E·X FL Renesas Electronics America Inc - <u>R5S726A0D216FP#V0</u> Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, SCI, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	73
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.3M x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s726a0d216fp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Items	Specification
General I/O ports	SH726A: 57 I/Os, 8 inputs with open-drain outputs, and 8 inputs
	• SH726B: 74 I/Os, 8 inputs with open-drain outputs, and 12 inputs
	Input or output can be selected for each bit
A/D converter	10-bit resolution
	• Input
	SH726A: six channels
	SH726B: eight channels
	A/D conversion request by the external trigger or timer trigger
User break controller	Break channels: two channels
	• Possible to set an address, data value, access type, and data size as break conditions.
User debugging	E10A emulator support
interface	JTAG-standard pin assignment
On-chip RAM	• 64-Kbyte memory for high-speed operation (16 Kbytes × 4)
	1.25-Mbyte large capacity memory for video display/recording and
	work (128-Kbytes are used for data retention)
	• 128-Kbyte memory for data retention (16 Kbytes× 2, 32 Kbytes×1, 64
	Kbytes×1)
Boot modes	Two boot modes (boot modes 0 and 1)
	Boot mode 0: Booting from memory connected to CS0 area
	Boot mode 1: Booting from a serial flash memory
Power supply voltage	• Vcc: 1.15 to 1.35 V
	• PVcc: 3.0 to 3.6 V
Packages	SH726A (1)
	• 120-pin QFP, 16-mm square, 0.5-mm pitch
	JEITA package code: P-LQFP120-16 × 16-0.50
	Refiesas code. PLQP0120KA-A
	SP(2OA(2))
	• 120-pin QFP, 14-min square, 0.4-min pitch
	Renesas code: PLQP0120LA-A
	SH726B
	• 144-pin QFP, 20-mm square, 0.5-mm pitch
	JEITA package code: P-LQFP144-20 × 20-0.50
	Renesas code: PLQP0144KA-A

1.4 Pin Assignment

		 PROCESSINGSACTANOIETAD PESTRASINGACTANOIETAD PESTRASINGACTANOIETAD PESTRASINGACTANOIETAD PESTRASINGACANOIETAD PESTRASINGACANOIETAD PESTRASINGACANOIETAD PESTRASINGACANDIO_XOUT PESTRASINGACANDIO_XOUT PANIMD_BOOT PANIMD_BOOT PESTRASINGARANDIO_O PESTRASINGARANDIO_O PERTASINGARAND_CIK PERTASINGARANDIO_O PERTASINGARANDIO PERTASINGARANDIO<th></th><th>1</th>		1
PE0/SCL0/IRQ0 91 PE1/SDA/IRQ1 92 PE2/SCL1/ADID0_CLK 93 PE3/SDA1/ADITG 94 PE4/SCL2/TCLKA 95 PE6/SCL2/TCLKA 95 PE6/SCL2/TCLKA 95 PE6/SCL2/TCLKG 97 PE7/SDA3/TCLKD 96 PC7/CKE/IRQ6/CRx1/CRx0/CRx1 95 Vss 11 PVcc 11 PD1/D1/SSINS1/SIOFSVNC/SPBM_1/SPBI0_1 10 PV2/D2/SSIN201/SIOFAD/SPBI0_1 11 PD2/D3/SSIN201/SIOFAD/SPBI0_1 11 PD2/D3/SSIN201/SIOFAD/SPBI0_1 11 PD2/D3/SSIN201/SIOFAD/SPBI0_1 11 PD2/D3/SSIN201/SIOFAD/SPBI0_1 11 PD2/D3/SSIN201/SIOFAD/SPBI0_1 11 PD5/D5/SSL10/TXD3/RTS1 11 PD6/D6/MOS1/SCK4/CTS2 11 PD10/D1/SD_CMD/R02 11 PD10/D1/SD_CMD/R02 11 PD10/D1/SD_CMD/R02 12	1 2 3 4 5 6 7 8 9 001234000 000000000000000000000000000000000	120-pin QFP Top view	$\begin{array}{c} 60\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	AVref AVcc AVsc PH5/AN5/PINT5/RxD2 PH4/AN4/PINT4/RxD1 PH3/AN3/R03 PH2/AN2/R02/WAIT PH1/AN1/R01/RxD0 PH0/AN0/R00/VBUS ASEMD PG1/DP0/PINT1 PG0/DM0/PINT0 PVcc Vss STAL EXTAL EXTAL EXTAL Vcc Vss RES Vss RES Vss PLLVcc Vss PF7/IRQ3/RxD4 PF6/IRQ2/SSITx00/TIOC3D PB22/A2/SSITx00/TIOC3D
		PD15/D15/S1202 D2 PD15/D15/S1202 D2 PD15/D15/P02 D2 PB1/A1/S1S102(M PB2/A2/S3103 D5 PB2/A2/S3103 D5 PB2/A2/S3103 D5 PB2/A2/S3103 D5 PB2/A407173 D0 PB2/A4071702 D2 PB2/A407107 D1 PB2/A417A2 D2 PB1/A417A2 D2 PB1/A4		

Figure 1.2 (1) Pin Assignment for the SH726A Group

			Inte	errupt Vector	-		IPR Cotting	
Interrupt	Source		Vector	Vector Table Address Offset	Interrupt Priority (Initial Value)	Corresponding IPR (Bit)	Setting Unit Internal Priority	Default Priority
Serial communi-	Channel 3	BRI3	244	H'000003D0 to H'000003D3	0 to 15 (0)	IPR17 (3 to 0)	1	High ♠
cation interface with EIEO		ERI3	245	H'000003D4 to H'000003D7	-		2	-
with the		RXI3	246	H'000003D8 to H'000003DB	-		3	-
		ТХІЗ	247	H'000003DC to H'000003DF	-		4	-
	Channel 4	BRI4	248	H'000003E0 to H'000003E3	0 to 15 (0)	IPR18 (15 to 12)	1	-
		ERI4	249	H'000003E4 to H'000003E7	-		2	-
		RXI4	250	H'000003E8 to H'000003EB	-		3	-
		TXI4	251	H'000003EC to H'000003EF	-		4	_
Serial I/O with FIFO	SIOFI		252	H'000003F0 to H'000003F3	0 to 15 (0)	IPR19 (15 to 12)	_	-
Renesas serial	Channel 0	SPEI0	253	H'000003F4 to H'000003F7	0 to 15 (0)	IPR19 (11 to 8)	1	-
peripheral interface		SPRI0	254	H'000003F8 to H'000003FB	-		2	-
		SPTI0	255	H'000003FC to H'000003FF	-		3	-
	Channel 1	SPEI1	256	H'00000400 to H'00000403	0 to 15 (0)	IPR19 (7 to 4)	1	-
		SPRI1	257	H'00000404 to H'00000407	-		2	-
		SPTI1	258	H'00000408 to H'0000040B	-		3	Low

(3) SDRAM*

• CS2WCR

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	A2CI	_[1:0]	-	-	-	-	-	-	-
Initial value:	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R/W	R/W	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
31 to 11	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
10		1	R	Reserved
				This bit is always read as 1. The write value should always be 1.
9		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
8, 7	A2CL[1:0]	10	R/W	CAS Latency for Area 2
				Specify the CAS latency for area 2.
				00: 1 cycle
				01: 2 cycles
				10: 3 cycles
				11: 4 cycles
6 to 0		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

Note: * If only one area is connected to the SDRAM, specify area 3. In this case, specify area 2 as normal space or SRAM with byte selection.

Figure 10.11 Burst Read Basic Timing (CAS Latency 1, Auto Pre-Charge)

(a) Auto-refreshing

Refreshing is performed at intervals determined by the input clock selected by bits CKS2 to CKS0 in RTCSR, and the value set by in RTCOR. The value of bits CKS2 to CKS0 in RTCOR should be set so as to satisfy the refresh interval stipulation for the SDRAM used. First make the settings for RTCOR, RTCNT, and the RMODE and RFSH bits in SDCR, and then make the CKS2 to CKS0 and RRC2 to RRC0 settings. When the clock is selected by bits CKS2 to CKS0, RTCNT starts counting up from the value at that time. The RTCNT value is constantly compared with the RTCOR value, and if the two values are the same, a refresh request is generated and an autorefresh is performed for the number of times specified by the RRC2 to RRC0. At the same time, RTCNT is cleared to zero and the count-up is restarted.

Figure 10.22 shows the auto-refresh cycle timing. After starting the auto refreshing, PALL command is issued in the Tp cycle to make all the banks to pre-charged state from active state when some bank is being pre-charged. Then REF command is issued in the Trr cycle after inserting idle cycles of which number is specified by the WTRP1 and WTRP0 bits in CS3WCR. A new command is not issued for the duration of the number of cycles specified by the WTRC1 and WTRC0 bits in CS3WCR after the Trr cycle. The WTRC1 and WTRC0 bits must be set so as to satisfy the SDRAM refreshing cycle time stipulation (tRC). An idle cycle is inserted between the Tp cycle and Trr cycle when the setting value of the WTRP1 and WTRP0 bits in CS3WCR is longer than or equal to 1 cycle.

(3) Relationship between Request Modes and Bus Modes by DMA Transfer Category

Table 11.9 shows the relationship between request modes and bus modes by DMA transfer category.

Tuble 119 Itelationship of itelation and bas hierdes by Diffin Italister Category	Table 11.9	Relationshi	p of Reques	t Modes and	l Bus Modes b	y DMA	Transfer Category
---	------------	-------------	-------------	-------------	---------------	-------	--------------------------

Address Mode	Transfer Category	Request Mode	Bus Mode	Transfer Size (Bits)	Usable Channels
Dual	External device with DACK and external memory	External	B/C	8/16/32/128	0
	External device with DACK and memory- mapped external device	External	B/C	8/16/32/128	0
	External memory and external memory	All* ⁴	B/C	8/16/32/128	0 to 15* ³
	External memory and memory-mapped external device	All* ⁴	B/C	8/16/32/128	0 to 15* ³
	Memory-mapped external device and memory-mapped external device	All* ⁴	B/C	8/16/32/128	0 to 15* ³
	External memory and on-chip peripheral module	All* ¹	B/C*5	8/16/32/128* ²	0 to 15* ³
	Memory-mapped external device and on-chip peripheral module	All* ¹	B/C*5	8/16/32/128* ²	0 to 15* ³
	On-chip peripheral module and on-chip peripheral module	All* ¹	B/C*5	8/16/32/128* ²	0 to 15* ³
	On-chip memory and on-chip memory	AII^{*^4}	B/C	8/16/32/128	0 to 15* ³
	On-chip memory and memory-mapped external device	All* ⁴	B/C	8/16/32/128	0 to 15* ³
	On-chip memory and on-chip peripheral module	All* ¹	B/C*5	8/16/32/128* ²	0 to 15* ³
	On-chip memory and external memory	AII^{*^4}	B/C	8/16/32/128	0 to 15* ³
Single	External device with DACK and external memory	External	B/C	8/16/32/128	0
	External device with DACK and memory- mapped external device	External	B/C	8/16/32/128	0

[Legend]

B: Burst

- C: Cycle steal
- Notes: 1. External requests, auto requests, and on-chip peripheral module requests are all available. However, in the case of internal module request, along with the exception of the multi-function timer pulse unit 2 and the compare match timer as the transfer request source, the requesting module must be designated as the transfer source or the transfer destination. In the SH726A, external requests cannot be used.

(11) Operation when Error Occurs during PWM Mode 1 Operation, and Operation is Restarted in Complementary PWM Mode

Figure 12.125 shows an explanatory diagram of the case where an error occurs in PWM mode 1 and operation is restarted in complementary PWM mode after re-setting.

1 to 10 are the same as in figure 12.121.

- 11. Set normal mode for initialization of the normal mode waveform generation section.
- 12. Initialize the PWM mode 1 waveform generation section with TIOR.
- 13. Disable operation of the PWM mode 1 waveform generation section with TIOR.
- 14. Disable channel 3 and 4 output with TOER.
- 15. Select the complementary PWM output level and cyclic output enabling/disabling with TOCR.
- 16. Set complementary PWM.
- 17. Enable channel 3 and 4 output with TOER.
- 18. Set the multi-function timer pulse unit 2 output with the general I/O port.
- 19. Operation is restarted by TSTR.

13.5.2 Conflict between Word-Write and Count-Up Processes of CMCNT

Even when the count-up occurs in the T2 cycle while writing to CMCNT in words, the writing has priority over the count-up. In this case, the count-up is not performed. Figure 13.6 shows the timing to write to CMCNT in words.

Figure 13.6 Conflict between Word-Write and Count-Up Processes of CMCNT

Figure 18.3 System Configuration Example with 4-Bit Data Size and Two Serial Flash Memories Connected (BSZ[1:0] Bits in CMNCR = 01)

18.5.2 Address Map

In external address space read mode, the serial flash connected is assigned in the SPI multi I/O bus space. A maximum accessible address space differs depending on the number of serial flash memories connected. In combination with DREAR, a maximum of 4 Gbytes can be accessed when one serial flash memory is connected, and a maximum of 8 Gbytes can be accessed when two memories are connected.

Table 18.4 Address Map

Number of Serial Flash Memories Connected	Internal Address	Cache	Max. Access Area
1	H'18000000 to H'1BFFFFF	Enabled	4 Gbytes
	H'38000000 to H'3BFFFFF	Disabled	
2	H'18000000 to H'1BFFFFF	Enabled	8 Gbytes
	H'38000000 to H'3BFFFFF	Disabled	

Figure 19.10 Slave Transmit Mode Operation Timing (2)

23.1.1 IEBus Communications Protocol

An overview of the IEBus is provided below.

- Communications method: Half-duplex asynchronous communications
- Multi-master system

All units connected to the IEBus can transfer data to other units.

- Broadcast communications function (one-to-many communications)
 - Group broadcast communications: Broadcast communications to group unit
 - General broadcast communications: Broadcast communications to all units
- Mode is selectable (three modes with different transfer speeds)

Table 23.1 Mode Types

Mode	IEBφ* ¹ = 12, 18, 24, 30, 36, 42, 48 MHz* ²	IEBφ* ¹ = 12.58, 18.87, 25.16, 31.45, 37.74, 44.03 MHz* ²	Maximum Number of Transfer Bytes (byte/frame)
0	About 3.9 kbps	About 4.1 kbps	16
1	About 17 kbps	About 18 kbps	32
2	About 26 kbps	About 27 kbps	128

Notes: 1. Peripheral clock (P ϕ), or clocks for AUDIO_X1 and AUDIO_X2

2. Oscillation frequency when this LSI is used

- Access control: CSMA/CD (Carrier Sense Multiple Access with Collision Detection) Priority of bus mastership is as follows.
 - Broadcast communications (one-to-many communications) have priority over normal communications (one-to-one communications).
 - A smaller master address has priority.
- Communications scale
 - Number of units: Up to 50
 - Cable length: Up to 150 m (when using a twisted-pair cable)
- Note: The communications scale of the actual system depends on the characteristics of the externally mounted IEBus driver/receiver and the cable used.

(b) Unlocking

When the control bits indicate the lock (H'3, H'A, or H'B) or unlock (H'6) operation and the byte data for the number of bytes specified by the message length bits are transmitted/received in a single communications frame, the slave unit is unlocked by the master unit. In this case, the bit (bit 2) relevant to locking in the byte indicating the slave status is cleared to 0.

Note that locking and unlocking are not done in broadcast communications.

Note: * There are three ways to cause a locked unit to unlock itself.

- Perform a power-on reset
- Put the unit in deep standby mode
- Issue an unlock command through the IEBus command register (IECMR)

Note that the LCK flag in IEFLG can be used to check whether the unit is locked or unlocked.

23.1.4 Bit Format

Figure 23.4 shows the bit format (conceptual diagram) configuring the IEBus communications frame.

Each period of the bit format for use of active high signals is described below.

- Preparation period: first logic 1 period (high level)
- Synchronous period: subsequent logic 0 period (low level)
- Data period: period indicating bit value (logic 1: high level, logic 0: low level)
- Halt period: last logic 1 period (high level)

27.3.29 Pipe Window Select Register (PIPESEL)

PIPE1 to PIPE 9 should be set using PIPESEL, PIPECFG, PIPEMAXP, PIPEPERI, PIPEnCTR, PIPEnTRE, and PIPEnTRN. After selecting the pipe using PIPESEL, functions of the pipe should be set using PIPECFG, PIPEMAXP, and PIPEPERI. PIPEnCTR, PIPEnTRE, and PIPEnTRN can be set regardless of the pipe selection in PIPESEL.

This register is initialized by a power-on reset. Here, not only the register for the selected pipe but the registers for all the pipes are initialized.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	—	_		—	—	—	-	-		_	—		PIPESE	EL[3:0]	
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit	Bit	Name)	Initi Valu	al ue	R/W	C	Description								
15 to 4	—			All ()	R	F	Reserved								
							T s	These bits are always read as 0. The write value should always be 0.								e

(17) Port F Control Register 0 (PFCR0)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	PF3M	D[1:0]	-	-	PF2M	D[1:0]	-	-	PF1N	ID[1:0]	-	-	PF0M	ID[1:0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R/W	R/W	R	R	R/W	R/W	R	R	R/W	R/W	R	R	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15, 14	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
13, 12	PF3MD[1:0]	00	R/W	PF3 Mode
				Select the function of the PF3.
				00: PF3
				01: MISO0
				10: SPBMI_0/SPBIO1_0
				11: Setting prohibited
11, 10		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
9, 8	PF2MD[1:0]	00	R/W	PF2 Mode
				Select the function of the PF2.
				00: PF2
				01: MOSI0
				10: SPBMO_0/SPBIO0_0
				11: Setting prohibited
7, 6		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
5, 4	PF1MD[1:0]	00	R/W	PF1 Mode
				Select the function of the PF1.
				00: PF1
				01: SSL00
				10: SPBSSL
				11: Setting prohibited

(19) Port H Control Register 1 (PHCR1)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	PH7N	1D[1:0]	-	-	PH6N	/ID[1:0]	-	-	PH5N	1D[1:0]	-	-	PH4M	ID[1:0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R/W	R/W	R	R	R/W	R/W	R	R	R/W	R/W	R	R	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15, 14		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
13, 12	PH7MD[1:0]	00	R/W	PH7 Mode
				Select the function of the PH7.
				00: PH7
				01: AN7
				10: PINT7
				11: RxD4
				Note: In the SH726A, bits 13 and 12 are reserved. These bits are always read as 0. The write value should always be 0.
11, 10		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
9, 8	PH6MD[1:0]	00	R/W	PH6 Mode
				Select the function of the PH6.
				00: PH6
				01: AN6
				10: PINT6
				11: RxD3
				Note: In the SH726A, bits 9 and 8 are reserved. These bits are always read as 0. The write value should always be 0.
7, 6		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

32.2.5 Standby Control Register 5 (STBCR5)

STBCR5 is an 8-bit readable/writable register that controls the operation of each module.

Note: When writing to this register, see section 32.4, Usage Notes.

Bit:	7	6	5	4	3	2	1	0
	MSTP 57	MSTP 56	MSTP 55	-	MSTP 53	MSTP 52	MSTP 51	MSTP 50
Initial value:	1	1	1	1	1	1	1	1
R/W:	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W

		Initial		_
Bit	Bit Name	Value	R/W	Description
7	MSTP57	1	R/W	Module Stop 57
				When the MSTP57 bit is set to 1, the clock supply to channel 0 of the I^2C bus interface 3 is halted.
				0: Channel 0 of the I ² C bus interface 3 runs.
				1: Clock supply to channel 0 of the I ² C bus interface 3 is halted.
6	MSTP56	1	R/W	Module Stop 56
				When the MSTP56 bit is set to 1, the clock supply to channel 1 of the l^2C bus interface 3 is halted.
				0: Channel 1 of the I ² C bus interface 3 runs.
				1: Clock supply to channel 1 of the I ² C bus interface 3 is halted.
5	MSTP55	1	R/W	Module Stop 55
				When the MSTP55 bit is set to 1, the clock supply to channel 2 of the I^2C bus interface 3 is halted.
				0: Channel 2 of the I ² C bus interface 3 runs.
				1: Clock supply to channel 2 of the I ² C bus interface 3 is halted.
4	_	1	R	Reserved
				This bit is always read as 1. The write value should always be 1.

32.2.13 System Control Register 4 (SYSCR4)

SYSCR4 is an 8-bit readable/writable register that enables or disables writing to a specified page in the large-capacity on-chip RAM.

When a VRAMWEn (n = 0 to 4) bit is set to 1, writing to page n is enabled. When a VRAMWEn bit is cleared to 0, writing to page n is ignored. The initial value of a VRAMWEn bit is 1.

SYSCR4 should be set with a program located in an area other than the large-capacity on-chip RAM. Furthermore, an instruction to read SYSCR4 should be located immediately after the instruction to write to SYSCR4. If not, normal access is not guaranteed.

Note: When writing to this register, see section 32.4, Usage Notes.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	VRAM WE4	VRAM WE3	VRAM WE2	VRAM WE1	VRAM WE0
Initial value:	1	1	1	1	1	1	1	1
R/W:	R	R	R	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7 to 5		All 1	R	Reserved
				These bits are always read as 1. The write value should always be 1.
4	VRAMWE4	1	R/W	RAM Write Enable 4 (corresponding area: page 4* in large-capacity on-chip RAM)
				0: Writing to page 4 is disabled.
				1: Writing to page 4 is enabled.
3	VRAMWE3	1	R/W	RAM Write Enable 3 (corresponding area: page 3* in large-capacity on-chip RAM)
				0: Writing to page 3 is disabled.
				1: Writing to page 3 is enabled.

	Register								
Module Name	Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
Direct memory	RDMATCR_10								
access									
Controller									
	SAR_11								
	DAR_11								
	DMATCR_11		_	_	_	_	_	_	
	CHCR_11	тс	_	RLDSAR	RLDDAR	_	DAF	SAF	_
			_		TEMASK	HE	HIE	_	_
		DM[1]	DM[0]	SM[1]	SM[0]	RS[3]	RS[2]	RS[1]	RS[0]
			_	тв	TS[1]	TS[0]	IE	ТЕ	DE
	RSAR_11								
	RDAR_11								

Module Name	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
IEBus	IERBFL	RBFL[7]	RBFL[6]	RBFL[5]	RBFL[4]	RBFL[3]	RBFL[2]	RBFL[1]	RBFL[0]
controller	IELA1	ILAL8[7]	ILAL8[6]	ILAL8[5]	ILAL8[4]	ILAL8[3]	ILAL8[2]	ILAL8[1]	ILAL8[0]
	IELA2	—	—	_	—	ILAU4[3]	ILAU4[2]	ILAU4[1]	ILAU4[0]
	IEFLG	СМХ	MRQ	SRQ	SRE	LCK	_	RSS	GG
	IETSR	_	TXS	TXF	_	TXEAL	TXETTME	TXERO	TXEACK
	IEIET	_	TXSE	TXFE	_	TXEALE	TXETTMEE	TXEROE	TXEACKE
	IERSR	RXBSY	RXS	RXF	RXEDE	RXEOVE	RXERTME	RXEDLE	RXEPE
	IEIER	RXBSYE	RXSE	RXFE	RXEDEE	RXEOVEE	RXERTMEE	RXEDLEE	RXEPEE
	IECKSR	_		_	CKS3	_	CKS[2]	CKS[1]	CKS[0]
	IETB001 to IETB128								
	IERB001 to IERB128								
Renesas	TLCA	_	_		_	_			
SPDIF									
interlace									
	TRCA	—	—	_	—	—	_	_	_
	TLCS	—	_	CLAC[1]	CLAC[0]	FS[3]	FS[2]	FS[1]	FS[0]
		CHNO[3]	CHNO[2]	CHNO[1]	CHNO[0]	SRCNO[3]	SRCNO[2]	SRCNO[1]	SRCNO[0]
		CATCD[7]	CATCD[6]	CATCD[5]	CATCD[4]	CATCD[3]	CATCD[2]	CATCD[1]	CATCD[0]
				CTL[4]	CTL[3]	CTL[2]	CTL[1]	CTL[0]	
	TRCS	_		CLAC[1]	CLAC[0]	FS[3]	FS[2]	FS[1]	FS[0]
		CHNO[3]	CHNO[2]	CHNO[1]	CHNO[0]	SRCNO[3]	SRCNO[2]	SRCNO[1]	SRCNO[0]
		CATCD[7]	CATCD[6]	CATCD[5]	CATCD[4]	CATCD[3]	CATCD[2]	CATCD[1]	CATCD[0]
		_	_	CTL[4]	CTL[3]	CTL[2]	CTL[1]	CTL[0]	_