

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	41
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151c6u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This document describes the features, pinout, mechanical data and ordering information of the medium-density STM8L151x4/6 and STM8L152x4/6 devices (STM8L151Cx/Kx/Gx, STM8L152Cx/Kx microcontrollers with a 16-Kbyte or 32-Kbyte Flash memory density). These devices are referred to as medium-density devices in the STM8L15x and STM8L16x reference manual (RM0031) and in the STM8L Flash programming manual (PM0054).

For more details on the whole STMicroelectronics ultra-low-power family please refer to *Section 2.2: Ultra-low-power continuum on page 13.*

For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

The medium-density devices provide the following benefits:

- Integrated system
 - Up to 32 Kbyte of medium-density embedded Flash program memory
 - 1 Kbyte of data EEPROM
 - Internal high speed and low-power low speed RC
 - Embedded reset
- Ultra-low power consumption
 - 195 μA/MHz + 440 μA (consumption)
 - 0.9 µA with LSI in Active-halt mode
 - Clock gated system and optimized power management
 - Capability to execute from RAM for Low power wait mode and Low power run mode
- Advanced features
 - Up to 16 MIPS at 16 MHz CPU clock frequency
 - Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access
- Short development cycles
 - Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals
 - Wide choice of development tools

All devices offer 12-bit ADC, DAC, two comparators, Real-time clock three 16-bit timers, one 8-bit timer as well as standard communication interface such as SPI, I2C and USART. A 4x28-segment LCD is available on the medium-density STM8L152xx line. *Table 2: Medium-density STM8L151x4/6 and STM8L152x4/6 low-power device features and peripheral counts* and *Section 3: Functional overview* give an overview of the complete range of peripherals proposed in this family.

Figure 1 on page 14 shows the general block diagram of the device family.

and STM8L152x4/6 devices, the acquisition sequence is managed by software and it involves analog I/O groups and the routing interface.

Reliable touch sensing solutions can be quickly and easily implemented using the free STM8 Touch Sensing Library.

3.14 Timers

Medium-density STM8L151x4/6 and STM8L152x4/6devices contain one advanced control timer (TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).

All the timers can be served by DMA1.

Table 3 compares the features of the advanced control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA1 request generation	Capture/compare channels	Complementary outputs		
TIM1		up/down			Any integer from 1 to 65536		3 + 1	3
TIM2	16-bit		Any power of 2	Yes	2	None		
TIM3			from 1 to 128	103	2			
TIM4	8-bit	up	Any power of 2 from 1 to 32768		0			

Table 3. Timer feature comparison

3.14.1 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- 3 independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- 1 additional capture/compare channel which is not connected to an external I/O
- Synchronization module to control the timer with external signals
- Break input to force timer outputs into a defined state
- 3 complementary outputs with adjustable dead time
- Encoder mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)

n	Pin umb			. Mealum-density STM	_		-	nput			utpu			
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	ЧЧ	Main function (after reset)	Default alternate function
44	30	26		PC5/OSC32_IN /[SPI1_NSS] ⁽⁴⁾ / [USART1_TX] ⁽⁴⁾	I/O		x	x	х	HS	х	х	Port C5	LSE oscillator input / [SPI1 master/slave select] / [USART1 transmit]
45	31	27	B3	PC6/OSC32_OUT/ [SPI1_SCK] ⁽⁴⁾ / [USART1_RX] ⁽⁴⁾	I/O		x	x	х	нs	x	Х	Port C6	LSE oscillator output / [SPI1 clock] / [USART1 receive]
46	-	-	-	PC7/LCD_SEG25 ^{(2)/} ADC1_IN3/COMP2_INM/ COMP1_INP	I/O	TT (3)	x	x	х	HS	x	x	Port C7	LCD segment 25 /ADC1_IN3/ Comparator negative input / Comparator 1 positive input
20	-	8	G3	PD0/TIM3_CH2/ <i>[ADC1_TRIG]⁽⁴⁾/</i> LCD_SEG7 ⁽²⁾ /ADC1_IN2 2/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port D0	Timer 3 - channel 2 / [ADC1_Trigger] / LCD segment 7 / ADC1_IN22 / Comparator 2 positive input / Comparator 1 positive input
-	9	-	-	PD0/TIM3_CH2/ <i>[ADC1_TRIG]⁽⁴⁾/</i> ADC1_IN22/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port D0 ⁽⁸⁾	Timer 3 - channel 2 / [ADC1_Trigger] / ADC1_IN22 / Comparator 2 positive input / Comparator 1 positive input
21	-	-	-	PD1/TIM3_ETR/ LCD_COM3 ⁽²⁾ / ADC1_IN21/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port D1	Timer 3 - external trigger / LCD_COM3 / ADC1_IN21 / comparator 2 positive input / Comparator 1 positive input
-	10	_		PD1/TIM1_CH3N/[<i>TIM3_ ETR</i>] ⁽⁴⁾ / LCD_COM3 ⁽²⁾ / ADC1_IN21/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	х	Port D1	[Timer 3 - external trigger]/ TIM1 inverted channel 3 / LCD_COM3/ ADC1_IN21 / Comparator 2 positive input / Comparator 1 positive input

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)

Address	Block	Register label	Register name	Reset status
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PC_IDR	Port C input pin value register	0xXX
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D	_	PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x00
0x00 5013		PD_CR2	Port D control register 2	0x00
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A	1	PF_IDR	Port F input pin value register	0xXX
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C	1	PF_CR1	Port F control register 1	0x00
0x00 501D	1	PF_CR2	Port F control register 2	0x00

Table 8 1/O	nort hardwara	rogistor man	(continued)
Table 6. I/O	port hardware	register map	(continuea)

Table 9. General hardware register map

Address	Block	Register label	Register name	Reset status			
0x00 501E to 0x00 5049		Reserved area (28 bytes)					
0x00 5050		FLASH_CR1	Flash control register 1	0x00			
0x00 5051		FLASH_CR2	Flash control register 2	0x00			
0x00 5052	Flash	FLASH_PUKR	Flash program memory unprotection key register	0x00			
0x00 5053		FLASH_DUKR	Data EEPROM unprotection key register	0x00			
0x00 5054		FLASH_IAPSR	Flash in-application programming status register	0x00			

Address	Block	Register label	Register name	Reset status		
0x00 5055 to 0x00 506F		Reserved area (27 bytes)				
0x00 5070		DMA1_GCSR	DMA1 global configuration & status register	0xFC		
0x00 5071		DMA1_GIR1	DMA1 global interrupt register 1	0x00		
0x00 5072 to 0x00 5074			Reserved area (3 bytes)			
0x00 5075		DMA1_C0CR	DMA1 channel 0 configuration register	0x00		
0x00 5076		DMA1_C0SPR	DMA1 channel 0 status & priority register	0x00		
0x00 5077		DMA1_C0NDTR	DMA1 number of data to transfer register (channel 0)	0x00		
0x00 5078		DMA1_C0PARH	DMA1 peripheral address high register (channel 0)	0x52		
0x00 5079		DMA1_C0PARL	DMA1 peripheral address low register (channel 0)	0x00		
0x00 507A	DMA1		Reserved area (1 byte)			
0x00 507B		DMA1_C0M0ARH	DMA1 memory 0 address high register (channel 0)	0x00		
0x00 507C		DMA1_C0M0ARL	DMA1 memory 0 address low register (channel 0)	0x00		
0x00 507D to 0x00 507E			Reserved area (2 bytes)			
0x00 507F		DMA1_C1CR	DMA1 channel 1 configuration register	0x00		
0x00 5080		DMA1_C1SPR	DMA1 channel 1 status & priority register	0x00		
0x00 5081		DMA1_C1NDTR	DMA1 number of data to transfer register (channel 1)	0x00		
0x00 5082		DMA1_C1PARH	DMA1 peripheral address high register (channel 1)	0x52		
0x00 5083		DMA1_C1PARL	DMA1 peripheral address low register (channel 1)	0x00		

 Table 9. General hardware register map (continued)

Table 9. General hardware register map (continued)							
Address	Block	Register label	Register name	Reset status			
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00			
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00			
0x00 50A2		EXTI_CR3	External interrupt control register 3	0x00			
0x00 50A3	- ITC - EXTI	EXTI_SR1	External interrupt status register 1	0x00			
0x00 50A4		EXTI_SR2	External interrupt status register 2	0x00			
0x00 50A5		EXTI_CONF1	External interrupt port select register 1	0x00			
0x00 50A6		WFE_CR1	WFE control register 1	0x00			
0x00 50A7	WFE	WFE_CR2	WFE control register 2	0x00			
0x00 50A8		WFE_CR3	WFE control register 3	0x00			
0x00 50A9 to 0x00 50AF		F	Reserved area (7 bytes)				
0x00 50B0	RST	RST_CR	Reset control register	0x00			
0x00 50B1	- KOT	RST_SR	Reset status register	0x01			
0x00 50B2	PWR	PWR_CSR1	Power control and status register 1	0x00			
0x00 50B3		PWR_CSR2	Power control and status register 2	0x00			
0x00 50B4 to 0x00 50BF		R	Reserved area (12 bytes)				
0x00 50C0		CLK_DIVR	Clock master divider register	0x03			
0x00 50C1		CLK_CRTCR	Clock RTC register	0x00			
0x00 50C2		CLK_ICKR	Internal clock control register	0x11			
0x00 50C3		CLK_PCKENR1	Peripheral clock gating register 1	0x00			
0x00 50C4		CLK_PCKENR2	Peripheral clock gating register 2	0x80			
0x00 50C5		CLK_CCOR	Configurable clock control register	0x00			
0x00 50C6		CLK_ECKR	External clock control register	0x00			
0x00 50C7	CLK	CLK_SCSR	System clock status register	0x01			
0x00 50C8		CLK_SWR	System clock switch register	0x01			
0x00 50C9		CLK_SWCR	Clock switch control register	0bxxxx0000			
0x00 50CA		CLK_CSSR	Clock security system register	0x00			
0x00 50CB	1	CLK_CBEEPR	Clock BEEP register	0x00			
0x00 50CC	1	CLK_HSICALR	HSI calibration register	0xxx			
0.00.5000	1	CLK_HSITRIMR	HSI clock calibration trimming register	0x00			
0x00 50CD							
0x00 50CD 0x00 50CE	-	CLK_HSIUNLCKR	HSI unlock register	0x00			

Table 9. General	hardware	register ma	ap ((continued)

Address	Block	Register label	Register name	Reset status		
0x00 5230		USART1_SR	USART1 status register	0xC0		
0x00 5231		USART1_DR	USART1 data register	undefined		
0x00 5232		USART1_BRR1	USART1 baud rate register 1	0x00		
0x00 5233		USART1_BRR2	USART1 baud rate register 2	0x00		
0x00 5234		USART1_CR1	USART1 control register 1	0x00		
0x00 5235	USART1	USART1_CR2	USART1 control register 2	0x00		
0x00 5236		USART1_CR3	USART1 control register 3	0x00		
0x00 5237		USART1_CR4	USART1 control register 4	0x00		
0x00 5238		USART1_CR5	USART1 control register 5	0x00		
0x00 5239		USART1_GTR	USART1 guard time register	0x00		
0x00 523A		USART1_PSCR	USART1 prescaler register	0x00		
0x00 523B to 0x00 524F		Reserved area (21 bytes)				

	-					
Table 9	General	hardware	register	man	(continued)	
	Contortai	indi di titul c	register	map	(continued)	

Address	Block	Register Label	Register Name	Reset Status		
0x00 7F00		А	Accumulator	0x00		
0x00 7F01		PCE	Program counter extended	0x00		
0x00 7F02		PCH	Program counter high	0x00		
0x00 7F03		PCL	Program counter low	0x00		
0x00 7F04		ХН	X index register high	0x00		
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00		
0x00 7F06		YH	Y index register high	0x00		
0x00 7F07		YL	Y index register low	0x00		
0x00 7F08		SPH	Stack pointer high	0x03		
0x00 7F09		SPL	Stack pointer low	0xFF		
0x00 7F0A		CCR	Condition code register	0x28		
0x00 7F0B to 0x00 7F5F	CPU		Reserved area (85 byte)			
0x00 7F60		CFG_GCR	Global configuration register	0x00		
0x00 7F70		ITC_SPR1	Interrupt Software priority register 1	0xFF		
0x00 7F71		ITC_SPR2	Interrupt Software priority register 2	0xFF		
0x00 7F72		ITC_SPR3	Interrupt Software priority register 3	0xFF		
0x00 7F73	ITC-SPR	ITC_SPR4	Interrupt Software priority register 4	0xFF		
0x00 7F74	IIC-SPR	ITC_SPR5	Interrupt Software priority register 5	0xFF		
0x00 7F75		ITC_SPR6	Interrupt Software priority register 6	0xFF		
0x00 7F76		ITC_SPR7	Interrupt Software priority register 7	0xFF		
0x00 7F77		ITC_SPR8	Interrupt Software priority register 8	0xFF		
0x00 7F78 to 0x00 7F79			Reserved area (2 byte)			
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00		
0x00 7F81 to 0x00 7F8F			Reserved area (15 byte)			

 Table 10. CPU/SWIM/debug module/interrupt controller registers

6 Interrupt vector mapping

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address
-	RESET	Reset	Yes	Yes	Yes	Yes	0x00 8000
-	TRAP	Software interrupt	-	-	-	-	0x00 8004
0			Reserved				0x00 8008
1	FLASH	FLASH end of programing/ write attempted to protected page interrupt	-	-	Yes	Yes	0x00 800C
2	DMA1 0/1	DMA1 channels 0/1 half transaction/transaction complete interrupt	-	-	Yes	Yes	0x00 8010
3	DMA1 2/3	DMA1 channels 2/3 half transaction/transaction complete interrupt	-	-	Yes	Yes	0x00 8014
4	RTC	RTC alarm A/ wakeup	Yes	Yes	Yes	Yes	0x00 8018
5	EXTI E/F/ PVD ⁽²⁾	External interrupt port E/F PVD interrupt	Yes	Yes	Yes	Yes	0x00 801C
6	EXTIB/G	External interrupt port B/G	Yes	Yes	Yes	Yes	0x00 8020
7	EXTID/H	External interrupt port D/H	Yes	Yes	Yes	Yes	0x00 8024
8	EXTI0	External interrupt 0	Yes	Yes	Yes	Yes	0x00 8028
9	EXTI1	External interrupt 1	Yes	Yes	Yes	Yes	0x00 802C
10	EXTI2	External interrupt 2	Yes	Yes	Yes	Yes	0x00 8030
11	EXTI3	External interrupt 3	Yes	Yes	Yes	Yes	0x00 8034
12	EXTI4	External interrupt 4	Yes	Yes	Yes	Yes	0x00 8038
13	EXTI5	External interrupt 5	Yes	Yes	Yes	Yes	0x00 803C
14	EXTI6	External interrupt 6	Yes	Yes	Yes	Yes	0x00 8040
15	EXTI7	External interrupt 7	Yes	Yes	Yes	Yes	0x00 8044
16	LCD	LCD interrupt	-	-	Yes	Yes	0x00 8048
17	CLK/TIM1/ DAC	CLK system clock switch/ CSS interrupt/ TIM 1 break/DAC	-	-	Yes	Yes	0x00 804C
18	COMP1/ COMP2/ ADC1	COMP1 interrupt COMP2 interrupt ACD1 end of conversion/ analog watchdog/ overrun interrupt	Yes	Yes	Yes	Yes	0x00 8050

Table 11. Interrupt mapping

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.

All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 12* for details on option byte addresses.

The option bytes can also be modified 'on the fly' by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM).

Refer to the STM8L15x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Addr.	Ontion nome	Option		Option bits				Factory default			
Addr.	Option name	byte No.	7	6	5	4	3	2	1	0	setting
0x00 4800	Read-out protection (ROP)	OPT0		ROP[7:0]				0xAA			
0x00 4802	UBC (User Boot code size)	OPT1		UBC[7:0]				0x00			
0x00 4807				Reserved				0x00			
0x00 4808	Independent watchdog option	OPT3 [3:0]		Reserved		WWDG _HALT	WWDG _HW	IWDG _HALT	IWDG _HW	0x00	
0x00 4809	Number of stabilization clock cycles for HSE and LSE oscillators	OPT4	Reserved			Reserved LSECNT[1:0] HSECNT[1				NT[1:0]	0x00
0x00 480A	Brownout reset (BOR)	OPT5 [3:0]	Reserved BOR_TH BOR_ON				0x00				
0x00 480B	Bootloader	OPTBL	·				0x00				
0x00 480C	option bytes (OPTBL)	[15:0]				OF	PTBL[15:0	נכ			0x00

 Table 12. Option byte addresses

In the following table, data is based on characterization results, unless otherwise specified.

							Ν	lax					
Symbol	Parameter		Conditions ⁽¹⁾			55°C	85 °C ⁽²⁾	105 °C (3)	125 °C (4)	Unit			
				f _{CPU} = 125 kHz	0.33	0.39	0.41	0.43	0.45				
				f _{CPU} = 1 MHz	0.35	0.41	0.44	0.45	0.48				
			HSI	f _{CPU} = 4 MHz	0.42	0.51	0.52	0.54	0.58				
	CPU not clocked, all peripherals		f _{CPU} = 8 MHz	0.52	0.57	0.58	0.59	0.62					
				f _{CPU} = 16 MHz	0.68	0.76	0.79	0.82 (7)	0.85 (7)				
		all peripherals	Il peripherals DFF, code executed HSE external	HSE external	HSE external	HSE external	HSE external	f _{CPU} = 125 kHz	0.032	0.056	0.068	0.072	0.093
	Supply	OFF, code executed						HSE external	f _{CPU} = 1 MHz	0.078	0.121	0.144	0.163
I _{DD(Wait)}	current in Wait mode			f _{CPU} = 4 MHz	0.218	0.26	0.30	0.36	0.40	mA			
		I _{DDQ} mode ⁽⁵⁾ ,	(6)	f _{CPU} = 8 MHz	0.40	0.52	0.57	0.62	0.66				
	V _{DD} from	V _{DD} from 1.65 V to 3.6 V			f _{CPU} = 16 MHz	0.760	1.01	1.05	1.09 (7)	1.16 (7)			
			LSI	$f_{CPU} = f_{LSI}$	0.035	0.044	0.046	0.049	0.054				
		LSE ⁽⁸⁾ external clock (32.768 kHz)	external clock (32.768	f _{CPU} = f _{LSE}	0.032	0.036	0.038	0.044	0.051				

 Table 21. Total current consumption in Wait mode

Symbol	Parameter	Conditions		Тур	Unit
			V _{DD} = 1.8 V	48	
I _{DD(RST)}		All pins are externally tied to V _{DD}	V _{DD} = 3 V	76	μA
			V _{DD} = 3.6 V	91	

Table 28. Current consumption under external reset

1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	External clock source frequency ⁽¹⁾		1	-	16	MHz
V _{HSEH}	OSC_IN input pin high level voltage	_	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	0.3 x V _{DD}	v
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	2.6	-	pF
I _{LEAK_HSE}	OSC_IN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-	-	±1	μΑ

Table 29. HSE external clock characteristics

1. Data guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 30. LSE external clock characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSE_ext}	External clock source frequency ⁽¹⁾	-	32.768	-	kHz
V _{LSEH} ⁽²⁾	(2) OSC32_IN input pin high level voltage		-	V _{DD}	V
V _{LSEL} ⁽²⁾	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 x V _{DD}	v
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-	-	±1	μA

1. Data guaranteed by design.

2. Data based on characterization results.

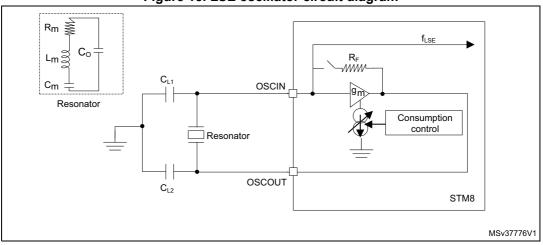


Figure 18. LSE oscillator circuit diagram

Internal clock sources

Subject to general operating conditions for V_{DD} , and T_A .

High speed internal RC oscillator (HSI)

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
		V _{DD} = 3.0 V, T _A = 25 °C	-1 ⁽²⁾	-	1 ⁽²⁾	%
		V_{DD} = 3.0 V, 0 °C $\leq T_{A} \leq$ 55 °C	-1.5	-	1.5	%
	Accuracy of HSI	V_{DD} = 3.0 V, -10 °C $\leq T_{A} \leq$ 70 °C	-2	-	2	%
ACC _{HSI}	oscillator (factory calibrated)	V _{DD} = 3.0 V, -10 °C ≤T _A ≤ 85 °C	-2.5	-	2	%
		V _{DD} = 3.0 V, -10 °C ≤T _A ≤ 125 °C	-4.5	-	2	%
		1.65 V ≤V _{DD} ≤ 3.6 V, -40 °C ≤T _A ≤ 125 °C	-4.5	-	3	%
TRIM	HSI user trimming	Trimming code ≠ multiple of 16	-	0.4	0.7	%
	step ⁽³⁾	Trimming code = multiple of 16	-		± 1.5	%
t _{su(HSI)}	HSI oscillator setup time (wakeup time)	-	-	3.7	6 ⁽⁴⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption	-	-	100	140 ⁽⁴⁾	μA

Table 33. HSI oscillator characteristics

1. V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.

2. Tested in production.

 The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 "STM8L15x internal RC oscillator calibration" application note for more details.

4. Guaranteed by design.

9.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).

The test results are given in the following table.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on true open-drain pins (PC0 and PC1)		+0	
I _{INJ}	Injected current on all five-volt tolerant (FT) pins	-5	+0	mA
	Injected current on all 3.6 V tolerant (TT) pins	-5	+0	
	Injected current on any other pin		+5	

Table 37. I/O current injection susceptibility

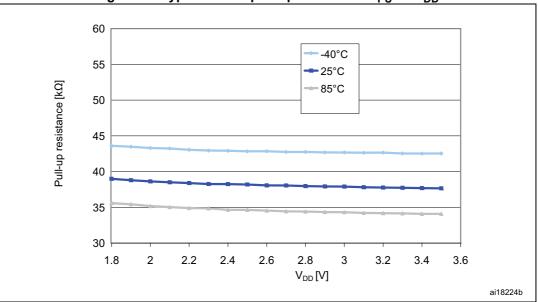
9.3.7 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	V _{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	1.4	-	V _{DD}	
V _{OL(NRST)} NRST output low level voltage ⁽¹⁾		$I_{OL} = 2 \text{ mA}$ for 2.7 V $\leq V_{DD} \leq 3.6$ V	-	-	0.4	V
		I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-		
V _{HYST}	NRST input hysteresis ⁽³⁾	-	10%V _{DD} (2)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse (3)	-	-	-	50	ns
V _{NF(NRST)}	NRST input not filtered pulse (3)	-	300	-	-	115

		-	
Table 42.	NRST	pin	characteristics

1. Data based on characterization results.

2. 200 mV min.

3. Data guaranteed by design.

Figure 31. Typical NRST pull-up resistance R_{PU} vs V_{DD}

DocID15962 Rev 15

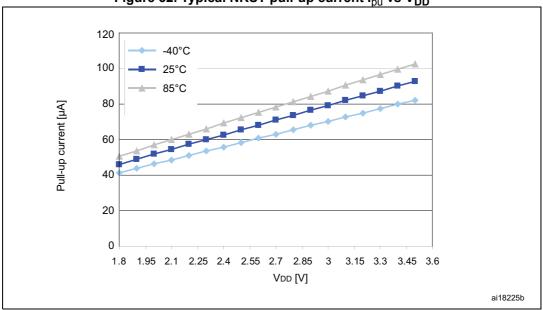
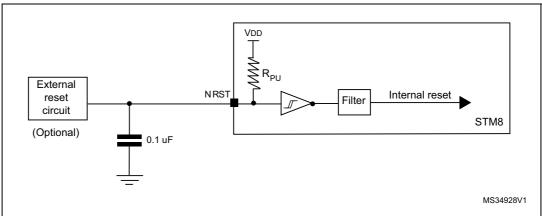



Figure 32. Typical NRST pull-up current I_{pu} vs V_{DD}

The reset network shown in *Figure 33* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max. level specified in *Table 42*. Otherwise the reset is not taken into account internally.

For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF.

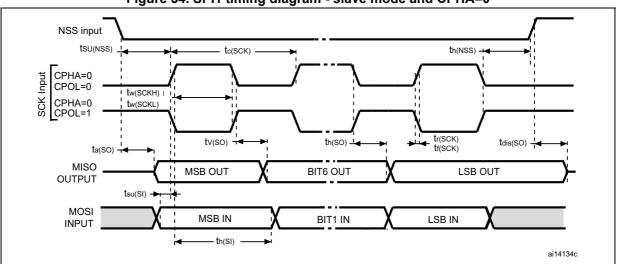
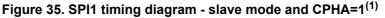
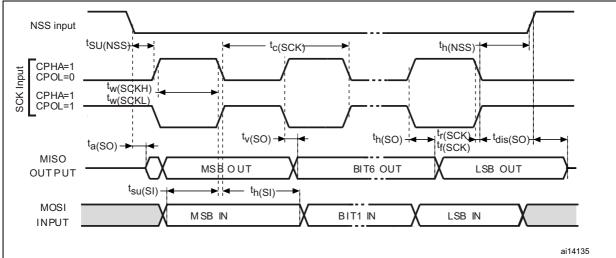




Figure 34. SPI1 timing diagram - slave mode and CPHA=0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

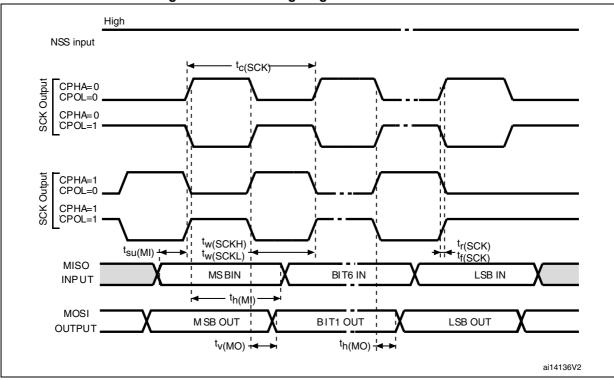
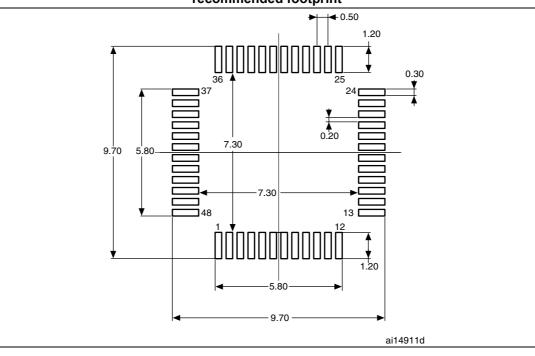



Figure 36. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Figure 44. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint


1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

