

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFBGA, WLCSP
Supplier Device Package	28-WLCSP (1.7x2.84)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151g4y6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Ultra-low-power continuum

The ultra-low-power medium-densitySTM8L151x4/6 and STM8L152x4/6 devices are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101xx and STM8L15xxx. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features.

They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.

- Note: 1 The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices.
 - 2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family. Please refer to STM32L15x documentation for more information on these devices.

Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM[®] Cortex[®]-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

Shared peripherals

STM8L151xx/152xx and STM8L15xxx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC1, DAC, and comparators COMP1/COMP2
- Digital peripherals: RTC and some communication interfaces

Common system strategy

To offer flexibility and optimize performance, the STM8L151xx/152xx and STM8L15xxx devices use a common architecture:

- Same power supply range from 1.8 to 3.6 V, down to 1.65 V at power down
- Architecture optimized to reach ultra-low consumption both in low power modes and Run mode
- Fast startup strategy from low power modes
- Flexible system clock
- Ultra-safe reset: same reset strategy for both STM8L15x and STM32L15xxx including power-on reset, power-down reset, brownout reset and programmable voltage detector.

Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm
- Memory density ranging from 4 to 128 Kbyte

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The medium-density STM8L151x4/6 and STM8L152x4/6 feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

nı	Pin umb			. Medium-density 51M				Input			utpu				
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	РР	Main function (after reset)	Default alternate function	
36	24	-	-	PD7/TIM1_CH1N /LCD_SEG21 ⁽²⁾ / ADC1_IN7/RTC_ALARM/ VREFINT/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port D7	Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC alarm / Internal voltage reference output /Comparator 1 positive input	
14	-	-	-	PE0 ⁽⁵⁾ /LCD_SEG1 ⁽²⁾	I/O	FT	Х	Х	Х	HS	Х	Х	Port E0	LCD segment 1	
15	-	-	-	PE1/TIM1_CH2N /LCD_SEG2 ⁽²⁾	I/O	TT (3)	x	x	х	нs	x	х	Port E1	Timer 1 - inverted channel 2 / LCD segment 2	
16	-	-	-	PE2/TIM1_CH3N /LCD_SEG3 ⁽²⁾	I/O	TT (3)	x	x	х	HS	х	х	Port E2	Timer 1 - inverted channel 3 / LCD segment 3	
17	-	-	-	PE3/LCD_SEG4 ⁽²⁾	I/O	TT (3)	x	х	Х	HS	х	х	Port E3	LCD segment 4	
18	-	-	-	PE4/LCD_SEG5 ⁽²⁾	I/O	TT (3)	x	х	Х	HS	х	х	Port E4	LCD segment 5	
19	-	-	-	PE5/LCD_SEG6 ⁽²⁾ / ADC1_IN23/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port E5	LCD segment 6 / ADC1_IN23 / Comparator 2 positive input / Comparator 1 positive input	
47	-	-	-	PE6/LCD_SEG26 ⁽²⁾ / PVD_IN	I/O	TT (3)	x	х	Х	HS	х	х	Port E6	LCD segment 26/PVD_IN	
48	-	-	-	PE7/LCD_SEG27 ⁽²⁾	I/O	TT (3)	x	х	Х	HS	х	х	Port E7	LCD segment 27	
32	-	-	-	PF0/ADC1_IN24/ DAC_OUT	I/O	TT (3)	x	х	Х	HS	х	х	Port F0	ADC1_IN24 / DAC_OUT	
13	9	-	-	VLCD ⁽²⁾	S	-	-	-	-	-	-	-	LCD booster external capacitor		
13	-	-	-	Reserved ⁽⁸⁾	-	-	-	-	-	-	-	-	Reserved	d. Must be tied to V _{DD}	
10	-	-	-	V _{DD}	S	-	-	-	-	-	-	-	Digital po	wer supply	
11	-	-	-	V _{DDA}	S	-	-	-	-	-	-	-	Analog sı	upply voltage	
12	-	-	-	V _{REF+}	S	-	-	-	-	-	-	-	ADC1 an reference	d DAC positive voltage	

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)

4.1 System configuration options

As shown in *Table 5: Medium-density STM8L151x4/6, STM8L152x4/6 pin description*, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the "Routing interface (RI) and system configuration controller" section in the STM8L15xxx and STM8L16xxx reference manual (RM0031).

Address	Block	Register label	Register name	Reset
Audress	BIOCK	Register laber		status
0x00 5200		SPI1_CR1	SPI1 control register 1	0x00
0x00 5201]	SPI1_CR2	SPI1 control register 2	0x00
0x00 5202]	SPI1_ICR	SPI1 interrupt control register	0x00
0x00 5203	SPI1	SPI1_SR	SPI1 status register	0x02
0x00 5204	- 3511	SPI1_DR	SPI1 data register	0x00
0x00 5205		SPI1_CRCPR	SPI1 CRC polynomial register	0x07
0x00 5206		SPI1_RXCRCR SPI1 Rx CRC register		0x00
0x00 5207		SPI1_TXCRCR	SPI1 Tx CRC register	0x00
0x00 5208 to 0x00 520F		I	Reserved area (8 bytes)	
0x00 5210		I2C1_CR1	I2C1 control register 1	0x00
0x00 5211		I2C1_CR2	I2C1 control register 2	0x00
0x00 5212		I2C1_FREQR	I2C1 frequency register	0x00
0x00 5213		I2C1_OARL	I2C1 own address register low	0x00
0x00 5214		I2C1_OARH	I2C1 own address register high	0x00
0x00 5215			Reserved (1 byte)	
0x00 5216		I2C1_DR	I2C1 data register	0x00
0x00 5217	I2C1	I2C1_SR1	I2C1 status register 1	0x00
0x00 5218		I2C1_SR2	I2C1 status register 2	0x00
0x00 5219		I2C1_SR3	I2C1 status register 3	0x0x
0x00 521A		I2C1_ITR	I2C1 interrupt control register	0x00
0x00 521B]	I2C1_CCRL	I2C1 clock control register low	0x00
0x00 521C]	I2C1_CCRH	I2C1 clock control register high	0x00
0x00 521D	1	I2C1_TRISER	I2C1 TRISE register	0x02
0x00 521E	1	I2C1_PECR	I2C1 packet error checking register	0x00
0x00 521F to 0x00 522F		٦ ٦	Reserved area (17 bytes)	

	h	
Table 9. General	hardware register m	ap (continued)

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address				
19	TIM2	TIM2 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 8054				
20	TIM2	TIM2 capture/ compare interrupt	-	-	Yes	Yes	0x00 8058				
21	TIM3	TIM3 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 805C				
22	TIM3	TIM3 capture/ compare interrupt	-	-	Yes	Yes	0x00 8060				
23	TIM1	Update /overflow/trigger/ COM	-	-	-	Yes	0x00 8064				
24	TIM1	Capture/compare	-	-	-	Yes	0x00 8068				
25	TIM4	TIM4 update/overflow/ trigger interrupt	-	-	Yes	Yes	0x00 806C				
26	SPI1	SPI1 TX buffer empty/ RX buffer not empty/ error/wakeup interrupt	Yes	Yes	Yes	Yes	0x00 8070				
27	USART1	USART1 transmit data register empty/ transmission complete interrupt	-	-	Yes	Yes	0x00 8074				
28	USART1	USART1 received data ready/overrun error/ idle line detected/parity error/global error interrupt	-	-	Yes	Yes	0x00 8078				
29	l ² C1	I ² C1 interrupt ⁽³⁾	Yes	Yes	Yes	Yes	0x00 807C				

Table 11. Interrupt mapping (continued)

The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see *External interrupt port select register (EXTI_CONF)* in the RM0031).

3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

8 Unique ID

STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Addrooo	Content				Uniq	ue ID bits	6			
Address	description	7	6	5	4	3	2	1	0	
0x4926	X co-ordinate on				U_	_ID[7:0]				
0x4927	the wafer		U_ID[15:8]							
0x4928	Y co-ordinate on				U_I	D[23:16]				
0x4929	the wafer			U_ID[31:24]						
0x492A	Wafer number	U_ID[39:32]								
0x492B					U_I	D[47:40]				
0x492C					U_I	D[55:48]				
0x492D					U_I	D[63:56]				
0x492E	Lot number				U_I	D[71:64]				
0x492F					U_I	D[79:72]				
0x4930		U_ID[87:80] U_ID[95:88]								
0x4931										

Table 14. Unique ID registers (96 bits)

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

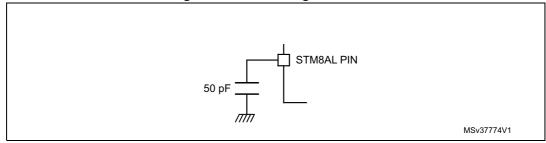
9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A = 25 °C and T_A = T_A max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics is indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

9.1.2 Typical values

Unless otherwise specified, typical data is based on $T_A = 25$ °C, $V_{DD} = 3$ V. It is given only as design guidelines and is not tested.


Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

In the following table, data is based on characterization results, unless otherwise specified.

		Conditions ⁽¹⁾			Мах					
Symbol	Parameter			Тур	55°C	85 °C ⁽²⁾	105 °C (3)	125 °C (4)	Unit	
				f _{CPU} = 125 kHz	0.33	0.39	0.41	0.43	0.45	
				f _{CPU} = 1 MHz	0.35	0.41	0.44	0.45	0.48	
			HSI	f _{CPU} = 4 MHz	0.42	0.51	0.52	0.54	0.58	
				f _{CPU} = 8 MHz	0.52	0.57	0.58	0.59	0.62	
		CPU not clocked, all peripherals OFF, code executed from RAM with Flash in		f _{CPU} = 16 MHz	0.68	0.76	0.79	0.82 (7)	0.85 (7)	mA
			HSE external clock (f _{CPU} =f _{HSE}) (6)	f _{CPU} = 125 kHz	0.032	0.056	0.068	0.072	0.093	
	Supply current in Wait mode			f _{CPU} = 1 MHz	0.078	0.121	0.144	0.163	0.197	
I _{DD(Wait)}				f _{CPU} = 4 MHz	0.218	0.26	0.30	0.36	0.40	
		I _{DDQ} mode ⁽⁵⁾ ,		f _{CPU} = 8 MHz	0.40	0.52	0.57	0.62	0.66	
		V _{DD} from 1.65 V to 3.6 V		f _{CPU} = 16 MHz	0.760	1.01	1.05	1.09 (7)	1.16 (7)	
			LSI	$f_{CPU} = f_{LSI}$	0.035	0.044	0.046	0.049	0.054	
			LSE ⁽⁸⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.032	0.036	0.038	0.044	0.051	

 Table 21. Total current consumption in Wait mode

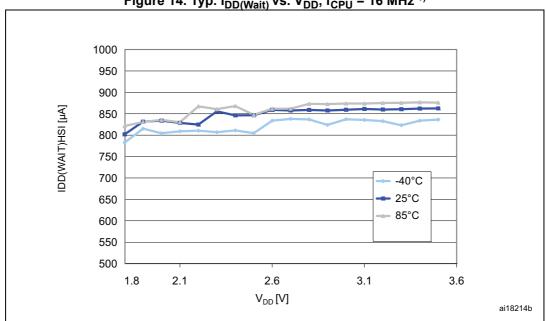


Figure 14. Typ. I_{DD(Wait)} vs. V_{DD}, f_{CPU} = 16 MHz ¹⁾

1. Typical current consumption measured with code executed from Flash memory.

Symbol	Parameter		Conditio	ns ⁽¹⁾	Тур	Max	Unit
				T_A = -40 °C to 25 °C	0.5	1.2	
				T _A = 55 °C	0.62	1.4	
			LCD OFF ⁽⁷⁾	T _A = 85 °C	0.88	2.1	
				T _A = 105 °C	2.1	4.85	
				T _A = 125 °C	4.8	11	
				$T_A = -40 \degree C$ to 25 $\degree C$	0.85	1.9	
			LCD ON (static duty/	T _A = 55 °C	0.95	2.2	
			external	T _A = 85 °C	1.3	3.2	
		LSE external	V _{LCD}) ⁽³⁾	T _A = 105 °C	2.3	5.3	
I	Supply current in	clock		T _A = 125 °C	5.0	12	
I _{DD(AH)}	Active-halt mode	(32.768 kHz) (6)	LCD ON (1/4 duty/ external	$T_A = -40 \text{ °C to } 25 \text{ °C}$	1.5	2.5	μΑ
				T _A = 55 °C	1.6	3.8	
				T _A = 85 °C	1.8	4.2	
			V _{LCD}) ⁽⁴⁾	T _A = 105 °C	2.9	7.0	
				T _A = 125 °C	5.7	14	
			LCD ON (1/4 duty/ internal	$T_A = -40 \degree C$ to 25 $\degree C$	3.4	7.6	
				T _A = 55 °C	3.7	8.3	
				T _A = 85 °C	3.9	9.2	
			V _{LCD}) ⁽⁵⁾	T _A = 105 °C	5.0	14.5	
				T _A = 125 °C	6.3	15.2	
I _{DD(WUFAH)}	Supply current during wakeup time from Active-halt mode (using HSI)			-	2.4	-	mA
t _{WU_HSI(AH)} ⁽⁸⁾⁽⁹⁾	Wakeup time from Active-halt mode to Run mode (using HSI)			-	4.7	7	μs
t _{WU_LSI(AH)} ⁽⁸⁾ (9)	Wakeup time from Active-halt mode to Run mode (using LSI)	-	-	-	150	-	μs

Table 24. Total current consumption and timing in Active-halt mode at V_{DD} = 1.65 V to 3.6 V

1. No floating I/O, unless otherwise specified.

2. RTC enabled. Clock source = LSI

3. RTC enabled, LCD enabled with external V_{LCD} = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.

4. RTC enabled, LCD enabled with external V_{LCD} , 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

LCD enabled with internal LCD booster V_{LCD} = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to *Table 32*.

7. RTC enabled. Clock source = LSE.

8. Wakeup time until start of interrupt vector fetch.

The first word of interrupt routine is fetched 4 CPU cycles after t_{WU} .

9. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

DocID15962 Rev 15

Symbol	Parameter	Condition	Тур	Unit	
			V _{DD} = 1.8 V	48	
I _{DD(RST)}		All pins are externally tied to V _{DD}	V _{DD} = 3 V	76	μA
			V _{DD} = 3.6 V	91	

Table 28. Current consumption under external reset

1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{HSE_ext}	External clock source frequency ⁽¹⁾		1	-	16	MHz	
V _{HSEH}	OSC_IN input pin high level voltage	_	0.7 x V _{DD}	-	V _{DD}	V	
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	0.3 x V _{DD}	v	
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	2.6	-	pF	
I _{LEAK_HSE}	OSC_IN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-	-	±1	μΑ	

Table 29. HSE external clock characteristics

1. Data guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 30. LSE external clock characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSE_ext}	External clock source frequency ⁽¹⁾	-	32.768	-	kHz
V _{LSEH} ⁽²⁾	OSC32_IN input pin high level voltage	0.7 x V _{DD}	-	V _{DD}	V
V _{LSEL} ⁽²⁾	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 x V _{DD}	v
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-	-	±1	μΑ

1. Data guaranteed by design.

2. Data based on characterization results.

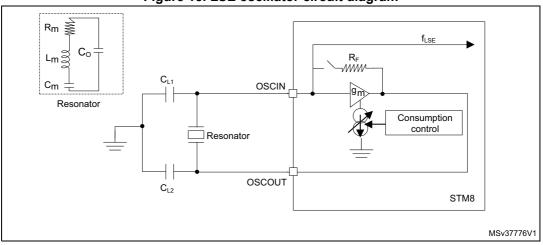


Figure 18. LSE oscillator circuit diagram

Internal clock sources

Subject to general operating conditions for V_{DD} , and T_A .

High speed internal RC oscillator (HSI)

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
		V _{DD} = 3.0 V, T _A = 25 °C	-1 ⁽²⁾	-	1 ⁽²⁾	%
ACC _{HSI}		V_{DD} = 3.0 V, 0 °C $\leq T_{A} \leq$ 55 °C	-1.5	-	1.5	%
	Accuracy of HSI	V_{DD} = 3.0 V, -10 °C $\leq T_{A} \leq$ 70 °C	-2	-	2	%
	oscillator (factory calibrated)	V_{DD} = 3.0 V, -10 °C $\leq T_A \leq 85$ °C	-2.5	-	2	%
		V _{DD} = 3.0 V, -10 °C ≤T _A ≤ 125 °C	-4.5	-	2	%
		1.65 V ≤V _{DD} ≤ 3.6 V, -40 °C ≤T _A ≤ 125 °C	-4.5	-	3	%
f _{HSI}	HSI user trimming	Trimming code ≠ multiple of 16	-	0.4	0.7	%
	step ⁽³⁾	Trimming code = multiple of 16	-		± 1.5	%
t _{su(HSI)}	HSI oscillator setup time (wakeup time)	-	-	3.7	6 ⁽⁴⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption	-	-	100	140 ⁽⁴⁾	μA

Table 33. HSI oscillator characteristics

1. V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.

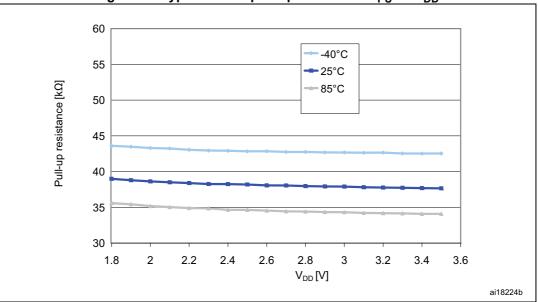
2. Tested in production.

 The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 "STM8L15x internal RC oscillator calibration" application note for more details.

4. Guaranteed by design.

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	V _{SS}	-	0.8		
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	1.4	-	V _{DD}		
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	$I_{OL} = 2 \text{ mA}$ for 2.7 V $\leq V_{DD} \leq 3.6$ V	-	-	0.4	V	
		I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-			
V _{HYST}	NRST input hysteresis ⁽³⁾	-	10%V _{DD} (2)	-	-	mV	
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30	45	60	kΩ	
V _{F(NRST)}	NRST input filtered pulse (3)	-	-	-	50	20	
V _{NF(NRST)}	NRST input not filtered pulse (3)	-	300	-	-	- ns	

		-	
Table 42.	NRST	pin	characteristics

1. Data based on characterization results.

2. 200 mV min.

3. Data guaranteed by design.

Figure 31. Typical NRST pull-up resistance R_{PU} vs V_{DD}

DocID15962 Rev 15

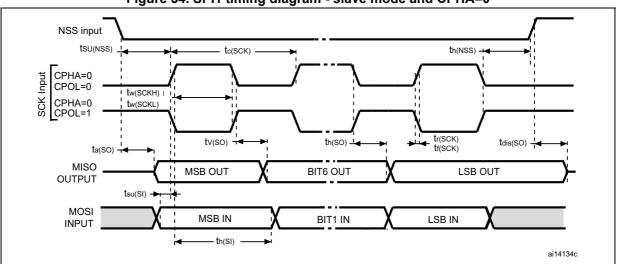
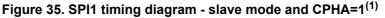
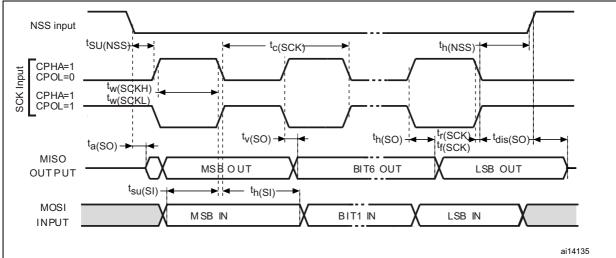




Figure 34. SPI1 timing diagram - slave mode and CPHA=0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

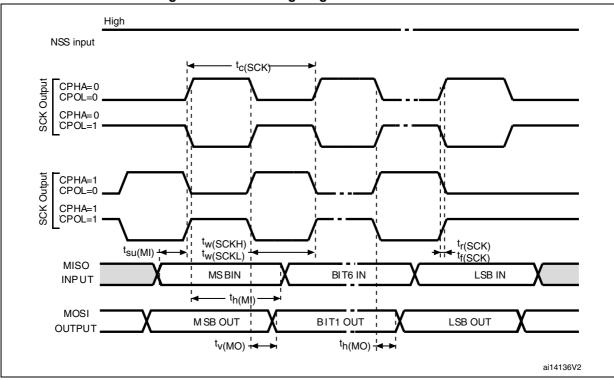


Figure 36. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

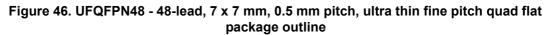
9.3.13 12-bit DAC characteristics

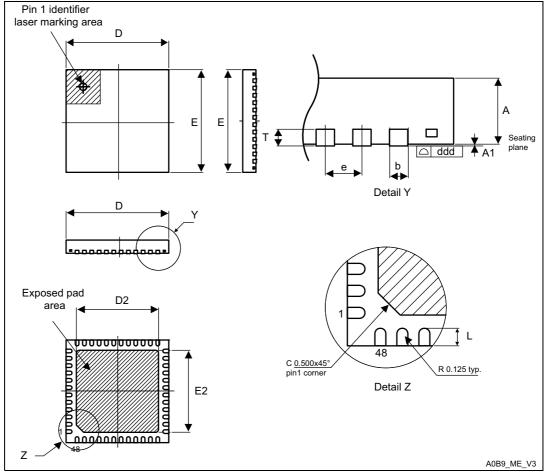
In the following table, data is guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V
V _{REF+}	Reference supply voltage	-	1.8	-	V _{DDA}	
I _{VREF}	Current consumption on V _{REF+} supply	V _{REF+} = 3.3 V, no load, middle code (0x800)	-	130	220	
		V _{REF+} = 3.3 V, no load, worst code (0x000)	-	220	350	μA
I _{VDDA}	Current consumption on V _{DDA} supply	V _{DDA} = 3.3 V, no load, middle code (0x800)	-	210	320	
		V _{DDA} = 3.3 V, no load, worst code (0x000)	-	320	520	
Τ _Α	Temperature range	-	-40	-	125	°C
R _L	Resistive load ^{(1) (2)}	DACOUT buffer ON	5	-	-	kΩ
R _O	Output impedance	DACOUT buffer OFF	-	8	10	kΩ
CL	Capacitive load ⁽³⁾	-	-	-	50	pF
	DAC_OUT voltage ⁽⁴⁾	DACOUT buffer ON	0.2	-	V _{DDA} -0.2	V
DAC_OUT		DACOUT buffer OFF	0	-	V _{REF+} -1 LSB	V
t _{settling}	Settling time (full scale: for a 12- bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB)	R _L ≥5 kΩ, C _L ≤ 50 pF	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT (@95%) change when small variation of the input code (from code i to i+1LSB).	R _L ≥ 5 kΩ, C _L ≤50 pF	-		1	Msps
t _{WAKEUP}	Wakeup time from OFF state. Input code between lowest and highest possible codes.	R _L ≥5 kΩ, C _L ≤50 pF	-	9	15	μs
PSRR+	Power supply rejection ratio (to VDDA) (static DC measurement)	R _L ≥ 5 kΩ, C _L ≤50 pF	-	-60	-35	dB

Table 50. DAC characteristics

1. Resistive load between DACOUT and GNDA.


2. Output on PF0 (48-pin package only).


3. Capacitive load at DACOUT pin.

4. It gives the output excursion of the DAC.

10.3 UFQFPN48 package information

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Date	Revision	Changes	
23-Jul-2010	5	Modified Introduction and Description. Modified Table: Legend/abbreviation for table 5 and Table: Medium density STM8L15x pin description (for PA0, PA1, PB0 and PB4 and for reset states in the floating input column) Modified Figure: Low density STM8L151xx device block diagram, Figure: Low density STM8L151xx device block diagram, Figure: Low power modes and Figure : Low power real-time clock. Modified CLK_PCKENR2 and CLK_HSICALR reset values in Table: General hardware register map. Modified notes below Figure: Memory map. Modified Table: Voltage characteristics and Table: Current characteristics. Modified Table: Voltage characteristics and Table: Current characteristics. Modified Table: Total current consumption in Wait mode. Modified Figure Typical application with I2C bus and timing diagram 1). Modified R _H and R _L in Table: LCD characteristics. Added graphs in Section: Electrical parameters. Modified note 3 below Table: Reference voltage characteristics. Modified note 1 below Table: TS characteristics. Changed V _{ESD(CDM)} value in Table: ESD absolute maximum ratings. Updated notes for UFQFPN32 and UFQFPN48	
11-Mar-2011	6	Modified note on true open drain I/Os and I/O level columns in <i>Table: Medium density STM8L15x pin</i> <i>description.</i> Remapping option removed for USART1_TX, USART1_RX, and USART1_CK on PC2, PC3 and PC4 in <i>Table: Medium density STM8L15x pin description.</i> Modified IDWDG_KR reset value in <i>Table: General</i> <i>hardware register map.</i> Replaced VREF_OUT with VREFINT and TIMx_TRIG with TIMx_ETR. Added <i>Table: Factory conversion registers.</i> Modified reset values for TIM1_DCR1, IWDG_KR, RTC_DR1, RTC_APRER, RTC_WUTRH, and RTC_WUTRL in <i>Table: General hardware register map.</i> Added notes to certain values in <i>Section: Embedded</i> <i>reference voltage</i> and <i>Section: Temperature sensor.</i>	

Date	Revision	Changes
21-Apr-2015	14	 Added: Figure 45: LQFP48 marking example (package top view), Figure 48: UFQFPN48 marking example (package top view), Figure 51: LQFP32 marking example (package top view), Figure 54: UFQFPN32 marking example (package top view), Figure 57: UFQFPN28 marking example (package top view), Figure 59: WLCSP28 marking example (package top view).
07-Apr-2017	15	Changed symbol V_{125} to V_{90} in <i>Table 47: TS</i> characteristics and updated related Min/Typ/Max values. Updated Section 9.2: Absolute maximum ratings. Updated table notes for <i>Table 30</i> , <i>Table 31</i> , <i>Table 32</i> , <i>Table 33</i> , <i>Table 34</i> , <i>Table 36</i> , <i>Table 38</i> , <i>Table 42</i> , <i>Table 43</i> , <i>Table 46</i> , <i>Table 47</i> , <i>Table 48</i> , <i>Table 49</i> , <i>Table 53</i> , <i>Table 57</i> , and <i>Table 60</i> . Updated device marking paragraphs in Section 10.2, Section 10.3, Section 10.4, Section 10.5, Section 10.6, and Section 10.7.

