

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151g6u7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

Table 2. Medium-density STM8L151x4/6 and STM8L152x4/6 low-power device features and peripheral counts

Fea	atures	STM8	L151Gx	STM8L	15xKx	STM8L	.15xCx			
Flash (Kbyte)		16	32	16	32	16	32			
Data EEPROM ((Kbyte)				1					
RAM (Kbyte)					2					
LCD			No	4x1	7 ⁽¹⁾	4x2	8 ⁽¹⁾			
	Basic			3)	1 B-bit)					
Timers	General purpose		2 (16-bit)							
	Advanced control		1 (16-bit)							
	SPI				1					
Communication interfaces	12C		1							
	USART									
GPIOs		2	6 ⁽³⁾	30 ⁽²⁾⁽³⁾ or 29 ⁽¹⁾⁽³⁾		41 ⁽³⁾				
12-bit synchroniz (number of chan	zed ADC nels)	(1 18)	(22 ⁽²⁾ c	1 or 21 ⁽¹⁾)	1 (25)				
12-Bit DAC (number of chan	nels)	1 (1)								
Comparators CC	MP1/COMP2	2								
Others		RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator								
CPU frequency		16 MHz								
Operating voltag	e		1.8 V to	3.6 V (down t	o 1.65 V at po	ower down)				
Operating tempe	erature		-40 to +8	85 °C/ -40 to -	+105 °C / -40	to +125 °C				
Packages		UFQFPN28 (4x4; 0.6 mm thickness)LQFP32(7x7) UFQFPN32 (5x5; 0.6 mm thickness)LQFP48 UFQFPN48 0.6 mm thickness)				P48 I48 (4x4; nickness)				

1. STM8L152xx versions only

2. STM8L151xx versions only

3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The medium-density STM8L151x4/6 and STM8L152x4/6 feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

3.4 Clock management

The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- **Clock prescaler:** to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** Clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock sources:** 4 different clock sources can be used to drive the system clock:
 - 1-16 MHz High speed external crystal (HSE)
 - 16 MHz High speed internal RC oscillator (HSI)
 - 32.768 kHz Low speed external crystal (LSE)
 - 38 kHz Low speed internal RC (LSI)
- **RTC and LCD clock sources:** the above four sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

3.6 LCD (Liquid crystal display)

The liquid crystal display drives up to 4 common terminals and up to 28 segment terminals to drive up to 112 pixels.

- Internal step-up converter to guarantee contrast control whatever V_{DD}.
- Static 1/2, 1/3, 1/4 duty supported.
- Static 1/2, 1/3 bias supported.
- Phase inversion to reduce power consumption and EMI.
- Up to 4 pixels which can programmed to blink.
- The LCD controller can operate in Halt mode.

Note: Unnecessary segments and common pins can be used as general I/O pins.

3.7 Memories

The medium-density STM8L151x4/6 and STM8L152x4/6 devices have the following main features:

- Up to 2 Kbyte of RAM
- The non-volatile memory is divided into three arrays:
 - Up to 32 Kbyte of medium-density embedded Flash program memory
 - 1 Kbyte of data EEPROM
 - Option bytes.

The EEPROM embeds the error correction code (ECC) feature. It supports the read-whilewrite (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix.

The option byte protects part of the Flash program memory from write and readout piracy.

3.8 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, DAC, I2C1, SPI1, USART1, the four Timers.

3.9 Analog-to-digital converter

- 12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel), temperature sensor and internal reference voltage
- Conversion time down to 1 µs with f_{SYSCLK}= 16 MHz
- Programmable resolution
- Programmable sampling time
- Single and continuous mode of conversion
- Scan capability: automatic conversion performed on a selected group of analog inputs
- Analog watchdog
- Triggered by timer

Figure 8. STM8L152K4, STM8L152K6 32-pin package pinout (with LCD)

1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.

n	Pin umb	er					I	Input	t	0	utpu	Jt		
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	QD	ЬР	Main function (after reset)	Default alternate function
44	30	26	A3	PC5/OSC32_IN /[SPI1_NSS] ⁽⁴⁾ / [USART1_TX] ⁽⁴⁾	I/O		x	x	х	HS	х	x	Port C5	LSE oscillator input / [SPI1 master/slave select] / [USART1 transmit]
45	31	27	B3	PC6/OSC32_OUT/ [SPI1_SCKJ ⁽⁴⁾ / [USART1_RXJ ⁽⁴⁾	I/O		x	x	х	HS	х	x	Port C6	LSE oscillator output / [SPI1 clock] / [USART1 receive]
46	-	_	-	PC7/LCD_SEG25 ⁽²⁾ / ADC1_IN3/COMP2_INM/ COMP1_INP	I/O	TT (3)	x	x	х	HS	х	x	Port C7	LCD segment 25 /ADC1_IN3/ Comparator negative input / Comparator 1 positive input
20	-	8	G3	PD0/TIM3_CH2/ [ADC1_TRIG] ⁽⁴⁾ / LCD_SEG7 ⁽²⁾ /ADC1_IN2 2/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	х	HS	х	x	Port D0	Timer 3 - channel 2 / [ADC1_Trigger] / LCD segment 7 / ADC1_IN22 / Comparator 2 positive input / Comparator 1 positive input
-	9	-	-	PD0/TIM3_CH2/ [ADC1_TRIG] ⁽⁴⁾ / ADC1_IN22/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	х	x	Port D0 ⁽⁸⁾	Timer 3 - channel 2 / [ADC1_Trigger] / ADC1_IN22 / Comparator 2 positive input / Comparator 1 positive input
21	-	-	-	PD1/TIM3_ETR/ LCD_COM3 ⁽²⁾ / ADC1_IN21/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	х	x	Port D1	Timer 3 - external trigger / LCD_COM3 / ADC1_IN21 / comparator 2 positive input / Comparator 1 positive input
-	10	-	-	PD1/TIM1_CH3N/[<i>TIM3_</i> <i>ETR</i>] ⁽⁴⁾ / LCD_COM3 ⁽²⁾ / ADC1_IN21/COMP2_INP/ COMP1_INP	I/O	TT (3)	X	x	х	HS	х	x	Port D1	[Timer 3 - external trigger]/ TIM1 inverted channel 3 / LCD_COM3/ ADC1_IN21 / Comparator 2 positive input / Comparator 1 positive input

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)

4.1 System configuration options

As shown in *Table 5: Medium-density STM8L151x4/6, STM8L152x4/6 pin description*, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the "Routing interface (RI) and system configuration controller" section in the STM8L15xxx and STM8L16xxx reference manual (RM0031).

Address	Block	Register label	Register name	Reset status
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PC_IDR	Port C input pin value register	0xXX
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x00
0x00 5013		PD_CR2	Port D control register 2	0x00
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C]	PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00

Table 8 I/O	nort hardware	redister i	man ((continued)
	port nuranuro	registeri	nup (continueu)

Table 9. General hardware register map

Address	Block	Register label	Register name	Reset status
0x00 501E to 0x00 5049		F	Reserved area (28 bytes)	
0x00 5050		FLASH_CR1	Flash control register 1	0x00
0x00 5051		FLASH_CR2	Flash control register 2	0x00
0x00 5052	Flash	FLASH_PUKR	Flash program memory unprotection key register	0x00
0x00 5053		FLASH _DUKR	Data EEPROM unprotection key register	0x00
0x00 5054		FLASH_IAPSR	Flash in-application programming status register	0x00

Address	Block	Register label	Register name	Reset status
0x00 5140		RTC_TR1	Time register 1	0x00
0x00 5141	-	RTC_TR2	Time register 2	0x00
0x00 5142	-	RTC_TR3	Time register 3	0x00
0x00 5143			Reserved area (1 byte)	1
0x00 5144	-	RTC_DR1	Date register 1	0x01
0x00 5145		RTC_DR2	Date register 2	0x21
0x00 5146		RTC_DR3	Date register 3	0x00
0x00 5147			Reserved area (1 byte)	1
0x00 5148		RTC_CR1	Control register 1	0x00
0x00 5149		RTC_CR2	Control register 2	0x00
0x00 514A		RTC_CR3	Control register 3	0x00
0x00 514B			Reserved area (1 byte)	
0x00 514C		RTC_ISR1	Initialization and status register 1	0x00
0x00 514D		RTC_ISR2	Initialization and Status register 2	0x00
0x00 514E 0x00 514F	RTC		Reserved area (2 bytes)	
0x00 5150		RTC_SPRERH ⁽¹⁾	Synchronous prescaler register high	0x00 ⁽¹⁾
0x00 5151		RTC_SPRERL ⁽¹⁾	Synchronous prescaler register low	0xFF ⁽¹⁾
0x00 5152		RTC_APRER ⁽¹⁾	Asynchronous prescaler register	0x7F ⁽¹⁾
0x00 5153			Reserved area (1 byte)	
0x00 5154		RTC_WUTRH ⁽¹⁾	Wakeup timer register high	0xFF ⁽¹⁾
0x00 5155		RTC_WUTRL ⁽¹⁾	Wakeup timer register low	0xFF ⁽¹⁾
0x00 5156 to 0x00 5158			Reserved area (3 bytes)	
0x00 5159		RTC_WPR	Write protection register	0x00
0x00 515A 0x00 515B			Reserved area (2 bytes)	<u>.</u>
0x00 515C	-	RTC_ALRMAR1	Alarm A register 1	0x00
0x00 515D		RTC_ALRMAR2	Alarm A register 2	0x00
0x00 515E		RTC_ALRMAR3	Alarm A register 3	0x00
0x00 515F	-	RTC_ALRMAR4	Alarm A register 4	0x00
0x00 5160 to 0x00 51FF		R	eserved area (160 bytes)	

Table 9 General	hardware	rogistor	man	(continued)	١
Table 9. General	lialuwale	register	тар	(continueu))

Address	Block	Register label	Register name	Reset status
0x00 5400		LCD_CR1	LCD control register 1	0x00
0x00 5401		LCD_CR2	LCD control register 2	0x00
0x00 5402		LCD_CR3	LCD control register 3	0x00
0x00 5403		LCD_FRQ	LCD frequency selection register	0x00
0x00 5404		LCD_PM0	LCD Port mask register 0	0x00
0x00 5405		LCD_PM1	LCD Port mask register 1	0x00
0x00 5406		LCD_PM2	LCD Port mask register 2	0x00
0x00 5407		LCD_PM3	LCD Port mask register 3	0x00
0x00 5408 to 0x00 540B			Reserved area (4 bytes)	
0x00 540C		LCD_RAM0	LCD display memory 0	0x00
0x00 540D		LCD_RAM1	LCD display memory 1	0x00
0x00 540E		LCD_RAM2	LCD display memory 2	0x00
0x00 540F		LCD_RAM3	LCD display memory 3	0x00
0x00 5410		LCD_RAM4	LCD display memory 4	0x00
0x00 5411		LCD_RAM5	LCD display memory 5	0x00
0x00 5412	LCD	LCD_RAM6	LCD display memory 6	0x00
0x00 5413		LCD_RAM7	LCD display memory 7	0x00
0x00 5414		LCD_RAM8	LCD display memory 8	0x00
0x00 5415		LCD_RAM9	LCD display memory 9	0x00
0x00 5416		LCD_RAM10	LCD display memory 10	0x00
0x00 5417		LCD_RAM11	LCD display memory 11	0x00
0x00 5418		LCD_RAM12	LCD display memory 12	0x00
0x00 5419		LCD_RAM13	LCD display memory 13	0x00
0x00 541A to 0x00 542F		F	Reserved area (22 bytes)	

Table 9. General hardware register map (continued)

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.

All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 12* for details on option byte addresses.

The option bytes can also be modified 'on the fly' by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM).

Refer to the STM8L15x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Adda	Ontion name	Option	Option bits						Factory		
Addi.	Option name	No.	7	6	5	4	3	2	1	0	setting
0x00 4800	Read-out protection (ROP)	OPT0		ROP[7:0]						0xAA	
0x00 4802	UBC (User Boot code size)	OPT1		UBC[7:0]						0x00	
0x00 4807				Reserved						0x00	
0x00 4808	Independent watchdog option	OPT3 [3:0]	Reserved			WWDG _HALT	WWDG _HW	IWDG _HALT	IWDG _HW	0x00	
0x00 4809	Number of stabilization clock cycles for HSE and LSE oscillators	OPT4		Reserved			LSECNT[1:0] HSECNT[1:0]				0x00
0x00 480A	Brownout reset (BOR)	OPT5 [3:0]	Reserved BOR_TH BOR_ON					0x00			
0x00 480B	Bootloader	OPTBL					0x00				
0x00 480C	(OPTBL)	[15:0]				O	- IBC[12:0	J			0x00

 Table 12. Option byte addresses

Option byte No.	Option description
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT1	 UBC[7:0] Size of the user boot code area 0x00: no UBC 0x01: the UBC contains only the interrupt vectors. 0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt vectors. 0x03 - Page 0 to 2 reserved for UBC, memory write-protected 0xFF - Page 0 to 254 reserved for UBC, memory write-protected Refer to User boot code section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT2	Reserved
0010	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent window watchdog off on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode
OP13	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG HALT: Window window watchdog reset on Halt/Active-halt
	0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode
	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 32: LSE oscillator characteristics on page 84.

Table 13. Option byte description

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter		Тур	Мах	Unit		
				$T_A = -40 \ ^\circ C \text{ to } 25 \ ^\circ C$	3	3.3	
			all peripherals OFF	T _A = 55 °C	3.3	3.6	
				T _A = 85 °C	4.4	5	
				T _A = 105 °C	6.7	8	
		LSI RC osc.		T _A = 125 °C	11	14	
		(at 38 kHz)		$T_A = -40 \text{ °C to } 25 \text{ °C}$	3.4	3.7	
	Supply current in Low power wait mode			T _A = 55 °C	3.7	4	
			with TIM2 active ⁽²⁾	T _A = 85 °C	4.8	5.4	- μΑ
				T _A = 105 °C	7	8.3	
				T _A = 125 °C	11.3	14.5	
				T_A = -40 °C to 25 °C	2.35	2.7	
			all peripherals OFF	T _A = 55 °C	2.42	2.82	
				T _A = 85 °C	3.10	3.71	
				T _A = 105 °C	4.36	5.7	
		LSE external		T _A = 125 °C	7.20	11	
		(32.768 kHz)		T_A = -40 °C to 25 °C	2.46	2.75	
				T _A = 55 °C	2.50	2.81	
			with TIM2 active ⁽²⁾	T _A = 85 °C	3.16	3.82	
				T _A = 105 °C	4.51	5.9	
				T _A = 125 °C	7.28	11	

Table 23. Total c	irrent consumption in Low power wait mode at V _{DD} = ⁻	۱.65 ۷	V to 3	.6 V
			-	

1. No floating I/Os.

2. Timer 2 clock enabled and counter is running.

Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 32.

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	V _{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	1.4	-	V _{DD}	
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	$I_{OL} = 2 \text{ mA}$ for 2.7 V $\leq V_{DD} \leq 3.6$ V	-	-	0.4	V
		I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-		
V _{HYST}	NRST input hysteresis ⁽³⁾	-	10%V _{DD} (2)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor ⁽¹⁾	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse ⁽³⁾	-	-	-	50	ne
V _{NF(NRST)}	NRST input not filtered pulse ⁽³⁾	-	300	-	-	115

Table 42.	NRST	pin	characteristics
		piii	characteristics

1. Data based on characterization results.

2. 200 mV min.

3. Data guaranteed by design.

Figure 31. Typical NRST pull-up resistance R_{PU} vs V_{DD}

DocID15962 Rev 15

9.3.10 Embedded reference voltage

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max.	Unit
I _{REFINT}	Internal reference voltage consumption	-	-	1.4	-	μA
T _{S_VREFINT} ⁽¹⁾⁽²⁾	ADC sampling time when reading the internal reference voltage	-	-	5	10	μs
I _{BUF} ⁽²⁾	Internal reference voltage buffer consumption (used for ADC)	-	-	13.5	25	μA
V _{REFINT out}	Reference voltage output	-	1.202 ⁽³⁾	1.224	1.242 ⁽³⁾	V
I _{LPBUF} ⁽²⁾	Internal reference voltage low power buffer consumption (used for comparators or output)	-	-	730	1200	nA
I _{REFOUT} ⁽²⁾	Buffer output current ⁽⁴⁾	-	-	-	1	μA
C _{REFOUT}	Reference voltage output load	-	-	-	50	pF
t _{VREFINT}	Internal reference voltage startup time	-	-	2	3	ms
t _{BUFEN} ⁽²⁾	Internal reference voltage buffer startup time once enabled ⁽¹⁾	-	-	-	10	μs
ACC _{VREFINT}	Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte ⁽⁵⁾	-	-	-	± 5	mV
STAD	Stability of V _{REFINT} over temperature	-40 °C ≤T _A ≤ 125 °C	-	20	50	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} over temperature	0 °C ≤T _A ≤ 50 °C	-	-	20	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} after 1000 hours	-	-	-	TBD	ppm

Table 46.	Reference	voltage	characteristics
-----------	-----------	---------	-----------------

1. Defined when ADC output reaches its final value $\pm 1/2LSB$

2. Data guaranteed by design.

3. Tested in production at V_{DD} = 3 V ±10 mV.

4. To guaranty less than 1% $V_{\mbox{\scriptsize REFOUT}}$ deviation.

5. Measured at V_{DD} = 3 V ±10 mV. This value takes into account V_{DD} accuracy and ADC conversion accuracy.

9.3.13 12-bit DAC characteristics

In the following table, data is guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V
V _{REF+}	Reference supply voltage	-	1.8	-	V _{DDA}	
	Current consumption on V _{REF+}	V _{REF+} = 3.3 V, no load, middle code (0x800)	-	130	220	
^I VREF	supply	V _{REF+} = 3.3 V, no load, worst code (0x000)	-	220	350	μA
h	Current consumption on V _{DDA}	V _{DDA} = 3.3 V, no load, middle code (0x800)	-	210	320	
'VDDA	supply	V _{DDA} = 3.3 V, no load, worst code (0x000)	-	320	520	
T _A	Temperature range	-	-40	-	125	°C
R _L	Resistive load ^{(1) (2)}	DACOUT buffer ON	5	-	-	kΩ
R _O	Output impedance	DACOUT buffer OFF	-	8	10	kΩ
CL	Capacitive load ⁽³⁾	-	-	-	50	pF
		DACOUT buffer ON	0.2	-	V _{DDA} -0.2	V
DAC_001		DACOUT buffer OFF	0	-	V _{REF+} -1 LSB	V
t _{settling}	Settling time (full scale: for a 12- bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB)	R _L ≥5 kΩ, C _L ≤ 50 pF	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT (@95%) change when small variation of the input code (from code i to i+1LSB).	R _L ≥ 5 kΩ, C _L ≤50 pF	-		1	Msps
twakeup	Wakeup time from OFF state. Input code between lowest and highest possible codes.	R _L ≥5 kΩ, C _L ≤50 pF	-	9	15	μs
PSRR+	Power supply rejection ratio (to VDDA) (static DC measurement)	$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}$	-	-60	-35	dB

Table 50. DAC characteristics

1. Resistive load between DACOUT and GNDA.

2. Output on PF0 (48-pin package only).

3. Capacitive load at DACOUT pin.

4. It gives the output excursion of the DAC.

Figure 38. ADC1 accuracy characteristics

Figure 39. Typical connection diagram using the ADC

- 1. Refer to Table 53 for the values of R_{AIN} and C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Figure 40. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 57.	R _{AIN} max	for f _{ADC} =	16	MHz ⁽¹⁾
-----------	----------------------	------------------------	----	--------------------

		R _{AIN} max (kohm)					
Ts (cycles)	Ts (μs)	Slow c	hannels	Fast cl	nannels		
		2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V		
4	0.25	Not allowed	Not allowed	0.7	Not allowed		
9	0.5625	0.8	Not allowed	2.0	1.0		
16	1	2.0	0.8	4.0	3.0		
24	1.5	3.0	1.8	6.0	4.5		
48	3	6.8	4.0	15.0	10.0		
96	6	15.0	10.0	30.0	20.0		
192	12	32.0	25.0	50.0	40.0		
384	24	50.0	50.0	50.0	50.0		

1. Guaranteed by design.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 41* or *Figure 42*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

Cumhal	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 63. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 47. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Date	Revision	Changes
23-Jul-2010	5	 Modified Introduction and Description. Modified Table: Legend/abbreviation for table 5 and Table: Medium density STM8L15x pin description (for PA0, PA1, PB0 and PB4 and for reset states in the floating input column) Modified Figure: Low density STM8L151xx device block diagram, Figure: Low density STM8L151x clock tree diagram, Figure: Low power modes and Figure : Low power real-time clock. Modified CLK_PCKENR2 and CLK_HSICALR reset values in Table: General hardware register map. Modified notes below Figure: Memory map. Modified reset values for Px_IDR registers. Modified Table: Voltage characteristics and Table: Current characteristics. Modified Table: Total current consumption in Wait mode. Modified Figure Typical application with I2C bus and timing diagram 1). Modified R_H and R_L in Table: LCD characteristics. Added graphs in Section: Electrical parameters. Modified note 3 below Table: Reference voltage characteristics. Modified note 1 below Table: TS characteristics. Changed V_{ESD(CDM)} value in Table: ESD absolute maximum ratings. Updated notes for UFQFPN32 and UFQFPN48 packages.
11-Mar-2011	6	Modified note on true open drain I/Os and I/O level columns in <i>Table: Medium density STM8L15x pin</i> <i>description.</i> Remapping option removed for USART1_TX, USART1_RX, and USART1_CK on PC2, PC3 and PC4 in <i>Table: Medium density STM8L15x pin description.</i> Modified IDWDG_KR reset value in <i>Table: General</i> <i>hardware register map.</i> Replaced VREF_OUT with VREFINT and TIMx_TRIG with TIMx_ETR. Added <i>Table: Factory conversion registers.</i> Modified reset values for TIM1_DCR1, IWDG_KR, RTC_DR1, RTC_DR2, RTC_SPRERH, RTC_SPRERL, RTC_APRER, RTC_WUTRH, and RTC_WUTRL in <i>Table: General hardware register map.</i> Added notes to certain values in <i>Section: Embedded</i> <i>reference voltage</i> and <i>Section: Temperature sensor.</i>

Table 69	. Document	revision	history	(continued)
----------	------------	----------	---------	-------------

