

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	26
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151g4u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

Table 2. Medium-density STM8L151x4/6 and STM8L152x4/6 low-power device features and peripheral counts

Fe	atures		L151Gx		_15xKx	STM8L15xCx		
Flash (Kbyte)		16	32	16	32	16	32	
Data EEPROM ((Kbyte)		1					
RAM (Kbyte)			2					
LCD			No	4x1	7 ⁽¹⁾	4x2	8 ⁽¹⁾	
	Basic			3)	1 3-bit)			
Timers	General purpose			(1	2 6-bit)			
	Advanced control			(1	1 6-bit)			
	SPI				1			
Communication interfaces	12C	1						
	USART	1						
GPIOs	·	26 ⁽³⁾		30 ⁽²⁾⁽³⁾ or 29 ⁽¹⁾⁽³⁾		41 ⁽³⁾		
12-bit synchroniz (number of chan		1 (18)		1 (22 ⁽²⁾ or 21 ⁽¹⁾)			1 25)	
12-Bit DAC (number of chan	nels)	1 (1)						
Comparators CC	MP1/COMP2	2						
Others		RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator						
CPU frequency		16 MHz						
Operating voltag	le	1.8 V to 3.6 V (down to 1.65 V at power down)						
Operating tempe	erature	-40 to +85 °C/ -40 to +105 °C / -40 to +125 °C						
Packages		0.6 mm	N28 (4x4; thickness) CSP28	UFQFPN	32(7x7) \32 (5x5; hickness)	UFQFP	P48 V48 (4x4; hickness)	

1. STM8L152xx versions only

2. STM8L151xx versions only

3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).

IWDG: Independent watchdog LCD: Liquid crystal display POR/PDR: Power on reset / power down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog

3.1 Low-power modes

The medium-density STM8L151x4/6 and STM8L152x4/6 devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- Wait mode: The CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt, event or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Wait consumption: refer to *Table 21*.
- Low power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset.

All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power run mode consumption: refer to *Table 22*.

- Low power wait mode: This mode is entered when executing a Wait for event in Low power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power wait mode consumption: refer to *Table 23*.
- Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Active-halt consumption: refer to *Table 24* and *Table 25*.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. Halt consumption: refer to *Table 26*.

nı	Pin umb			. Medium-density 5 mil				Input			utpu			
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	РР	Main function (after reset)	Default alternate function
-	16	-	-	PB3/ <i>[TIM2_ETR]⁽⁴⁾/</i> TIM1_CH2N/LCD_SEG13 ⁽²⁾ /ADC1_IN15/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port B3	[Timer 2 - external trigger] / Timer 1 inverted channel 2 / LCD segment 13 / ADC1_IN15 / Comparator 1 positive input
-	I	15		PB3/[<i>TIM2_ETR]</i> ⁽⁴⁾ / TIM1_CH1N/ LCD_SEG13 ^{(2)/} ADC1_IN15/RTC_ALARM /COMP1_INP	I/O	TT (3)	x	x	x	НS	x	x	Port B3	[Timer 2 - external trigger] / Timer 1 inverted channel 1/ LCD segment 13 / ADC1_IN15 / RTC alarm/ Comparator 1 positive input
28	-	-	-	PB4 ⁽⁶⁾ /[<i>SPI1_NSS]</i> ⁽⁴⁾ / LCD_SEG14 ⁽²⁾ / ADC1_IN14/COMP1_INP	I/O	TT (3)	X ⁽⁶⁾	X ⁽⁶⁾	x	HS	x	x	Port B4	[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / Comparator 1 positive input
-	17	16	D2	PB4 ⁽⁶⁾ /[SPI1_NSS] ⁽⁴⁾ / LCD_SEG14 ⁽²⁾ / ADC1_IN14/ COMP1_INP/DAC_OUT	I/O	TT (3)	X ⁽⁶⁾	X ⁽⁶⁾	x	нs	x	x	Port B4	[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / DAC output / Comparator 1 positive input
29	-	-	-	PB5/[SPI1_SCK] ⁽⁴⁾ / LCD_SEG15 ^{(2)/} ADC1_IN13/COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / Comparator 1 positive input
-	18	17		PB5/[SPI1_SCK] ⁽⁴⁾ / LCD_SEG15 ^{(2)/} ADC1_IN13/DAC_OUT/ COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / DAC output/ Comparator 1 positive input

Address	Block	Register label	Register name	Reset status			
0x00 5055 to 0x00 506F		Reserved area (27 bytes)					
0x00 5070		DMA1_GCSR	DMA1 global configuration & status register	0xFC			
0x00 5071		DMA1_GIR1	DMA1 global interrupt register 1	0x00			
0x00 5072 to 0x00 5074			Reserved area (3 bytes)				
0x00 5075		DMA1_C0CR	DMA1 channel 0 configuration register	0x00			
0x00 5076		DMA1_C0SPR	DMA1 channel 0 status & priority register	0x00			
0x00 5077		DMA1_C0NDTR	DMA1 number of data to transfer register (channel 0)	0x00			
0x00 5078		DMA1_C0PARH	DMA1 peripheral address high register (channel 0)	0x52			
0x00 5079		DMA1_C0PARL	DMA1 peripheral address low register (channel 0)	0x00			
0x00 507A	DMA1		Reserved area (1 byte)				
0x00 507B		DMA1_C0M0ARH	DMA1 memory 0 address high register (channel 0)	0x00			
0x00 507C		DMA1_C0M0ARL	DMA1 memory 0 address low register (channel 0)	0x00			
0x00 507D to 0x00 507E			Reserved area (2 bytes)				
0x00 507F		DMA1_C1CR	DMA1 channel 1 configuration register	0x00			
0x00 5080		DMA1_C1SPR	DMA1 channel 1 status & priority register	0x00			
0x00 5081		DMA1_C1NDTR	DMA1 number of data to transfer register (channel 1)	0x00			
0x00 5082		DMA1_C1PARH	DMA1 peripheral address high register (channel 1)	0x52			
0x00 5083		DMA1_C1PARL	DMA1 peripheral address low register (channel 1)	0x00			

 Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status			
0x00 50D0 to 0x00 50D2		Reserved area (3 bytes)					
0x00 50D3	WWDG	WWDG_CR	WWDG control register	0x7F			
0x00 50D4	VVVDG	WWDG_WR	WWDR window register	0x7F			
0x00 50D5 to 00 50DF		F	Reserved area (11 bytes)				
0x00 50E0		IWDG_KR	IWDG key register	0xXX			
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00			
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF			
0x00 50E3 to 0x00 50EF		Я	Reserved area (13 bytes)				
0x00 50F0		BEEP_CSR1	BEEP control/status register 1	0x00			
0x00 50F1 0x00 50F2	BEEP	Reserved area (2 bytes)					
0x00 50F3		BEEP_CSR2 BEEP control/status register 2		0x1F			
0x00 50F4 to 0x00 513F		Reserved area (76 bytes)					

	-					
Table 9	General	hardware	register	man	(continued)	
	Contortai	indi di titul c	register	map	(continued)	

Address	Block	Register label	Register name	Reset	
Audress	BIOCK	Register laber		status	
0x00 5200		SPI1_CR1	SPI1 control register 1	0x00	
0x00 5201]	SPI1_CR2	SPI1 control register 2	0x00	
0x00 5202]	SPI1_ICR	SPI1 interrupt control register	0x00	
0x00 5203	SPI1	SPI1_SR	SPI1 status register	0x02	
0x00 5204	- 3511	SPI1_DR	SPI1 data register	0x00	
0x00 5205		SPI1_CRCPR	SPI1 CRC polynomial register	0x07	
0x00 5206		SPI1_RXCRCR	SPI1 Rx CRC register	0x00	
0x00 5207		SPI1_TXCRCR	SPI1 Tx CRC register	0x00	
0x00 5208 to 0x00 520F		I	Reserved area (8 bytes)		
0x00 5210		I2C1_CR1	I2C1 control register 1	0x00	
0x00 5211		I2C1_CR2	I2C1 control register 2	0x00	
0x00 5212		I2C1_FREQR	I2C1 frequency register	0x00	
0x00 5213		I2C1_OARL	I2C1 own address register low	0x00	
0x00 5214		I2C1_OARH	I2C1 own address register high	0x00	
0x00 5215			Reserved (1 byte)		
0x00 5216		I2C1_DR	I2C1 data register	0x00	
0x00 5217	I2C1	I2C1_SR1	I2C1 status register 1	0x00	
0x00 5218		I2C1_SR2	I2C1 status register 2	0x00	
0x00 5219		I2C1_SR3	I2C1 status register 3	0x0x	
0x00 521A		I2C1_ITR	I2C1 interrupt control register	0x00	
0x00 521B]	I2C1_CCRL	I2C1 clock control register low	0x00	
0x00 521C]	I2C1_CCRH	I2C1 clock control register high	0x00	
0x00 521D	1	I2C1_TRISER	I2C1 TRISE register	0x02	
0x00 521E	1	I2C1_PECR	I2C1 packet error checking register	0x00	
0x00 521F to 0x00 522F		Reserved area (17 bytes)			

	h	
Table 9. General	hardware register m	ap (continued)

Address	Block	Register label	Register name	Reset status
0x00 52B0		TIM1_CR1	TIM1 control register 1	0x00
0x00 52B1		TIM1_CR2	TIM1 control register 2	0x00
0x00 52B2		TIM1_SMCR	TIM1 Slave mode control register	0x00
0x00 52B3		TIM1_ETR	TIM1 external trigger register	0x00
0x00 52B4		TIM1_DER	TIM1 DMA1 request enable register	0x00
0x00 52B5		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 52B6		TIM1_SR1	TIM1 status register 1	0x00
0x00 52B7		TIM1_SR2	TIM1 status register 2	0x00
0x00 52B8		TIM1_EGR	TIM1 event generation register	0x00
0x00 52B9		TIM1_CCMR1	TIM1 Capture/Compare mode register 1	0x00
0x00 52BA		TIM1_CCMR2	TIM1 Capture/Compare mode register 2	0x00
0x00 52BB		TIM1_CCMR3	TIM1 Capture/Compare mode register 3	0x00
0x00 52BC		TIM1_CCMR4	TIM1 Capture/Compare mode register 4	0x00
0x00 52BD		TIM1_CCER1	TIM1 Capture/Compare enable register 1	0x00
0x00 52BE		TIM1_CCER2	TIM1 Capture/Compare enable register 2	0x00
0x00 52BF		TIM1_CNTRH	TIM1 counter high	0x00
0x00 52C0		TIM1_CNTRL	TIM1 counter low	0x00
0x00 52C1	TIM1	TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 52C2		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 52C3		TIM1_ARRH	TIM1 Auto-reload register high	0xFF
0x00 52C4		TIM1_ARRL	TIM1 Auto-reload register low	0xFF
0x00 52C5		TIM1_RCR	TIM1 Repetition counter register	0x00
0x00 52C6		TIM1_CCR1H	TIM1 Capture/Compare register 1 high	0x00
0x00 52C7		TIM1_CCR1L	TIM1 Capture/Compare register 1 low	0x00
0x00 52C8		TIM1_CCR2H	TIM1 Capture/Compare register 2 high	0x00
0x00 52C9		TIM1_CCR2L	TIM1 Capture/Compare register 2 low	0x00
0x00 52CA		TIM1_CCR3H	TIM1 Capture/Compare register 3 high	0x00
0x00 52CB	1	TIM1_CCR3L	TIM1 Capture/Compare register 3 low	0x00
0x00 52CC		TIM1_CCR4H	TIM1 Capture/Compare register 4 high	0x00
0x00 52CD		TIM1_CCR4L	TIM1 Capture/Compare register 4 low	0x00
0x00 52CE		TIM1_BKR	TIM1 break register	0x00
0x00 52CF		TIM1_DTR	TIM1 dead-time register	0x00
0x00 52D0		TIM1_OISR	TIM1 output idle state register	0x00
0x00 52D1	1	TIM1_DCR1	DMA1 control register 1	0x00

Table 9, Ge	neral hardware	register map	(continued)
	norur nurumuro	, register map	(continued)

Option byte No.	Option description
	BOR_ON: 0: Brownout reset off
OPT5	1: Brownout reset on BOR_TH[3:1]: Brownout reset thresholds. Refer to <i>Table 23</i> for details on the thresholds according to the value of BOR_TH bits.
OPTBL	OPTBL[15:0] : This option is checked by the boot ROM code after reset. Depending on content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more details.

Table 13. Option byte description (continued)

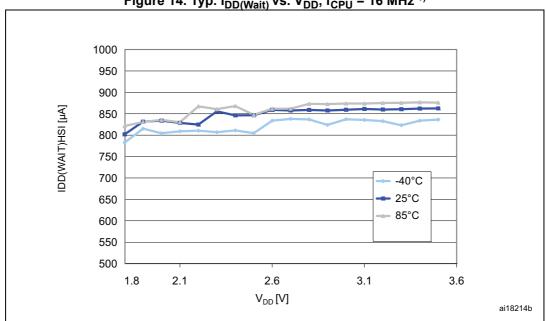


Figure 14. Typ. I_{DD(Wait)} vs. V_{DD}, f_{CPU} = 16 MHz ¹⁾

1. Typical current consumption measured with code executed from Flash memory.

Electrical parameters

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit
V _{IL}	Input low level voltage ⁽²⁾	Input voltage on true open-drain pins (PC0 and PC1)	V _{SS} -0.3	-	0.3 x V _{DD}	
		Input voltage on five-volt tolerant (FT) pins (PA7 and PE0)	V _{SS} -0.3	-	0.3 x V _{DD}	v
		Input voltage on 3.6 V tolerant (TT) pins	V _{SS} -0.3	-	0.3 x V _{DD}	
		Input voltage on any other pin	V _{SS} -0.3	-	0.3 x V _{DD}	
		Input voltage on true open-drain pins (PC0 and PC1) with V _{DD} < 2 V	0.70 x V _{DD}	-	5.2	V
V _{IH}	Input high level voltage ⁽²⁾	Input voltage on true open-drain pins (PC0 and PC1) with $V_{DD} \ge 2 V$	0.70 x V _{DD}	-	5.5	
		Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with V_{DD} < 2 V		-	5.2	
		Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with $V_{DD} \ge 2 V$	0.70 x V _{DD}	-	5.5	
		Input voltage on 3.6 V tolerant (TT) pins		-	3.6	
		Input voltage on any other pin	0.70 x V _{DD}	-	V _{DD} +0.3	
V _{hys}	Schmitt trigger voltage	I/Os	-	200	-	mV
• nys	hysteresis ⁽³⁾	True open drain I/Os	-	200	-	IIIV
l _{ikg}	Input leakage current ⁽⁴⁾	V _{SS} ⊴V _{IN} ⊴V _{DD} High sink I/Os	-	-	50 ⁽⁵⁾	nA
		V _{SS} ⊴V _{IN} ⊴V _{DD} True open drain I/Os	-	-	200 ⁽⁵⁾	
		V _{SS} ≤V _{IN} ≤V _{DD} PA0 with high sink LED driver capability	-	-	200 ⁽⁵⁾	
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾⁽⁶⁾	V _{IN} =V _{SS}	30	45	60	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 38. I/O st	atic characteristics
------------------	----------------------

1. V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.

2. Data based on characterization results.

3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

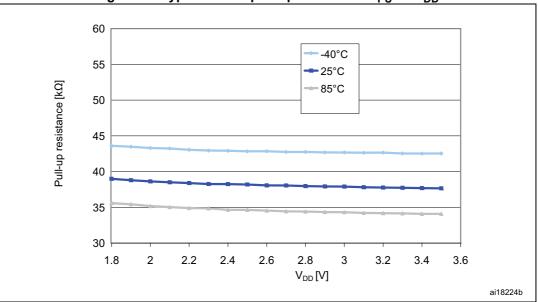
4. The max. value may be exceeded if negative current is injected on adjacent pins.

5. Not tested in production.

DocID15962 Rev 15

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	V _{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	1.4	-	V _{DD}	
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	$I_{OL} = 2 \text{ mA}$ for 2.7 V $\leq V_{DD} \leq 3.6$ V	-	- 0.4		V
		I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-		
V _{HYST}	NRST input hysteresis ⁽³⁾	-	10%V _{DD} (2)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse (3)	-	-	-	50	20
V _{NF(NRST)}	NRST input not filtered pulse (3)	-	300	-	-	ns

Tahlo 42	NRST	nin	characteristics
Table 42.	INKOI	рш	characteristics

1. Data based on characterization results.

2. 200 mV min.

3. Data guaranteed by design.

Figure 31. Typical NRST pull-up resistance R_{PU} vs V_{DD}

DocID15962 Rev 15

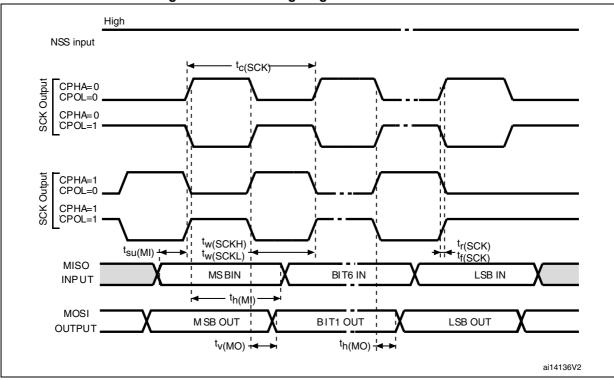
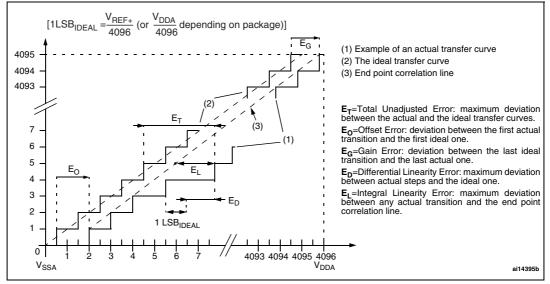



Figure 36. SPI1 timing diagram - master mode⁽¹⁾

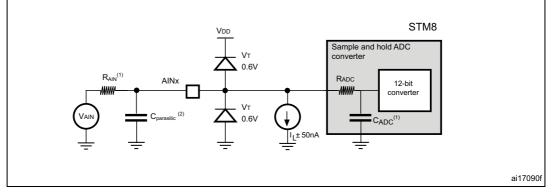

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Figure 38. ADC1 accuracy characteristics

Figure 39. Typical connection diagram using the ADC

- 1. Refer to Table 53 for the values of R_{AIN} and C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

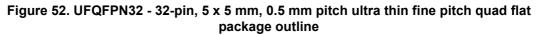
Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

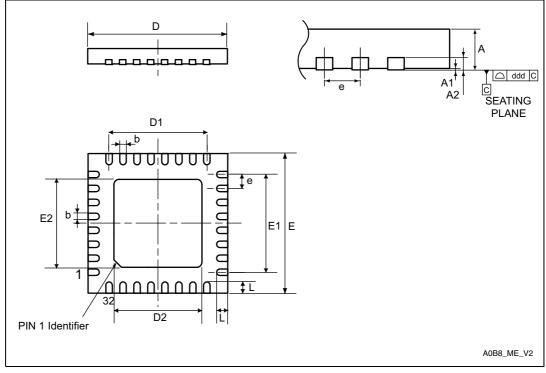
Table 62. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat packagemechanical data


1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device marking

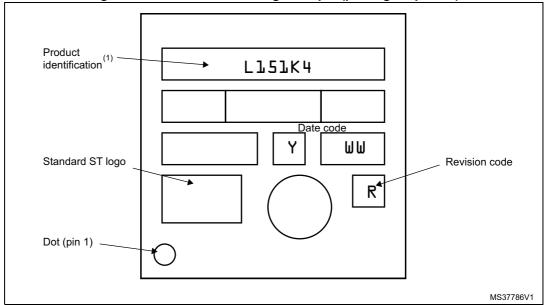
The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.




 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Samples to run qualification activity.

10.5 UFQFPN32 package information



1. Drawing is not to scale.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 54. UFQFPN32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Sympol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.540	0.570	0.600	0.0213	0.0224	0.0236
A1	-	0.190	-	-	0.0075	-
A2	-	0.380	-	-	0.0150	-
b ⁽²⁾	0.240	0.270	0.300	0.0094	0.0106	0.0118
D	1.668	1.703	1.738	0.0657	0.0670	0.0684
E	2.806	2.841	2.876	0.1105	0.1119	0.1132
е	-	0.400	-	-	0.0157	-
e1	-	1.200	-	-	0.0472	-
e2	-	2.400	-	-	0.0945	-
F	-	0.251	-	-	0.0099	-
G	-	0.222	-	-	0.0087	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ccc	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

Table 67. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

12 Revision history

Date	Revision	Changes
06-Aug-2009	1	Initial release
10-Sep-2009	2	Updated peripheral naming throughout document. Added <i>Figure: STM8L151Cx 48-pin pinout (without LCD).</i> Added capacitive sensing channels in <i>Features.</i> Updated PA7, PC0 and PC1 in <i>Table: Medium density STM8L15x pin description.</i> Changed CLK and REMAP register names. Changed description of WDGHALT. Added typical power consumption values in <i>Table 18</i> to <i>Table 26.</i> Corrected VIH max value.
11-Dec-2009	3	Added WLCSP28 package Modified <i>Figure: Memory map</i> and added 2 notes. Modified Low power run mode in <i>Section: Low power</i> <i>modes</i> . Added <i>Section: Unique ID</i> . Modified <i>Table: Interrupt mapping</i> (added reserved area at address 0x00 8008) Modified OPT4 option bits in <i>Table: Option byte</i> <i>addresses</i> . <i>Table: Option byte description:</i> modified OPT0 description ("disable" instead of "enable") and OPT1 description Added OPTBL option bytes Modified <i>Section: Electrical parameters</i> .
02-Apr-2010	4	Changed title of the document (STM8L151x4, STM8L151x6, STM8L152x4, STM8L152x6) Changed pinout (V _{SS1} , V _{DD1} , V _{SS2} , V _{DD 2} instead of V _{SS} , V _{DD} , V _{SSI0} , V _{DDI0} Changed packages Changed first page Modified note 1 in <i>Table: Medium density STM8L15x pin</i> <i>description.</i> Added note to PA7, PC0, PC1 and PE0 in <i>Table:</i> <i>Medium density STM8L15x pin description.</i> Modified <i>Figure: Memory map.</i> Modified <i>Table: WLCSP28 – 28-pin wafer level chip</i> <i>scale package, package mechanical data</i> (min and max columns swapped) Modified <i>Figure: WLCSP28 – 28-pin wafer level chip</i> <i>scale package, package outline</i> (A1 ball location) Renamed Rm, Lm and Cm EXTI_CONF replaced with EXTI_CONF1 in <i>Table:</i> <i>General hardware register map.</i> Updated Section: Electrical parameters.

Table 69. Document revision history

Date	Revision	Changes
10-Feb-2012	8	 Features: replaced "Dynamic consumption' with 'Consumption'. Table: Medium density STM8L15x pin description: updated OD column of NRST/PA1 pin. Table: Interrupt mapping: removed tamper 1, tamper 2 and tamper 3. Figure: UFQFPN48 package outline: replaced. Table: UFQFPN48 package mechanical data: updated title. Figure: UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5): removed the line over A1. Figure: UFQFPN28 package outline: replaced to improve readability of UFQFPN28 package dimensions A, L, and L1. Figure: WLCSP28 package outline: updated title. Table: WLCSP28 package mechanical data: updated title.
02-Mar-2012	9	Updated Table: UFQFPN48 package mechanical data. Updated Figure: UFQFPN28 package outline, Figure: Recommended UFQFPN28 footprint (dimensions in mm) and Table: UFQFPN28 package mechanical data. Table: WLCSP28 package mechanical data: Min and Max values removed for e1, e2, e3, e4, F and G dimensions.
30-Mar-2012	10	Figure: SPI1 timing diagram - master mode(1): changed SCK signals to 'output' instead of 'input'. Figure: Medium density STM8L15x ordering information scheme: added 'Tape & reel' to package section.
26-Apr-2012	11	Updated Table: WLCSP28 package mechanical data.
12-Nov-2013	12	 Updated Table: WLCSP28 package mechanical data. Updated Table: Medium-density STM8L15x pin description. Updated Table 2: Medium density STM8L15x low power device features and peripheral counts. Added Figure: Recommended LQFP48 footprint and Figure: Recommended LQFP32 footprint.
12-Aug-2013	13	Changed the default setting value of OPT5 to 0x00 in <i>Table: Option byte addresses.</i> Added tTEMP 'BOR detector enabled' and 'disabled' characteristics in <i>Table: Embedded reset and power control block characteristics.</i> Updated E2, D2 and ddd in <i>Table: UFQFPN48 package mechanical data</i>

