E·X FL Renesas Electronics America Inc - R5S726B0D216FP#V0 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	EBI/EMI, I ² C, IEBus, SCI, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	94
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	
RAM Size	1.3M x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s726b0d216fp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Symbol	I/O	Name	Function
Multi-function timer pulse unit 2	TCLKA, TCLKB, TCLKC, TCLKD	I	Timer clock input	External clock input pins for the timer.
	TIOCOA, TIOCOB, TIOCOC, TIOCOD	I/O	Input capture/ output compare (channel 0)	The TGRA_0 to TGRD_0 input capture input/output compare output/PWM output pins.
	TIOC1A, TIOC1B	I/O	Input capture/ output compare (channel 1)	The TGRA_1 and TGRB_1 input capture input/output compare output/PWM output pins.
	TIOC2A, TIOC2B	I/O	Input capture/ output compare (channel 2)	The TGRA_2 and TGRB_2 input capture input/output compare output/PWM output pins.
	TIOC3A, TIOC3B, TIOC3C, TIOC3D	I/O	Input capture/ output compare (channel 3)	The TGRA_3 to TGRD_3 input capture input/output compare output/PWM output pins.
	TIOC4A, TIOC4B, TIOC4C, TIOC4D	I/O	Input capture/ output compare (channel 4)	The TGRA_4 to TGRD_4 input capture input/output compare output/PWM output pins.
Realtime clock	RTC_X1	I	Crystal	Connected to 4 MHz crystal
	RTC_X2	0	resonator for realtime clock/ external clock	resonator. The RTC_X1 pin can also be used to input an external clock.
Serial	TxD4 to TxD0	0	Transmit data	Data output pins.
communication interface with	RxD4 to RxD0	Ι	Receive data	Data input pins.
FIFO	SCK4 to SCK0	I/O	Serial clock	Clock input/output pins.
	RTS2 to RTS0	0	Transmit request	Modem control pin.
	CTS2 to CTS0	Ι	Enable to transmit	Modem control pin.

Table 5.5 CKOEN[1:0] Settings

Setting	Normal Operation	Software Standby Mode	Deep Standby Mode*
00	Output	Output off (Hi-Z)	Output off (Hi-Z)
01	Output	Low-level output	Low-level output
10	Output	Output (unstable clock output)	Low-level or high-level output
11	Output off (Hi-Z)	Output off (Hi-Z)	Output off (Hi-Z)

Note: * When deep standby mode is canceled, the head of the first output CKIO clock pulse may be missed.

Bit	Bit Name	Initial Value	R/W	Description
8 to 6	DMAIW[2:0]	000	R/W	Wait states between access cycles when DMA single address transfer is performed.
				Specify the number of idle cycles to be inserted after an access to an external device with DACK when DMA single address transfer is performed. The method of inserting idle cycles depends on the contents of DMAIWA.
				000: No idle cycle inserted
				001: 1 idle cycle inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted
				100: 6 idle cycles inserted
				101: 8 idle cycles inserted
				110: 10 idle cycles inserted
				111: 12 idle cycles inserted
5	DMAIWA	0	R/W	Method of inserting wait states between access cycles when DMA single address transfer is performed.
				Specifies the method of inserting the idle cycles specified by the DMAIW[2:0] bit. Clearing this bit will make this LSI insert the idle cycles when another device, which includes this LSI, drives the data bus after an external device with DACK drove it. However, when the external device with DACK drives the data bus continuously, idle cycles are not inserted. Setting this bit will make this LSI insert the idle cycles after an access to an external device with DACK, even when the continuous access cycles to an external device with DACK are performed.
				0: Idle cycles inserted when another device drives the data bus after an external device with DACK drove it.
				1: Idle cycles always inserted after an access to an external device with DACK
4	_	1	R	Reserved
				This bit is always read as 1. The write value should always be 1.

(c) Initialization

In complementary PWM mode, there are six registers that must be initialized. In addition, there is a register that specifies whether to generate dead time (it should be used only when dead time generation should be disabled).

Before setting complementary PWM mode with bits MD3 to MD0 in the timer mode register (TMDR), the following initial register values must be set.

TGRC_3 operates as the buffer register for TGRA_3, and should be set with 1/2 the PWM carrier cycle + dead time Td. The timer cycle buffer register (TCBR) operates as the buffer register for the timer cycle data register (TCDR), and should be set with 1/2 the PWM carrier cycle. Set dead time Td in the timer dead time data register (TDDR).

When dead time is not needed, the TDER bit in the timer dead time enable register (TDER) should be cleared to 0, TGRC_3 and TGRA_3 should be set to 1/2 the PWM carrier cycle + 1, and TDDR should be set to 1.

Set the respective initial PWM duty values in buffer registers TGRD_3, TGRC_4, and TGRD_4.

The values set in the five buffer registers excluding TDDR are transferred simultaneously to the corresponding compare registers when complementary PWM mode is set.

Set TCNT_4 to H'0000 before setting complementary PWM mode.

Table 12.54	Registers and	Counters H	Requiring	Initialization
--------------------	----------------------	-------------------	-----------	----------------

Set Value
1/2 PWM carrier cycle + dead time Td (1/2 PWM carrier cycle + 1 when dead time generation is disabled by TDER)
Dead time Td (1 when dead time generation is disabled by TDER)
1/2 PWM carrier cycle
Initial PWM duty value for each phase
H'0000

Note: The TGRC_3 set value must be the sum of 1/2 the PWM carrier cycle set in TCBR and dead time Td set in TDDR. When dead time generation is disabled by TDER, TGRC_3 must be set to 1/2 the PWM carrier cycle + 1.

(4) Timing for Counter Clearing by Compare Match/Input Capture

Figure 12.84 shows the timing when counter clearing on compare match is specified, and Figure 12.85 shows the timing when counter clearing on input capture is specified.

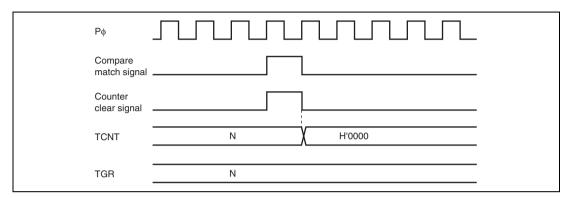


Figure 12.84 Counter Clear Timing (Compare Match)

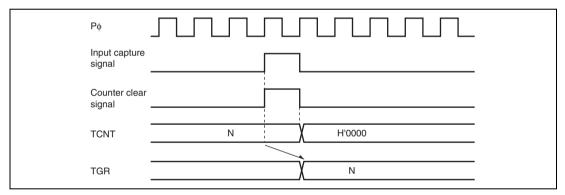


Figure 12.85 Counter Clear Timing (Input Capture)

15.3.19 Control Register 5 (RCR5)

When the RCKSEL[1:0] bits are set to 00, the 32.768-kHz RTC_X1 clock pulses are counted; when the RCKSEL[1:0] bits are set to 01, the EXTAL clock pulses are counted; and when the RCKSEL[1:0] bits are set to 10, the RTC_X1 clock pulses are counted to implement the clock function.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	RCKS	EL[1:0]
Initial value:	0	0	0	0	0	0	Undefined	Undefined
R/W:	R	R	R	R	R	R	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 2		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
1, 0	RCKSEL[1:0]	Undefined	R/W	Operation clock select
				Operation clock can be selected from RTC_X1 or EXTAL.
				The setting of these bits should not be switched during operation.
				00: Selects 32.768-kHz RTC_X1.
				01: Selects EXTAL.
				10: Selects RTC_X1.
				11: Setting prohibited.

Section 16 Serial Communication Interface with FIFO

This LSI has an five-channel serial communication interface with FIFO that supports both asynchronous and clock synchronous serial communication. It also has 16-stage FIFO registers for both transmission and reception independently for each channel that enable this LSI to perform efficient high-speed continuous communication.

16.1 Features

- Asynchronous serial communication:
 - Serial data communication is performed by start-stop in character units. This module can communicate with a universal asynchronous receiver/transmitter (UART), an asynchronous communication interface adapter (ACIA), or any other communications chip that employs a standard asynchronous serial system. There are eight selectable serial data communication formats.
 - Data length: 7 or 8 bits
 - Stop bit length: 1 or 2 bits
 - Parity: Even, odd, or none
 - Receive error detection: Parity, framing, and overrun errors
 - Break detection: Break is detected when a framing error is followed by at least one frame at the space 0 level (low level). It is also detected by reading the RxD level directly from the serial port register when a framing error occurs.
- Clock synchronous serial communication:
 - Serial data communication is synchronized with a clock signal. This module can communicate with other chips having a clock synchronous communication function. There is one serial data communication format.
 - Data length: 8 bits
 - Receive error detection: Overrun errors
- Full duplex communication: The transmitting and receiving sections are independent, so this module can transmit and receive simultaneously. Both sections use 16-stage FIFO buffering, so high-speed continuous data transfer is possible in both the transmit and receive directions.
- On-chip baud rate generator with selectable bit rates
- Internal or external transmit/receive clock source: From either baud rate generator (internal) or SCK pin (external)

18.5.4 Data Alignment

When two serial flash memories are connected, the serial flash memory connected to the pin SPBIO3_0-SPBIO0_0 has the address 2n and the serial flash memory connected to the pin SPBIO3_1-SPBIO0_1 has the address 2n + 1. The data should be accessed in word or larger units. It cannot be accessed in byte units. Data alignment when two serial flash memories are connected is shown in table 18.5.

Table 18.5	Data Alignment when Two Serial Flash Memories are Connected	
-------------------	---	--

		Serial Flash Memory			
Operation		SPBIO3_0 to SPBIO0_0 Pins	SPBIO3_1 to SPBIO0_1 Pins		
Word access to address 0		Data 15 to 8	Data 7 to 0		
Word access to address 2		Data 15 to 8	Data 7 to 0		
Longword access to address 0	1 word (address 0)	Data 31 to 24	Data 23 to 16		
	2 words (address 2)	Data 15 to 8	Data 7 to 0		

18.5.5 Operating Modes

This module has two operating modes: external address space read mode and SPI operating mode.

In external address space read mode, a read access to the SPI multi I/O bus space is converted into SPI communication and data is received. After data acquisition, data is returned to the bus master that is the issuing source. For details, see section 18.5.6, External Address Space Read Mode.

In SPI operating mode, arbitrary SPI communication is carried out using register settings. For details, see section 18.5.8, SPI Operating Mode.

18.5.6 External Address Space Read Mode

A read access to the SPI multi I/O bus space can be converted into SPI communication in external address space read mode. Further, the commands, optional commands, and option data issued for reading can be modified using registers.

In external address space read mode, either normal read operation or burst read operation can be selected. The transfer format is determined based on the common control register (CMNCR), SSL delay register (SSLDR), bit rate setting register (SPBCR), data read control register (DRCR), data read command setting register (DRCMR), data read extended address setting register (DREAR), data read option setting register (DROPR), and data read enable setting register (DRENR).

Bit	Bit Name	Initial Value	R/W	Description
0	RFOVF	0	R/W	Receive FIFO Overflow
				0: No receive FIFO overflow
				1: Receive FIFO overflow
				A receive FIFO overflow means that writing has occurred due to reception operation when the receive FIFO is full.
				When an overflow of the receive FIFO occurs, the receive data which caused the overflow is lost.
				 When this bit is set to 1, it is cleared to 0 by this module. Writing 0 to this bit is invalid.

Bit 9: IRR9	Description
0	No pending notification of message overrun/overwrite
	[Clearing condition]
	Clearing of all bit in UMSR/setting MBIMR for all UMSR set (initial value)
1	A receive message has been discarded due to overrun condition or a message has been overwritten
	[Setting condition]
	Message is received while the corresponding RXPR and/or RFPR = 1 and MBIMR = 0

Bit 8 - Mailbox Empty Interrupt Flag (IRR8): This bit is set when one of the messages set for transmission has been successfully sent (corresponding TXACK flag is set) or has been successfully aborted (corresponding ABACK flag is set). In Event Triggered mode the related TXPR is also cleared and this mailbox is now ready to accept a new message data for the next transmission. In Time Trigger mode TXPR for the Mailboxes from 30 to 24 is not cleared after a successful transmission in order to keep transmitting at each programmed basic cycle. In effect, this bit is set by an OR'ed signal of the TXACK and ABACK bits not masked by the corresponding MBIMR flag. Therefore, this bit is automatically cleared when all the TXACK and ABACK bits are cleared. It is also cleared by writing a '1' to all the correspondent bit position in MBIMR. Writing to this bit position has no effect.

Bit 8: IRR8	Description
0	Messages set for transmission or transmission cancellation request NOT progressed. (Initial value)
	[Clearing Condition]
	All the TXACK and ABACK bits are cleared/setting MBIMR for all TXACK and ABACK set
1	Message has been transmitted or aborted, and new message can be stored (in TT mode Mailbox 24 to 30 can be programmed with a new message only in case of abortion)
	[Setting condition]
	When a TXACK or ABACK bit is set (if related $MBIMR = 0$).

mode	requested setting	function
Time Slave	TXPR[30] = 0 & MBC[30]!= 3'b000	TCNTR is sampled at each SOF detected on the CAN Bus and stored into an internal register. When a valid Time Reference Message is received into Mailbox-31 the value of TCNTR (stored at the SOF) is copied into Ref_Mark.
	& CMAX!= 3'b111	CCR embedded in the received Reference Message is copied to CCR.
	&	If Next_is_Gap = 1, IRR13 is set.
	MBC[31] = 3'b011	
(Potential)	TXPR[30] = 1	Two cases are covered:
(Potential) Time Master	& MBC[30] = 3'b000 & DLC[30] > 0 & CMAX!= 3'b111 & MBC[31] = 3'b011	 When a valid Time Reference message is received into Mailbox-31 the value of TCNTR stored into an internal register at the SOF is copied into Ref_Mark. CCR embedded in the received Reference Message is copied to CCR. If Next_is_Gap = 1, IRR13 is set. When a Time Reference message is transmitted from Mailbox-30 the value of TCNTR stored into an internal register at the SOF is copied into Ref_Mark. CCR is incremented when TTT of Mailbox-30 matches with CYCTR .
		CCR is embedded into the first data byte of the time reference message
		{ Data0[7:6], CCR[5:0] } .

• Setting Tx-Trigger Time

The Tx-Trigger Time(TTT) must be set in ascending order shown below, and the difference between them has to satisfy the following expressions. TEW in the following expressions is the register value.

TTT (Mailbox-24) < TTT (Mailbox-25) < TTT (Mailbox-26) < TTT (Mailbox-27) < TTT (Mailbox-28) < TTT (Mailbox-29) < TTT (Mailbox-30)

and

TTT (Mailbox-i) – TTT (Mailbox-i-1) > TEW + the maximum frame length + 9

TTT (Mailbox-24) to TTT (Mailbox-29) correspond to Time_Marks, and TTT (Mailbox-30) corresponds to Time_Ref showing the length of a basic cycle, respectively when working as potential time master.

24.8.4 Transmitter Module Data Transfer

Once the transmitter module has left the idle state, it is ready for data transfer. Data transfer timing can be achieved in three ways. Either the transfer is done by interrupts, DMA requests or by polling the status register. There is a shared interrupt line (for both transmit and receive) and a single transmitter DMA request line.

Figure 24.5 shows a data transfer with an interrupt for the transmitter.

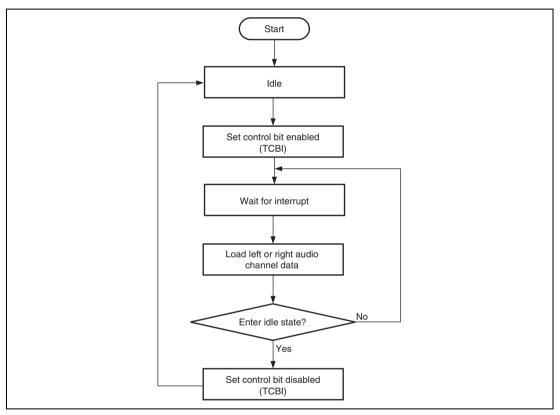


Figure 24.5 Transmitter Data Transfer Flow Diagram - Interrupt Driven

Bit	Bit Name	Initial Value	R/W	Description
2	LINK_DET	0	R	Indicates that a link block (run-out 1 to run-in 4) was detected.
				Since detection is based on the data before ECC correction, LINK_DET may also be set to 1 if data erroneously happens to contain the same code as a link block.
1	LINK_ SDET	0	R	Indicates that a link block was detected within seven sectors after the start of decoding.
0	LINK_ OUT1	0	R	Indicates that the sector after ECC correction has been identified as a run-out 1 sector.
				This bit is only valid when an IERR interrupt is not generated (i.e. when ECC correction was successful).

25.3.13 ECC/EDC Error Status Register (CROMST6)

The ECC/EDC error status register (CROMST6) indicates ECC processing error or EDC check error before/after ECC correction.

Bit:	7	6	5	4	3	2	1	0
	ST_ ERR	-	ST_ ECCABT	ST_ ECCNG	ST_ ECCP	ST_ ECCQ	ST_ EDC1	ST_ EDC2
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
7	ST_ERR	0	R	Indicates that the decoded block after ECC correction contains any error (even in a single byte).
6	_	0	R	Reserved
				This bit is always read as 0 and cannot be modified.
5	5 ST_ 0		R	Indicates that ECC processing was discontinued.
	ECCABT			This bit is set to 1 when a transition from sector to sector occurs while ECC correction is in progress. This does not indicate a problem for ECC correction if the BUF_NG bit in the CBUFST2 register is 0 at the same time. Whether or not this is so depends on the timing of the sector transition.

26.2 Input/Output Pins

Table 26.1 shows the A/D converter pins.

Table 26.1 Pin Configuration

Pin Name	Symbol	I/O	Function
Analog power supply pin	AVcc	Input	Analog power supply pin
Analog ground pin	AVss	Input	Analog ground pin and A/D conversion reference ground
Analog reference voltage pin	AVref	Input	A/D converter reference voltage pin
Analog input pin 0*	AN0	Input	Analog input
Analog input pin 1*	AN1	Input	_
Analog input pin 2*	AN2	Input	_
Analog input pin 3*	AN3	Input	_
Analog input pin 4*	AN4	Input	_
Analog input pin 5*	AN5	Input	_
Analog input pin 6	AN6	Input	_
Analog input pin 7	AN7	Input	_
A/D external trigger input pin	ADTRG	Input	External trigger input to start A/D conversion

Note: * Only analog input pins 0 to 5 (AN0 to AN5) can be used in the SH726A Group.

Register Name	Abbreviation	R/W	Address	Access Size
Interrupt status register 2	INTSTS2	R/W	H'FFFF C044	16
BRDY interrupt status register	BRDYSTS	R/W	H'FFFF C046	16
NRDY interrupt status register	NRDYSTS	R/W	H'FFFF C048	16
BEMP interrupt status register	BEMPSTS	R/W	H'FFFF C04A	16
Frame number register	FRMNUM	R/W	H'FFFF C04C	16
USB address register	USBADDR	R	H'FFFF C050	16
USB request type register	USBREQ	R	H'FFFF C054	16
USB request value register	USBVAL	R	H'FFFF C056	16
USB request index register	USBINDX	R	H'FFFF C058	16
USB request length register	USBLENG	R	H'FFFF C05A	16
DCP configuration register	DCPCFG	R/W	H'FFFF C05C	16
DCP maximum packet size register	DCPMAXP	R/W	H'FFFF C05E	16
DCP control register	DCPCTR	R/W	H'FFFF C060	16
Pipe window select register	PIPESEL	R/W	H'FFFF C064	16
Pipe configuration register	PIPECFG	R/W	H'FFFF C068	16
Pipe maximum packet size register	PIPEMAXP	R/W	H'FFFF C06C	16
Pipe cycle control register	PIPEPERI	R/W	H'FFFF C06E	16
Pipe 1 control register	PIPE1CTR	R/W	H'FFFF C070	16
Pipe 2 control register	PIPE2CTR	R/W	H'FFFF C072	16
Pipe 3 control register	PIPE3CTR	R/W	H'FFFF C074	16
Pipe 4 control register	PIPE4CTR	R/W	H'FFFF C076	16
Pipe 5 control register	PIPE5CTR	R/W	H'FFFF C078	16
Pipe 6 control register	PIPE6CTR	R/W	H'FFFF C07A	16
Pipe 7 control register	PIPE7CTR	R/W	H'FFFF C07C	16
Pipe 8 control register	PIPE8CTR	R/W	H'FFFF C07E	16
Pipe 9 control register	PIPE9CTR	R/W	H'FFFF C080	16
Pipe 1 transaction counter enable register	PIPE1TRE	R/W	H'FFFF C090	16
Pipe 1 transaction counter register	PIPE1TRN	R/W	H'FFFF C092	16
Pipe 2 transaction counter enable register	PIPE2TRE	R/W	H'FFFF C094	16
Pipe 2 transaction counter register	PIPE2TRN	R/W	H'FFFF C096	16
Pipe 3 transaction counter enable register	PIPE3TRE	R/W	H'FFFF C098	16

(2) DATA-PID

When the function controller function is selected, this module operates as follows in response to the received PID.

- 1. IN direction
- DATA0: Sent as data packet PID
- DATA1: Not sent
- DATA2: Not sent
- mDATA: Not sent
- 2. OUT direction
- DATA0: Received normally as data packet PID
- DATA1: Received normally as data packet PID
- DATA2: Packets are ignored
- mDATA: Packets are ignored

(3) Interval Counter

The isochronous interval can be set using the IITV bits in PIPEPERI. The interval counter enables the functions shown in table 27.25 when the function controller function is selected. When the host controller function is selected, this module generates the token issuance timing. When the host controller function is selected, the interval counter operation is the same as the interrupt transfer operation.

Table 27.25	Functions of the Interval Counter when the Function Controller Function is
	Selected

Transfer Direction	Function	Conditions for Detection
IN	IN buffer flush function	When an IN token cannot be normally received in the interval frame during an isochronous IN transfer
OUT	Notifies that a token not being received	When an OUT token cannot be normally received in the interval frame during an isochronous OUT transfer

The interval count is carried out when an SOF is received or for interpolated SOFs, so the isochronisms can be maintained even if an SOF is damaged. The frame interval that can be set is the 2^{IITV} frame.

	Register								
Module Name	Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
Bus state	CS4WCR	_		_	_	—		_	_
controller		_		_	BAS	—	WW[2]	WW[1]	WW[0]
		_		_	SW[1]	SW[0]	WR[3]	WR[2]	WR[1]
		WR[0]	WM	_	_	_		HW[1]	HW[0]
	CS4WCR	_		_	_	_		_	_
		_		BST[1]	BST[0]	—		BW[1]	BW[0]
		_		_	SW[1]	SW[0]	W[3]	W[2]	W[1]
		W[0]	WM	_	_	—		HW[1]	HW[0]
	SDCR	_		_	_	—		_	—
		_		_	A2ROW[1]	A2ROW[0]		A2COL[1]	A2COL[0]
		_		DEEP	_	RFSH	RMODE	PDOWN	BACTV
		_		_	A3ROW[1]	A3ROW[0]		A3COL[1]	A3COL[0]
	RTCSR	_	_	_	_	_	_	_	_
		_		_	_	—		_	—
		_	_	_	_	—	_	_	_
		CMF	CMIE	CKS[2]	CKS[1]	CKS[0]	RRC[2]	RRC[1]	RRC[0]
	RTCNT	—	_	—	—	—	_	—	—
		_	_	_	_	_	_	_	_
		_	_	_	_	_	_	_	_
	RTCOR	—	_	—	—	—	_	—	—
		_		_	_	—		_	—
		_		_	_	—		_	—
User break	BAR_0	BA31	BA30	BA29	BA28	BA27	BA26	BA25	BA24
controller		BA23	BA22	BA21	BA20	BA19	BA18	BA17	BA16
		BA15	BA14	BA13	BA12	BA11	BA10	BA9	BA8
		BA7	BA6	BA5	BA4	ВАЗ	BA2	BA1	BA0

Module Name	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
Controller area			EXTID[14]	EXTID[13]	EXTID[12]	EXTID[11]	EXTID[10]	EXTID[9]	EXTID[8]
network	0_L_0 (n = 0 to 31)	EXTID[7]	EXTID[6]	EXTID[5]	EXTID[4]	EXTID[3]	EXTID[2]	EXTID[1]	EXTID[0]
	MBn_LAFM0_0 (n = 0 to 31)* ¹	—	STDID_ LAFM[10]	STDID_ LAFM[9]	STDID_ LAFM[8]	STDID_ LAFM[7]	STDID_ LAFM[6]	STDID_ LAFM[5]	STDID_ LAFM[4]
		STDID_ LAFM[3]	STDID_ LAFM[2]	STDID_ LAFM[1]	STDID_ LAFM[0]	_	IDE	EXTID_ LAFM[17]	EXTID_ LAFM[16]
	MBn_LAFM0_0 $(n = 0 \text{ to } 31)^{*^2}$	IDE			STDID_ LAFM[10]	STDID_ LAFM[9]	STDID_ LAFM[8]	STDID_ LAFM[7]	STDID_ LAFM[6]
		STDID_ LAFM[5]	STDID_ LAFM[4]	STDID_ LAFM[3]	STDID_ LAFM[2]	STDID_ LAFM[1]	STDID_ LAFM[0]	EXTID_ LAFM[17]	EXTID_ LAFM[16]
	MBn_LAFM1_0 (n = 0 to 31)	EXTID_ LAFM[15]	EXTID_ LAFM[14]	EXTID _LAFM[13]	EXTID_ LAFM[12]	EXTID_ LAFM[11]	EXTID_ LAFM[10]	EXTID_ LAFM[9]	EXTID_ LAFM[8]
		EXTID_ LAFM[7]	EXTID_ LAFM[6]	EXTID_ LAFM[5]	EXTID_ LAFM[4]	EXTID_ LAFM[3]	EXTID_ LAFM[2]	EXTID_ LAFM[1]	EXTID_ LAFM[0]
	MBn_DATA_01_ 0 (n = 0 to 31)	MSG_DATA0							
		MSG_DATA1							
	MBn_DATA_23_ 0 (n = 0 to 31)	MSG_DATA2							
		MSG_DATA3							
	MBn_DATA_45_	MSG_DATA4							
	0 (n = 0 to 31)	MSG_DATA5							
	MBn_DATA_67_ 0 (n = 0 to 31)	MSG_DATA6							
		MSG_DATA7							
	MBn_CONTROL	_	_	NMC	—	_	MBC[2]	MBC[1]	MBC[0]
	1_0 (n =0)	_	_	_	_	DLC[3]	DLC[2]	DLC[1]	DLC[0]
	MBn_CONTROL	_	_	NMC	АТХ	DART	MBC[2]	MBC[1]	MBC[0]
	1_0 (n = 1 to 31)	_			_	DLC[3]	DLC[2]	DLC[1]	DLC[0]
	MBn_TIMESTA	TS15	TS14	TS13	TS12	TS11	TS10	TS9	TS8
	MP_0 (n = 0 to 15, 30, 31)	TS7	TS6	TS5	TS4	TS3	TS2	TS1	TS0
	MBn_TTT_0	TTT15	TTT14	TTT13	TTT12	TTT11	TTT10	TTT9	TTT8
	(n = 24 to 30)	TTT7	TTT6	TTT5	TTT4	тттз	TTT2	TTT1	ТТТО

	Register								
Module Name	Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
General	PCDR0	_	_	_	_	_		_	PC8DR
purpose I/O ports		PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
	PCPR0	_	_	_	_	_	_	_	PC8PR
		PC7PR	PC6PR	PC5PR	PC4PR	PC3PR	PC2PR	PC1PR	PC0PR
	PDCR3	_		PD15MD1	PD15MD0	_		PD14MD1	PD14MD0
		_		PD13MD1	PD13MD0	_		PD12MD1	PD12MD0
	PDCR2	_	_	PD11MD1	PD11MD0	_	_	PD10MD1	PD10MD0
		_	_	PD9MD1	PD9MD0	_	_	PD8MD1	PD8MD0
	PDCR1	_	PD7MD2	PD7MD1	PD7MD0	_	PD6MD2	PD6MD1	PD6MD0
		_	PD5MD2	PD5MD1	PD5MD0	_	PD4MD2	PD4MD1	PD4MD0
	PDCR0	_	PD3MD2	PD3MD1	PD3MD0	_	PD2MD2	PD2MD1	PD2MD0
		_	PD1MD2	PD1MD1	PD1MD0	_	PD0MD2	PD0MD1	PD0MD0
	PDIOR0	PD15IOR	PD14IOR	PD13IOR	PD12IOR	PD11IOR	PD10IOR	PD9IOR	PD8IOR
		PD7IOR	PD6IOR	PD5IOR	PD4IOR	PD3IOR	PD2IOR	PD1IOR	PD0IOR
	PDDR0	PD15DR	PD14DR	PD13DR	PD12DR	PD11DR	PD10DR	PD9DR	PD8DR
		PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
	PDPR0	PD15PR	PD14PR	PD13PR	PD12PR	PD11PR	PD10PR	PD9PR	PD8PR
		PD7PR	PD6PR	PD5PR	PD4PR	PD3PR	PD2PR	PD1PR	PD0PR
	PECR1	_	_	PE7MD1	PE7MD0	_	_	PE6MD1	PE6MD0
		_	_	PE5MD1	PE5MD0	_	_	PE4MD1	PE4MD0
	PECR0	_	_	PE3MD1	PE3MD0	_	_	PE2MD1	PE2MD0
		_	_	PE1MD1	PE1MD0	_	_	PE0MD1	PE0MD0
	PEIOR0	_	_	_	_	_	_	_	_
		PE7IOR	PE6IOR	PE5IOR	PE4IOR	PE3IOR	PE2IOR	PE1IOR	PEOIOR
	PEDR0	_	_	_	_	_		_	_
		PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
	PEPR0	_	_		_	_		_	_
		PE7PR	PE6PR	PE5PR	PE4PR	PE3PR	PE2PR	PE1PR	PE0PR
	PFCR1	_	_	PF7MD1	PF7MD0	_		PF6MD1	PF6MD0
		—	_	PF5MD1	PF5MD0	_		PF4MD1	PF4MD0

Section 36 States and Handling of Pins

This section describes pin states in each operating mode and how to handle pins.

36.1 Pin States

Table 36.1 shows the pin states in each operating mode.

As for the input/output functions, input buffers are listed on the upper column and output buffers on the lower column.

Table 36.1	Pin States
-------------------	------------

Pin Function				Pin State						
	Pin Name			Normal State (Other than States at Right)	Power-On Reset*1	Pin State Retained* ²		Power-Down State		
						EBUSKEE	PE* ³ (Other s at Right)	- Power-On Reset ^{∗⁴}	Deep Standby Mode	Software Standby Mode
Туре						0	1			
Clock	EXTAL* ⁶	Clock operation mode	0	I	I	1		I/Z* ⁵	1	
			1	z	z	Z			z	Z
	XTAL* ⁶		•	0	0	0			0/L*5	O/L* ⁵
	СКІО	Boot mode	0	0/Z*7	0	0	O/Z* ⁷		0/Z*7	O/Z*7
			1	O/Z*7	0		0/Z*7		0/Z* ⁷	O/Z*7
	AUDIO_CLK			I	_				z	z
	AUDIO_X1*6			I/Z* ⁸	I	1			z	z
	AUDIO_X2*6			0/L*8	0	0			L	L
	AUDIO_XOUT			O/L* ⁸	_	0/Z* ⁹ * ¹⁸			O/Z* ⁹ * ¹⁶	L/Z* ⁹
System control	RES			I	I	I			I	1
	WDTOVF			0	_	Н		н	н	
Operation mode control	MD_BOOT			_	I			_	_	
	MD_CLK			_	I	_			_	_
	ASEMD			I	I	I			1	1