 1.6. See Port I/O Section for a complete description.		
IDA0			A Out	IDAC0 Output (See IDAC Section for complete description).		
P1.7/	30	26	D I/O or A In	Port 1.7. See Port I/O Section for a complete description.		
IDA1			A Out	IDAC1 Output (See IDAC Section for complete description).		

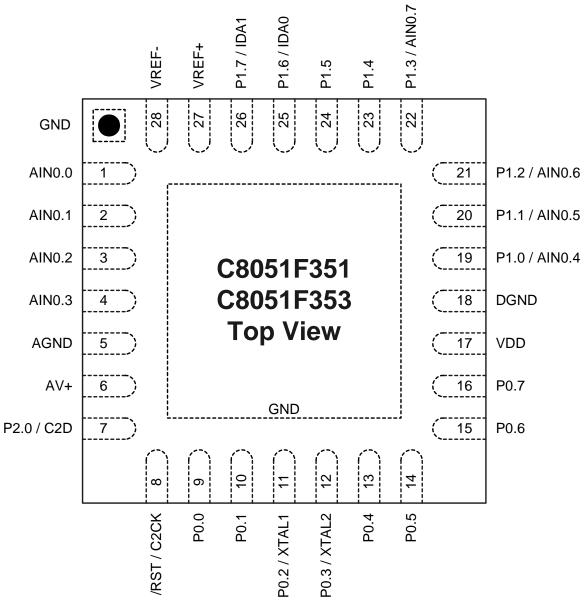


Figure 4.2. MLP-28 Pinout Diagram (Top View)

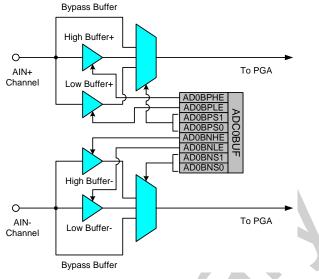


Figure 5.2. ADC0 Buffer Control

5.1.3. Modulator Clock

The ADC0CLK register (Figure 5.8) holds the Modulator Clock (MDCLK) divisor value. The modulator clock determines the switching frequency for the ADC sampling capacitors. Optimal performance will be achieved when the MDCLK frequency is equal to 2.4576 MHz. The modulator samples the input at a rate of MDCLK / 128.

5.1.4. Decimation Ratio

The decimation ratio of the ADC filters is selected by the DECI[10:0] bits in the ADC0DECH and ADC0DECL registers (Figure 5.9 and Figure 5.10, respectively). The decimation ratio is equal to 1 + DECI[10:0]. The decimation ratio determines how many modulator samples are used to generate a single output word. The ADC output word rate is equal to the modulator sampling rate divided by the decimation ratio. For more information on how the ADC output word rate is derived, see Figure 5.8 and Figure 5.10. Higher decimation ratios will produce lower-noise results over a longer conversion period. The minimum decimation ratio is 20. When using the fast filter output, the decimation ratio must be set to a multiple of 8.

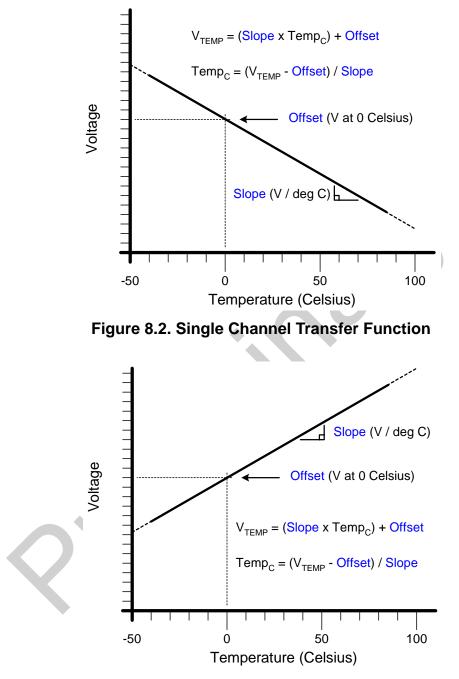


Figure 8.3. Differential Transfer Function

Mnemonic	Description	Bytes	Clock	
MOV @Ri, direct	Move direct byte to indirect RAM	2	Cycles 2	
MOV @Ri, #data	Move immediate to indirect RAM	2	2	
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3	
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3	
MOVC A, @A+PC	Move code byte relative PC to A	1	3	
MOVX A, @Ri	Move external data (8-bit address) to A	1	3	
MOVX @Ri, A	Move A to external data (8-bit address)	1	3	
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3	
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3	
PUSH direct	Push direct byte onto stack	2	2	
POP direct	Pop direct byte from stack	2	2	
XCH A, Rn	Exchange Register with A	1	1	
XCH A, direct	Exchange direct byte with A	2	2	
XCH A, @Ri	Exchange indirect RAM with A	1	2	
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2	
	Boolean Manipulation			
CLR C	Clear Carry	1	1	
CLR bit	Clear direct bit	2	2	
SETB C	Set Carry	1	1	
SETB bit	Set direct bit	2	2	
CPL C	Complement Carry	1	1	
CPL bit	Complement direct bit	2	2	
ANL C, bit	AND direct bit to Carry	2	2	
ANL C, /bit	AND complement of direct bit to Carry	2	2	
ORL C, bit	OR direct bit to carry	2	2	
ORL C, /bit	OR complement of direct bit to Carry	2	2	
MOV C, bit	Move direct bit to Carry	2	2	
MOV bit, C	Move Carry to direct bit	2	2	
JC rel	Jump if Carry is set	2	2/3	
JNC rel	Jump if Carry is not set	2	2/3	
JB bit, rel	Jump if direct bit is set	3	3/4	
JNB bit, rel	Jump if direct bit is not set	3	3/4	
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4	
	Program Branching			
ACALL addr11	Absolute subroutine call	2	3	
LCALL addr16	Long subroutine call	3	4	
RET	Return from subroutine	1	5	
RETI	Return from interrupt	1	5	
AJMP addr11	Absolute jump	2	3	
LJMP addr16	Long jump	3	4	
	Short jump (relative address)	2	3	
JMP @A+DPTR	Jump indirect relative to DPTR	1	3	
JZ rel	Jump if A equals zero	2	2/3	
JNZ rel	Jump if A does not equal zero	2	2/3	
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4	

Table 10.1. CIP-51 Instruction Set Summary (Continued)

12.4. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

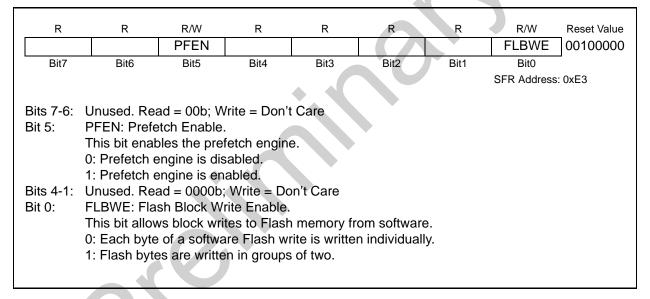

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Addres	s: 0xA8
Bit 7:	EA: Enable /			llinterrunte	It override	a tha indivia	luci interru	at maak aat
	This bit globa tings.	any enables	solisables a	ii interrupts.	it overnde:	s the individ		pi mask sei-
	0: Disable al	l interrupt s	ources.					
	1: Enable ea			to its individ	lual mask s	etting.		
Bit 6:	ESPI0: Enab	le Serial P	eripheral Int	terface (SPI	0) Interrupt			
	This bit sets		•	10 interrupts	5.			
	0: Disable al							
Bit 5:	1: Enable int ET2: Enable			ated by SPIC	J.			
Dit J.	This bit sets			ner 2 interru	pt.			
	0: Disable Ti		•		P			
	1: Enable int	errupt requ	ests genera	ated by the	TF2L or TF	2H flags.		
Bit 4:	ES0: Enable		· ·					
	This bit sets			RT0 interru	pt.			
	0: Disable U							
Bit 3:	1: Enable UA ET1: Enable							
Dit 0.	This bit sets			ner 1 interru	pt.			
	0: Disable al							
	1: Enable int		•	ated by the	TF1 flag.			
Bit 2:	EX1: Enable							
	This bit sets		•	al Interrupt	1.			
	0: Disable ex 1: Enable int			ated by the	/INT1 input			
Bit 1:	ET0: Enable				nar i input.			
2	This bit sets			ner 0 interru	pt.			
	0: Disable al							
	1: Enable int			ated by the	TF0 flag.			
Bit 0:	EX0: Enable			- 1. 1	2			
	This bit sets 0: Disable ex		•	a interrupt (J.			
	1: Enable int		•	ated by the	/INT0 input.			
			35					

Figure 12.1. IE: Interrupt Enable

13. Prefetch Engine

The C8051F350/1/2/3 family of devices incorporate a 2-byte prefetch engine. Because the access time of the Flash memory is 40 ns, and the minimum instruction time is 20 ns, the prefetch engine is necessary for full-speed code execution. Instructions are read from Flash memory two bytes at a time by the prefetch engine, and given to the CIP-51 processor core to execute. When running linear code (code without any jumps or branches), the prefetch engine allows instructions to be executed at full speed. When a code branch occurs, the processor may be stalled for up to two clock cycles while the next set of code bytes is retrieved from Flash memory. The FLRT bit (FLSCL.4) determines how many clock cycles are used to read each set of two code bytes from Flash. When operating from a system clock of 25 MHz or less, the FLRT bit should be set to '0' so that the prefetch engine takes only one clock cycle for each read. When operating with a system clock of greater than 25 MHz (up to 50 MHz), the FLRT bit should be set to '1', so that each prefetch code read lasts for two clock cycles.

Figure 13.1. PFE0CN: Prefetch Engine Control Register

17.3. Clock Multiplier

The Clock Multiplier generates an output clock which is 4 times the input clock frequency. The Clock Multiplier's input can be selected from the external oscillator, or 1/2 the internal or external oscillators. This produces three possible outputs: Internal Oscillator x 2, External Oscillator x 2, or External Oscillator x 4. See Section 17.4 for details on system clock selection.

The Clock Multiplier is configured via the CLKMUL register (Figure 17.5). The procedure for configuring and enabling the Clock Multiplier is as follows:

- 1. Reset the Multiplier by writing 0x00 to register CLKMUL.
- 2. Select the Multiplier input source via the MULSEL bits.
- 3. Enable the Multiplier with the MULEN bit (CLKMUL | = 0x80).
- 4. Delay for >5 µs.
- 5. Initialize the Multiplier with the MULINIT bit (CLKMUL | = 0xC0).
- 6. Poll for MULRDY = '1'.

Important Note: When using an external oscillator as the input to the Clock Multiplier, the external source must be enabled and stable before the Multiplier is initialized. See Section 17.4 for details on selecting an external oscillator source.

DAM	DAM	P	DAA	DAM	DAM	DAA	DAA	Decet Males		
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value		
MULEN		MULRDY	-	-	-		LSEL	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
		•					SFR Addres	ss: 0xBE		
Bit7:	MULEN: Clo									
	0: Clock Mul									
	1: Clock Mul									
Bit6:	Bit6: MULINIT: Clock Multiplier Initialize This bit should be a '0' when the Clock Multiplier is enabled. Once enabled, writing a '1' to									
	this bit will in		lock Multi	plier. The MU	JLRDY bit i	reads '1' wl	nen the Clo	ock Multiplier		
DVE	is stabilized.		. .							
Bit5:	MULRDY: C	•								
				tus of the Cl	ock iviuitipii	ler.				
	0: Clock Mul									
Bits4-2:	1: Clock Mul			a't aara						
	Unused. Rea MULSEL: CI									
Bits1-0:	These bits s					-				
			supplie							
	MU	LSEL	Sel	ected Input	Clock	Clock N	Iultipler O	utput		
	(00	Int	ernal Oscillat	or / 2	Interna	al Oscillato	rx2		
	(01	E	xternal Oscil	lator	Externa	al Oscillato	r x 4		
		10	Ext	ernal Oscilla	tor / 2	Externa	al Oscillato	rx2		
		11		RESERVE	C	R	ESERVED			
	L									

Figure 17.5. CLKMUL: Clock Multiplier Control Register

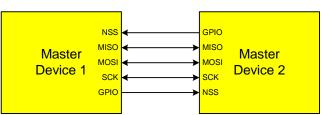


Figure 21.2. Multiple-Master Mode Connection Diagram

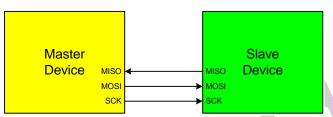


Figure 21.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection

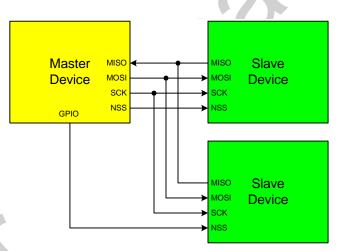


Figure 21.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection

21.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships are shown in Figure 21.5.

The SPI0 Clock Rate Register (SPI0CKR) as shown in Figure 21.8 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

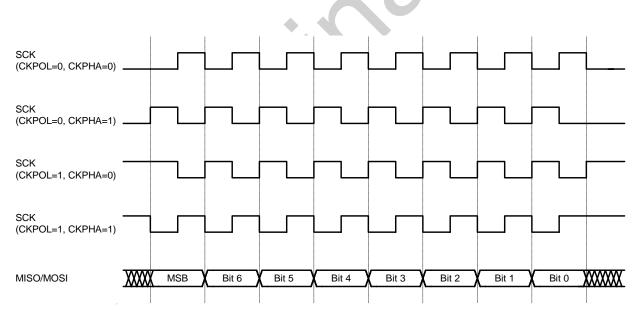


Figure 21.5. Data/Clock Timing Relationship

21.6. SPI Special Function Registers

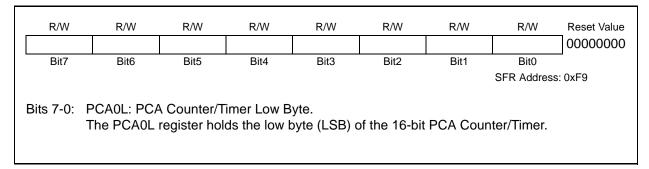
SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

R	R/W	R/W	R/W	R	R	R	R	Reset Value		
SPIBSY		CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	0000011		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Address:	~		
Bit 7:	SPIBSY: SP	l Busy (read	d only).				SFR Address.	UXA I		
	This bit is se			l transfer is i	in progress	(Master or	Slave Mode	e).		
Bit 6:	MSTEN: Ma									
	0: Disable m 1: Enable ma				e.					
Bit 5:	CKPHA: SPI			s a master.						
	This bit cont			ase.						
	0: Data cente		•							
	1: Data cent		0	•	od.†					
Bit 4:	CKPOL: SPI									
	This bit cont			arity.						
	0: SCK line low in idle state.									
Bit 3:	1: SCK line h									
on 5.	SLVSEL: Slave Selected Flag (read only). This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected slave. It									
	is cleared to									
	instantaneou	•		•	,	,				
Bit 2:	NSSIN: NSS									
	This bit mim					the NSS po	ort pin at the	e time that		
Bit 1:	the register i SRMT: Shift			•		alv)				
л. т.	This bit will b						t of the shift	register		
	and there is									
	receive buffe	er. It returns	to logic 0 v	vhen a data	byte is tran	nsferred to t	he shift regi	ister from		
	the transmit									
	NOTE: SRM									
Bit O:	RXBMT: Red This bit will b						nd containe			
	information.									
	this bit will re							boonroad		
	NOTE: RXB	•		r Mode.						

Figure 21.6. SPI0CFG: SPI0 Configuration Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
T3MH	T3ML	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Addres	s: 0x8E			
Bit7:		er 3 High B									
		ects the cloo					s configure	ed in split 8-			
	bit timer mode. T3MH is ignored if Timer 3 is in any other mode. 0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.										
		• •		•	the I3XCL	K dit in Tivif	K3CN.				
Bit6:		high byte us er 3 Low By									
Dito.		ects the clo			f Timer 3 is	configured	in split 8-b	it timer			
		bit selects the									
		low byte use					3CN.				
		low byte use		•							
Bit5:		her 2 High B					÷				
		ects the cloo					s configure	ed in split 8-			
		ode. T2MH i									
		high byte us			the T2XCL	K bit in TMF	R2CN.				
Bit4:		high byte us									
DIL4.	T2ML: Timer 2 Low Byte Clock Select. This bit selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer										
		bit selects the					in opiit o b				
		low byte use					2CN.				
		low byte use		-							
Bit3:		r 1 Clock Se									
							n C/T1 is s	et to logic 1.			
		uses the clo		by the presc	ale bits, SC	CA1-SCA0.					
Bit2:		uses the sys r 0 Clock Se									
DILZ.		ects the clock		unnlied to Ti	mer () TOM	l is ignored y	when C/TO	is set to			
	logic 1.					na ignoreu i		13 301 10			
	0	/Timer 0 use	s the clock	defined by t	he prescale	e bits, SCA1	-SCA0.				
		/Timer 0 use			•	,					
Bits1-0:	SCA1-SCA	0: Timer 0/1	I Prescale B	its.							
		control the o		e clock sup	plied to Tim	ner 0 and Tir	mer 1 if co	nfigured to			
	use presca	led clock inp	outs.								
	SCA1	SCA0	Presc	aled Clock							
	0	0	System clo	ock divided l	oy 12						
	0	1	System cl	ock divided	by 4						
	1	0	•	ock divided l	-						
	1	1		ock divided							
		ernal clock di	ivided by 8 is	s synchroniz	ed with						
	the systen	n clock.									

Figure 22.6. CKCON: Clock Control Register



R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
TF3H	TF3L	TF3LEN	-	T3SPLIT	TR3	-	T3XCLK	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_			
							SFR Address	: 0x91			
Bit7:	TF3H: Timer	3 High Byte		Flag							
	Set by hardw				verflows fro	m 0xFF to	0x00 In 16	hit mode			
	this will occu										
	enabled, set										
	TF3H is not	•									
Bit6:	TF3L: Timer						by contrare.				
	Set by hardv				erflows fror	n 0xFF to (0x00. When	this bit is			
	set, an interr										
	will set wher						•				
	ically cleared			U							
Bit5:	TF3LEN: Tin	ner 3 Low B	yte Interru	pt Enable.							
	This bit enab	oles/disables	Timer 3 L	ow Byte inte	rrupts. If T	F3LEN is s	et and Time	r 3 inter-			
	This bit enables/disables Timer 3 Low Byte interrupts. If TF3LEN is set and Timer 3 inter- rupts are enabled, an interrupt will be generated when the low byte of Timer 3 overflows.										
	This bit should be cleared when operating Timer 3 in 16-bit mode.										
	0: Timer 3 Low Byte interrupts disabled.										
	1: Timer 3 Lo										
Bit4:	UNUSED. R										
Bit3:	T3SPLIT: Tir										
	When this bi					vith auto-re	eload.				
	0: Timer 3 of										
	1: Timer 3 of			ito-reload tin	ners.						
Bit2:	TR3: Timer 3			la O bit as a du		. / . '		Laubu			
	This bit enables/disables Timer 3. In 8-bit mode, this bit enables/disables TMR3H only;										
	TMR3L is always enabled in this mode.										
	0: Timer 3 disabled. 1: Timer 3 enabled.										
Bit1:	UNUSED. R		rito — don'	t caro							
Bit0:	T3XCLK: Tir										
Dito.	This bit sele				ner 3. If Tir	ner 3 is in	8-hit mode 1	his hit			
	selects the e						,				
	Select bits (
	external cloc										
	0: Timer 3 ex					ded bv 12.					
	1: Timer 3 ex							e external			
	oscillator so										
			0,010,001		viin ine sys	LETTI CIUCK.					

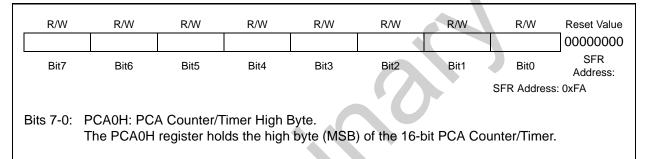

Figure 22.20. TMR3CN: Timer 3 Control Register

Figure 23.14. PCA0L: PCA Counter/Timer Low Byte

Figure 23.15. PCA0H: PCA Counter/Timer High Byte

Contact Information

Silicon Laboratories Inc.

4635 Boston Lane Austin, Texas 78735 Tel:1+ (512) 416-8500 Fax:1+ (512) 416-9669 Toll Free:1+ (877) 444-3032

Email: productinfo@silabs.com Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and Aero are trademarks of Silicon Laboratories Inc. Other products or brand names mentioned herein are trademarks or registered trademarks of their respective holder

