

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	41
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151c4t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: ADC1 can be served by DMA1.

3.10 Digital-to-analog converter (DAC)

- 12-bit DAC with output buffer
- Synchronized update capability using TIM4
- DMA capability
- External triggers for conversion
- Input reference voltage V_{REF+} for better resolution

Note: DAC can be served by DMA1.

3.11 Ultra-low-power comparators

The medium-density STM8L151x4/6 and STM8L152x4/6 embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O).

- One comparator with fixed threshold (COMP1).
- One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4)

The two comparators can be used together to offer a window function. They can wake up from Halt mode.

3.12 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.

The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1, COMP2, DAC and the internal reference voltage V_{REFINT} . It also provides a set of registers for efficiently managing the charge transfer acquisition sequence (*Section 3.13: Touch sensing*).

3.13 Touch sensing

Medium-density STM8L151x4/6 and STM8L152x4/6 devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (example, glass, plastic). The capacitive variation introduced by a finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. In medium-density STM8L151x4/6

3.14.2 16-bit general purpose timers

- 16-bit autoreload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- 2 individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

3.14.3 8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow or for DAC trigger generation.

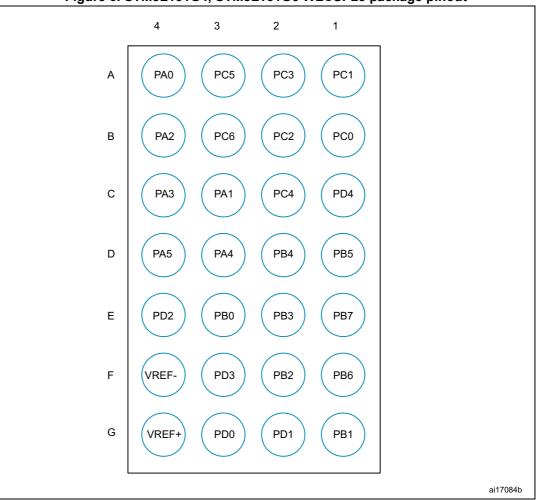
3.15 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

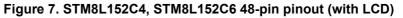
3.15.1 Window watchdog timer

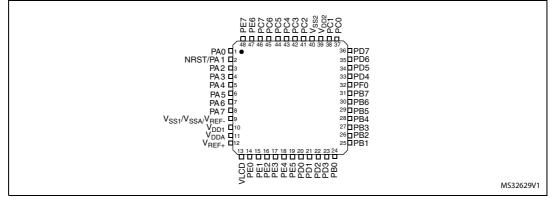
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.15.2 Independent watchdog timer


The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures.


It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.


3.16 Beeper


The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

n	Pin umb	er						Input	t	0	utpu	ıt			
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	wpu	Ext. interrupt	High sink/source	OD	ЬР	Main function (after reset)	Default alternate function	
-	8	7	G4	V _{DD1} /V _{DDA} /V _{REF+}	s	-	-	-	-	-	-	-	Digital power supply / Analog supply voltage / ADC1 positive voltage reference		
9	7	6	F4	V _{SS1} /V _{SSA/} V _{REF-}	s	-	-	-	-	-	-	-	I/O ground / Analog ground voltage / ADC1 negative voltage reference		
39	-	-	-	V _{DD2}	S	-	-	-	-	-	-	-	IOs suppl	y voltage	
40	-	-	-	V _{SS2}	S	-	-	-	-	-	-	-	IOs ground voltage		
1	32	28	A4	PA0 ⁽⁹⁾ / <i>[USART1_CK]</i> ⁽⁴⁾ / SWIM/BEEP/IR_TIM ⁽¹⁰⁾	I/O		х	X ⁽⁹⁾	х	HS (10)	х	х	Port A0	[USART1 synchronous clock] ⁽⁴⁾ / SWIM input and output / Beep output / Infrared Timer output	

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)

 At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031).

2. Available on STM8L152xx devices only.

3. In the 3.6 V tolerant I/Os, protection diode to V_{DD} is not implemented.

4. [] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

- 5. In the 5 V tolerant I/Os, protection diode to V_{DD} is not implemented.
- 6. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
- In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V_{DD} are not implemented).
- 8. Available on STM8L151xx devices only.
- 9. The PA0 pin is in input pull-up during the reset phase and after reset release.

10. High Sink LED driver capability available on PA0.

Note: The slope control of all GPIO pins, except true open drain pins, can be programmed. By default, the slope control is limited to 2 MHz.

		Table 9. General hardware register map (continued)								
Address	Block	Register label	Register name	Reset status						
0x00 5084			Reserved area (1 byte)							
0x00 5085		DMA1_C1M0ARH	DMA1 memory 0 address high register (channel 1)	0x00						
0x00 5086		DMA1_C1M0ARL	DMA1 memory 0 address low register (channel 1)	0x00						
0x00 5087 0x00 5088			Reserved area (2 bytes)							
0x00 5089		DMA1_C2CR	DMA1 channel 2 configuration register	0x00						
0x00 508A		DMA1_C2SPR	DMA1 channel 2 status & priority register	0x00						
0x00 508B		DMA1_C2NDTR	DMA1 number of data to transfer register (channel 2)	0x00						
0x00 508C		DMA1_C2PARH	DMA1 peripheral address high register (channel 2)	0x52						
0x00 508D		DMA1_C2PARL	DMA1 peripheral address low register (channel 2)	0x00						
0x00 508E			Reserved area (1 byte)							
0x00 508F		DMA1_C2M0ARH	DMA1 memory 0 address high register (channel 2)	0x00						
0x00 5090	DMA1	DMA1_C2M0ARL	DMA1 memory 0 address low register (channel 2)	0x00						
0x00 5091 0x00 5092			Reserved area (2 bytes)							
0x00 5093		DMA1_C3CR	DMA1 channel 3 configuration register	0x00						
0x00 5094		DMA1_C3SPR	DMA1 channel 3 status & priority register	0x00						
0x00 5095		DMA1_C3NDTR	DMA1 number of data to transfer register (channel 3)	0x00						
0x00 5096		DMA1_C3PARH_ C3M1ARH	DMA1 peripheral address high register (channel 3)	0x40						
0x00 5097		DMA1_C3PARL_ C3M1ARL	DMA1 peripheral address low register (channel 3)	0x00						
0x00 5098			Reserved area (1 byte)							
0x00 5099		DMA1_C3M0ARH	DMA1 memory 0 address high register (channel 3)	0x00						
0x00 509A		DMA1_C3M0ARL	DMA1 memory 0 address low register (channel 3)	0x00						
0x00 509B to 0x00 509D			Reserved area (3 bytes)							
0x00 509E	evecto	SYSCFG_RMPCR1	Remapping register 1	0x00						
0x00 509F	SYSCFG	SYSCFG RMPCR2	Remapping register 2	0x00						

Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset		
Audress	BIOCK	Register laber		status		
0x00 5200		SPI1_CR1	SPI1 control register 1	0x00		
0x00 5201]	SPI1_CR2	SPI1 control register 2	0x00		
0x00 5202]	SPI1_ICR	SPI1 interrupt control register	0x00		
0x00 5203	SPI1	SPI1_SR	SPI1 status register	0x02		
0x00 5204	- 3511	SPI1_DR	SPI1 data register	0x00		
0x00 5205		SPI1_CRCPR	SPI1 CRC polynomial register	0x07		
0x00 5206		SPI1_RXCRCR	SPI1 Rx CRC register	0x00		
0x00 5207		SPI1_TXCRCR	SPI1 Tx CRC register	0x00		
0x00 5208 to 0x00 520F		I	Reserved area (8 bytes)			
0x00 5210		I2C1_CR1	I2C1 control register 1	0x00		
0x00 5211		I2C1_CR2	I2C1 control register 2	0x00		
0x00 5212		I2C1_FREQR	I2C1 frequency register	0x00		
0x00 5213		I2C1_OARL	I2C1 own address register low	0x00		
0x00 5214		I2C1_OARH	I2C1 own address register high	0x00		
0x00 5215			Reserved (1 byte)			
0x00 5216		I2C1_DR	I2C1 data register	0x00		
0x00 5217	I2C1	I2C1_SR1	I2C1 status register 1	0x00		
0x00 5218		I2C1_SR2	I2C1 status register 2	0x00		
0x00 5219		I2C1_SR3	I2C1 status register 3	0x0x		
0x00 521A		I2C1_ITR	I2C1 interrupt control register	0x00		
0x00 521B]	I2C1_CCRL	I2C1 clock control register low	0x00		
0x00 521C]	I2C1_CCRH	I2C1 clock control register high	0x00		
0x00 521D	1	I2C1_TRISER	I2C1 TRISE register	0x02		
0x00 521E	1	I2C1_PECR	I2C1 packet error checking register	0x00		
0x00 521F to 0x00 522F		Reserved area (17 bytes)				

	h	
Table 9. General	hardware register m	ap (continued)

Address	Block	Register label	Register name	Reset status				
0x00 5230		USART1_SR	USART1 status register	0xC0				
0x00 5231		USART1_DR	USART1 data register	undefined				
0x00 5232		USART1_BRR1	USART1 baud rate register 1	0x00				
0x00 5233		USART1_BRR2	USART1 baud rate register 2	0x00				
0x00 5234		USART1_CR1	USART1 control register 1	0x00				
0x00 5235	USART1	USART1_CR2	USART1 control register 2	0x00				
0x00 5236		USART1_CR3	USART1 control register 3	0x00				
0x00 5237		USART1_CR4	USART1 control register 4	0x00				
0x00 5238		USART1_CR5	USART1 control register 5	0x00				
0x00 5239		USART1_GTR	USART1 guard time register	0x00				
0x00 523A		USART1_PSCR	USART1 prescaler register	0x00				
0x00 523B to 0x00 524F		Я	Reserved area (21 bytes)					

	-					
Table 9	General	hardware	register	man	(continued)	
	Contorui	indi di titul c	register	map	(continued)	

Address	Block	Register Label	Register Name	Reset Status					
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF					
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF					
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF					
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF					
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF					
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF					
0x00 7F96		DM_CR1	DM Debug module control register 1	0x00					
0x00 7F97		DM_CR2	DM Debug module control register 2	0x00					
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10					
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00					
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF					
0x00 7F9B to 0x00 7F9F			Reserved area (5 byte)						

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

•	Para		(4)	-			Max		
Symbol	meter		Conditions ⁽	')	Тур	55 °C	85 °C ⁽²⁾	105°C ⁽³⁾	125 °C ⁽⁴⁾	Unit
				f _{CPU} = 125 kHz	0.39	0.47	0.49	0.52	0.55	
			f _{CPU} = 1 MHz	0.48	0.56	0.58	0.61	0.65		
		HSI RC osc. (16 MHz) ⁽⁶⁾	f _{CPU} = 4 MHz	0.75	0.84	0.86	0.91	0.99		
				f _{CPU} = 8 MHz	1.10	1.20	1.25	1.31	1.40	
	All peripherals		f _{CPU} = 16 MHz	1.85	1.93	2.12 ⁽⁸⁾	2.29 ⁽⁸⁾	2.36 ⁽⁸⁾		
	Supply	OFF,		f _{CPU} = 125 kHz	0.05	0.06	0.09	0.11	0.12	
I _{DD(RUN)}	current	code executed	HSE external	f _{CPU} = 1 MHz	0.18	0.19	0.20	0.22	0.23	mA
<i>DD</i> (RON)	in run mode ⁽⁵⁾	from RAM, V _{DD} from	clock	f _{CPU} = 4 MHz	0.55	0.62	0.64	0.71	0.77	
		1.65 V to	(f _{CPU} =f _{HSE}) ⁽⁷⁾	f _{CPU} = 8 MHz	0.99	1.20	1.21	1.22	1.24	
		3.6 V		f _{CPU} = 16 MHz	1.90	2.22	2.23 ⁽⁸⁾	2.24 ⁽⁸⁾	2.28 ⁽⁸⁾	
			LSI RC osc. (typ. 38 kHz)	f _{CPU} = f _{LSI}	0.040	0.045	0.046	0.048	0.050	
	LSE ex clock	LSE external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.035	0.040	0.048 ⁽⁸⁾	0.050	0.062		
				f _{CPU} = 125 kHz	0.43	0.55	0.56	0.58	0.62	
				f _{CPU} = 1 MHz	0.60	0.77	0.80	0.82	0.87	
			HSI RC osc. ⁽⁹⁾	f _{CPU} = 4 MHz	1.11	1.34	1.37	1.39	1.43	
				f _{CPU} = 8 MHz	1.90	2.20	2.23	2.31	2.40	
		All		f _{CPU} = 16 MHz	3.8	4.60	4.75	86 0.91 0.99 25 1.31 1.40 $2^{(8)}$ $2.29^{(8)}$ $2.36^{(8)}$ 29 0.11 0.12 20 0.22 0.23 64 0.71 0.77 21 1.22 1.24 $3^{(8)}$ $2.24^{(8)}$ $2.28^{(8)}$ 46 0.048 0.050 $48^{(8)}$ 0.050 0.062 56 0.58 0.62 80 0.82 0.87 37 1.39 1.43 23 2.31 2.40 75 4.87 4.88 39 0.44 0.47 52 0.55 0.56 40 1.45 1.48 44 2.56 2.77 52 4.59 4.77 30 0.140 0.150		
	Supply	peripherals OFF, code		f _{CPU} = 125 kHz	0.30	0.36	0.39	0.44	0.47	
I _{DD(RUN)}	Supply current	executed	HSE external	f _{CPU} = 1 MHz	0.40	0.50	0.52	0.55	0.56	mA
'DD(RUN)	in Run mode	from Flash, V _{DD} from	clock (f _{CPU} =f _{HSE})	f _{CPU} = 4 MHz	1.15	1.31	1.40	1.45	1.48	110 \
		1.65 V to	(7)	f _{CPU} = 8 MHz	2.17	2.33	2.44	2.56	2.77	
		3.6 V		f _{CPU} = 16 MHz	4.0	4.46	4.52	4.59	4.77	
			LSI RC osc.	f _{CPU} = f _{LSI}	0.110	0.123	0.130	0.140	0.150	
			LSE ext. clock (32.768 kHz) ⁽¹⁰⁾	f _{CPU} = f _{LSE}	0.100	0.101	0.104	0.119	0.122	

1. All peripherals OFF, V_{DD} from 1.65 V to 3.6 V, HSI internal RC osc., $f_{CPU}\text{=}f_{SYSCLK}$

2. For devices with suffix 6

3. For devices with suffix 7

4. For devices with suffix 3

-		,			
Symbol	Parameter	Condition	Тур	Unit	
	Oursels summaries days		V _{DD} = 1.8 V	48	
I _{DD(RST)}		All pins are externally tied to V _{DD}	V _{DD} = 3 V	76	μΑ
			V _{DD} = 3.6 V	91	

Table 28. Current consumption under external reset

1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	External clock source frequency ⁽¹⁾		1	-	16	MHz
V _{HSEH}	OSC_IN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	0.3 x V _{DD}	v
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	2.6	-	pF
I _{LEAK_HSE}	OSC_IN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-	-	±1	μA

Table 29. HSE external clock characteristics

1. Data guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 30. LSE external clock characteristics	Table	30.	LSE	external	clock	characteristics
--	-------	-----	-----	----------	-------	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSE_ext}	External clock source frequency ⁽¹⁾	-	32.768	-	kHz
V _{LSEH} ⁽²⁾	OSC32_IN input pin high level voltage	0.7 x V _{DD}	-	V _{DD}	V
V _{LSEL} ⁽²⁾	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 x V _{DD}	v
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-	-	±1	μA

1. Data guaranteed by design.

2. Data based on characterization results.

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

l/O Type	Symbol	Parameter Conditions		Min	Max	Unit
		 Output low level voltage for an I/O pin Output high level voltage for an I/O pin 	I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	V
High sink			I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	V
			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	0.7	V
			I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	V
			I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -0.7	-	V

Table 39. Output driving current (high sink por	'ts)
---	------

The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
drain	$V_{\Omega I}$ ⁽¹⁾ Output low level voltage for an I/O pin	I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V	
O V _{OL} ⁽¹⁾	VOL		I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V

Table 40. Output driving current (true open drain ports)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

I/О Туре	Symbol	Parameter	Conditions	Min	Max	Unit
R	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.45	V

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
f _{SCK}	SPI1 clock frequency	Master mode	0	8	
1/t _{c(SCK)}	SPTT Clock frequency	Slave mode	0	8	MHz
t _{r(SCK)} t _{f(SCK)}	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-	
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145	-
t _{su(MI)} (2)	Data input setup time	Master mode	30	-	
t _{su(MI)} (2) t _{su(SI)} (2)		Slave mode	3	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	15	-	
t _{h(MI)} (2) t _{h(SI)} (2)	Data input hold time	Slave mode	0	-	ns
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}	
$t_{dis(SO)}^{(2)(4)}$	Data output disable time	Slave mode	30	-	
t _{v(SO)} ⁽²⁾	Data output valid time	Slave mode (after enable edge)	-	60	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20	
t _{h(SO)} ⁽²⁾		Slave mode (after enable edge)	15	-	1
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode (after enable edge)	1	-	

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

9.3.9 LCD controller (STM8L152xx only)

In the following table, data is guaranteed by design. Not tested in production.

Symbol	Parameter	Min	Тур	Max.	Unit
V_{LCD}	LCD external voltage	-	-	3.6	V
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-	V
V _{LCD1}	LCD internal reference voltage 1	-	2.7	-	V
V _{LCD2}	LCD internal reference voltage 2	-	2.8	-	V
V _{LCD3}	LCD internal reference voltage 3	-	2.9	-	V
V _{LCD4}	LCD internal reference voltage 4	-	3.0	-	V
V_{LCD5}	LCD internal reference voltage 5	-	3.1	-	V
V _{LCD6}	LCD internal reference voltage 6	-	3.2	-	V
V _{LCD7}	LCD internal reference voltage 7	-	3.3	-	V
C _{EXT}	V _{LCD} external capacitance	0.1	-	2	μF
I	Supply current ⁽¹⁾ at V_{DD} = 1.8 V	-	3	-	μA
I _{DD}	Supply current ⁽¹⁾ at V_{DD} = 3 V	-	3	-	μA
R _{HN} ⁽²⁾	High value resistive network (low drive)	-	6.6	-	MΩ
$R_{LN}^{(3)}$	Low value resistive network (high drive)	-	360	-	kΩ
V ₃₃	Segment/Common higher level voltage	-	-	V _{LCDx}	V
V ₂₃	Segment/Common 2/3 level voltage	-	2/3V _{LCDx}	-	V
V ₁₂	Segment/Common 1/2 level voltage	-	1/2V _{LCDx}	-	V
V ₁₃	Segment/Common 1/3 level voltage	-	1/3V _{LCDx}	-	V
V ₀	Segment/Common lowest level voltage	0	-	-	V

1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected.

2. $\ R_{HN}$ is the total high value resistive network.

3. R_{LN} is the total low value resistive network.

VLCD external capacitor (STM8L152xx only)

The application can achieve a stabilized LCD reference voltage by connecting an external capacitor C_{EXT} to the V_{LCD} pin. C_{EXT} is specified in *Table 45*.

9.3.11 Temperature sensor

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Min	Тур	Max.	Unit
V ₉₀ ⁽¹⁾	Sensor reference voltage at 90°C ±5 °C,	0.580	0.597	0.614	V
TL	V _{SENSOR} linearity with temperature	-	±1	±2	°C
Avg_slope (2)	Average slope	1.59	1.62	1.65	mV/°C
I _{DD(TEMP)} ⁽²⁾	Consumption	-	3.4	6	μA
T _{START} ⁽²⁾⁽³⁾	Temperature sensor startup time	-	-	10	μs
T _{S_TEMP} ⁽²⁾	ADC sampling time when reading the temperature sensor	10	-	-	μs

Table 47.	тs	characteristics
10.010 111		

 Tested in production at V_{DD} = 3 V ±10 mV. The 8 LSB of the V₉₀ ADC conversion result are stored in the TS_Factory_CONV_V90 byte.

- 2. Data guaranteed by design.
- 3. Defined for ADC output reaching its final value $\pm 1/2LSB$.

9.3.12 Comparator characteristics

In the following table, data is guaranteed by design, not tested in production, unless otherwise specified.

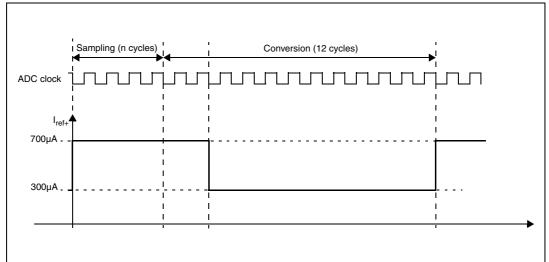

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	1.65	-	3.6	V	
T _A	Temperature range	-40	-	125	°C	
R _{400K}	R _{400K} value	300	400	500	kΩ	
R _{10K}	R _{10K} value	7.5	10	12.5	N22	
V _{IN}	Comparator 1 input voltage range	0.6	-	V _{DDA}	V	
V _{REFINT}	V _{REFINT} Internal reference voltage ⁽²⁾		1.224	1.242	v	
t _{START}	Comparator startup time	-	7	10	110	
t _d	t _d Propagation delay ⁽³⁾		3	10	μs	
V _{offset}	Comparator offset error	-	±3	±10	mV	
I _{COMP1}	Current consumption ⁽⁴⁾	-	160	260	nA	

Table 48. Comparator 1 characteristics

1. Based on characterization.

2. Tested in production at V_{DD} = 3 V ±10 mV.

- 3. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
- 4. Comparator consumption only. Internal reference voltage not included.

Figure 40. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 57. R _{AIN}	max for f _{ADC} =	= 16 MHz ⁽¹⁾
----------------------------	----------------------------	-------------------------

		R _{AIN} max (kohm)						
Ts (cycles)	Ts (µs)	Slow cl	hannels	Fast channels				
	. ,	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V			
4	0.25	Not allowed	Not allowed	0.7	Not allowed			
9	0.5625	0.8	Not allowed	2.0	1.0			
16	1	2.0	0.8	4.0	3.0			
24	1.5	3.0	1.8	6.0	4.5			
48	3	6.8	4.0	15.0	10.0			
96	6	15.0	10.0	30.0	20.0			
192	12	32.0	25.0	50.0	40.0			
384	24	50.0	50.0	50.0	50.0			

1. Guaranteed by design.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 41* or *Figure 42*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

9.3.15 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions		Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{CPU} = 16 MHz, conforms to IEC 61000		3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on	V _{DD} = 3.3 V, T _A = +25 °C, f _{CPU} = 16 MHz,	Using HSI	4A
	V _{DD} and V _{SS} pins to induce a functional disturbance	conforms to IEC 61000	Using HSE	2B

Table 58. EMS data

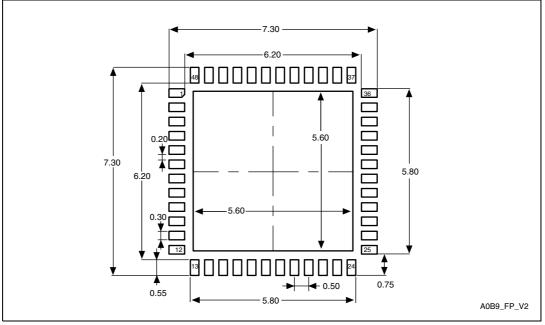
Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 62. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

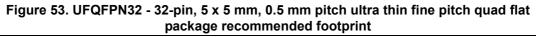


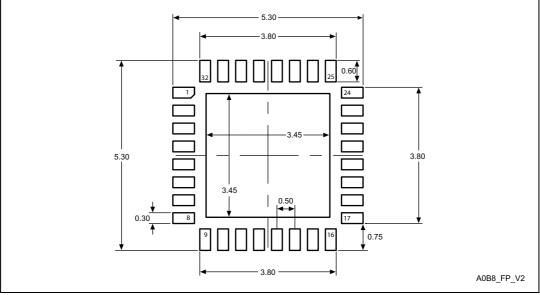
0h.al	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 63. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

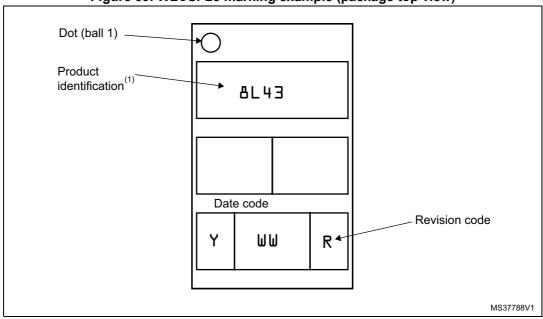
Figure 47. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint


1. Dimensions are expressed in millimeters.



		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.152	-	-	0.0060	-	
b	0.180	0.230	0.280	0.0071	0.0091	0.0110	
D	4.900	5.000	5.100	0.1929	0.1969	0.2008	
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
Е	4.900	5.000	5.100	0.1929	0.1969	0.2008	
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.080	-	-	0.0031	

Table 65. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data


1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Figure 59. WLCSP28 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

