

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	30
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 23x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151k3u3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: ADC1 can be served by DMA1.

3.10 Digital-to-analog converter (DAC)

- 12-bit DAC with output buffer
- Synchronized update capability using TIM4
- DMA capability
- External triggers for conversion
- Input reference voltage V_{REF+} for better resolution

Note: DAC can be served by DMA1.

3.11 Ultra-low-power comparators

The medium-density STM8L151x4/6 and STM8L152x4/6 embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O).

- One comparator with fixed threshold (COMP1).
- One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4)

The two comparators can be used together to offer a window function. They can wake up from Halt mode.

3.12 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.

The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1, COMP2, DAC and the internal reference voltage V_{REFINT} . It also provides a set of registers for efficiently managing the charge transfer acquisition sequence (*Section 3.13: Touch sensing*).

3.13 Touch sensing

Medium-density STM8L151x4/6 and STM8L152x4/6 devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (example, glass, plastic). The capacitive variation introduced by a finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. In medium-density STM8L151x4/6

n	Pin umb	er					I	Input		0	utpu	ıt		
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	ao	dd	Main function (after reset)	Default alternate function
-	16	_	-	PB3/ <i>[TIM2_ETR]</i> ⁽⁴⁾ / TIM1_CH2N/LCD_SEG13 ⁽²⁾ /ADC1_IN15/ COMP1_INP	I/O	TT (3)	x	x	х	HS	x	x	Port B3	[Timer 2 - external trigger] / Timer 1 inverted channel 2 / LCD segment 13 / ADC1_IN15 / Comparator 1 positive input
-	-	15	E2	PB3/[<i>TIM2_ETR]</i> ⁽⁴⁾ / TIM1_CH1N/ LCD_SEG13 ⁽²⁾ / ADC1_IN15/RTC_ALARM /COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port B3	[Timer 2 - external trigger] / Timer 1 inverted channel 1/ LCD segment 13 / ADC1_IN15 / RTC alarm/ Comparator 1 positive input
28	-	-	-	PB4 ⁽⁶⁾ /[<i>SPI1_NSS]</i> ⁽⁴⁾ / LCD_SEG14 ⁽²⁾ / ADC1_IN14/COMP1_INP	I/O	TT (3)	X ⁽⁶⁾	X ⁽⁶⁾	x	HS	х	x	Port B4	[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / Comparator 1 positive input
-	17	16	D2	PB4 ⁽⁶⁾ /[SPI1_NSS] ⁽⁴⁾ / LCD_SEG14 ⁽²⁾ / ADC1_IN14/ COMP1_INP/DAC_OUT	I/O	TT (3)	X ⁽⁶⁾	X ⁽⁶⁾	x	HS	x	x	Port B4	[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / DAC output / Comparator 1 positive input
29	-	-	-	PB5/[SPI1_SCK] ⁽⁴⁾ / LCD_SEG15 ^{(2)/} ADC1_IN13/COMP1_INP	I/O	TT (3)	x	x	x	HS	х	x	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / Comparator 1 positive input
-	18	17	D1	PB5/[SPI1_SCK] ⁽⁴⁾ / LCD_SEG15 ⁽²⁾ / ADC1_IN13/DAC_OUT/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / DAC output/ Comparator 1 positive input

Table 5. Medium-density 51 M8L151X4/6, 51 M8L152X4/6 p	pin aescri	ption	(continuea)
--	------------	-------	-------------

Address	Block	Register label	Register name	Reset status		
0x00 5084			Reserved area (1 byte)			
0x00 5085		DMA1_C1M0ARH	DMA1 memory 0 address high register (channel 1)	0x00		
0x00 5086		DMA1_C1M0ARL	DMA1 memory 0 address low register (channel 1)	0x00		
0x00 5087 0x00 5088			Reserved area (2 bytes)			
0x00 5089		DMA1_C2CR	DMA1 channel 2 configuration register	0x00		
0x00 508A		DMA1_C2SPR	DMA1 channel 2 status & priority register	0x00		
0x00 508B		DMA1_C2NDTR	DMA1 number of data to transfer register (channel 2)	0x00		
0x00 508C		DMA1_C2PARH	DMA1 peripheral address high register (channel 2)	0x52		
0x00 508D		DMA1_C2PARL	DMA1 peripheral address low register (channel 2)	0x00		
0x00 508E			Reserved area (1 byte)			
0x00 508F		DMA1_C2M0ARH	DMA1 memory 0 address high register (channel 2)	0x00		
0x00 5090	DMA1	DMA1_C2M0ARL	0x00			
0x00 5091 0x00 5092			Reserved area (2 bytes)			
0x00 5093		DMA1_C3CR	DMA1 channel 3 configuration register	0x00		
0x00 5094		DMA1_C3SPR	DMA1 channel 3 status & priority register	0x00		
0x00 5095		DMA1_C3NDTR	DMA1 number of data to transfer register (channel 3)	0x00		
0x00 5096		DMA1_C3PARH_ C3M1ARH	DMA1 peripheral address high register (channel 3)	0x40		
0x00 5097		DMA1_C3PARL_ C3M1ARL	DMA1 peripheral address low register (channel 3)	0x00		
0x00 5098	1		Reserved area (1 byte)			
0x00 5099		DMA1_C3M0ARH	DMA1 memory 0 address high register (channel 3)	0x00		
0x00 509A		DMA1_C3M0ARL	DMA1 memory 0 address low register (channel 3)	0x00		
0x00 509B to 0x00 509D			Reserved area (3 bytes)			
0x00 509E	0/0050	SYSCFG_RMPCR1	Remapping register 1	0x00		
0x00 509F	SISCEG	SYSCFG_RMPCR2	Remapping register 2	0x00		

Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5250		TIM2_CR1	TIM2 control register 1	0x00
0x00 5251		TIM2_CR2	TIM2 control register 2	0x00
0x00 5252		TIM2_SMCR	TIM2 Slave mode control register	0x00
0x00 5253		TIM2_ETR	TIM2 external trigger register	0x00
0x00 5254		TIM2_DER	TIM2 DMA1 request enable register	0x00
0x00 5255		TIM2_IER	TIM2 interrupt enable register	0x00
0x00 5256		TIM2_SR1	TIM2 status register 1	0x00
0x00 5257		TIM2_SR2	TIM2 status register 2	0x00
0x00 5258		TIM2_EGR	TIM2 event generation register	0x00
0x00 5259		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00
0x00 525A		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00
0x00 525B	TIM2	TIM2_CCER1 TIM2 capture/compare enable register		0x00
0x00 525C		TIM2_CNTRH	TIM2 counter high	0x00
0x00 525D		TIM2_CNTRL	TIM2 counter low	0x00
0x00 525E		TIM2_PSCR	TIM2 prescaler register	0x00
0x00 525F		TIM2_ARRH	TIM2 auto-reload register high	0xFF
0x00 5260		TIM2_ARRL	TIM2 auto-reload register low	0xFF
0x00 5261		TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00
0x00 5262		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5263		TIM2_CCR2H	TIM2 capture/compare register 2 high	0x00
0x00 5264		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00
0x00 5265		TIM2_BKR	TIM2 break register	0x00
0x00 5266		TIM2_OISR	TIM2 output idle state register	0x00
0x00 5267 to 0x00 527F		F	Reserved area (25 bytes)	

Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 52B0		TIM1_CR1	TIM1 control register 1	0x00
0x00 52B1		TIM1_CR2	TIM1 control register 2	0x00
0x00 52B2		TIM1_SMCR	TIM1 Slave mode control register	0x00
0x00 52B3		TIM1_ETR	TIM1 external trigger register	0x00
0x00 52B4		TIM1_DER	TIM1 DMA1 request enable register	0x00
0x00 52B5		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 52B6		TIM1_SR1	TIM1 status register 1	0x00
0x00 52B7		TIM1_SR2	TIM1 status register 2	0x00
0x00 52B8		TIM1_EGR	TIM1 event generation register	0x00
0x00 52B9		TIM1_CCMR1	TIM1 Capture/Compare mode register 1	0x00
0x00 52BA		TIM1_CCMR2	TIM1 Capture/Compare mode register 2	0x00
0x00 52BB		TIM1_CCMR3	TIM1 Capture/Compare mode register 3	0x00
0x00 52BC		TIM1_CCMR4	TIM1 Capture/Compare mode register 4	0x00
0x00 52BD		TIM1_CCER1	TIM1 Capture/Compare enable register 1	0x00
0x00 52BE		TIM1_CCER2	TIM1 Capture/Compare enable register 2	0x00
0x00 52BF		TIM1_CNTRH	TIM1 counter high	0x00
0x00 52C0	T1N/1	TIM1_CNTRL	TIM1 counter low	0x00
0x00 52C1		TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 52C2		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 52C3		TIM1_ARRH	TIM1 Auto-reload register high	0xFF
0x00 52C4		TIM1_ARRL	TIM1 Auto-reload register low	0xFF
0x00 52C5		TIM1_RCR	TIM1 Repetition counter register	0x00
0x00 52C6		TIM1_CCR1H	TIM1 Capture/Compare register 1 high	0x00
0x00 52C7		TIM1_CCR1L	TIM1 Capture/Compare register 1 low	0x00
0x00 52C8		TIM1_CCR2H	TIM1 Capture/Compare register 2 high	0x00
0x00 52C9		TIM1_CCR2L	TIM1 Capture/Compare register 2 low	0x00
0x00 52CA		TIM1_CCR3H	TIM1 Capture/Compare register 3 high	0x00
0x00 52CB		TIM1_CCR3L	TIM1 Capture/Compare register 3 low	0x00
0x00 52CC		TIM1_CCR4H	TIM1 Capture/Compare register 4 high	0x00
0x00 52CD		TIM1_CCR4L	TIM1 Capture/Compare register 4 low	0x00
0x00 52CE		TIM1_BKR	TIM1 break register	0x00
0x00 52CF		TIM1_DTR	TIM1 dead-time register	0x00
0x00 52D0		TIM1_OISR	TIM1 output idle state register	0x00
0x00 52D1		TIM1_DCR1	DMA1 control register 1	0x00

Table 9. General	hardware	register	map ((continued)	ĺ.

Option byte No.	Option description
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT1	 UBC[7:0] Size of the user boot code area 0x00: no UBC 0x01: the UBC contains only the interrupt vectors. 0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt vectors. 0x03 - Page 0 to 2 reserved for UBC, memory write-protected 0xFF - Page 0 to 254 reserved for UBC, memory write-protected Refer to User boot code section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT2	Reserved
OPT3	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent window watchdog off on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode
	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode
	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 32: LSE oscillator characteristics on page 84.

Table 13. Option byte description

							Ν	lax		
Symbol	Parameter		Conditions ⁽¹⁾		Тур	55°C	85 °C ⁽²⁾	Max U 105 °C (3) 125 °C (4) U 0 0.50 0.56 1 0.53 0.59 3 0.62 0.66 3 0.72 0.74 5 0.87 0.90 6 0.10 0.12 7 0.41 0.44 1 0.62 0.64 4 1.16 1.18 5 0.073 0.080	Unit	
				f _{CPU} = 125 kHz	0.38	0.48	0.49	0.50	0.56	
				f _{CPU} = 1 MHz	0.41	0.49	0.51	0.53	0.59	
			HSI	f _{CPU} = 4 MHz	0.50	0.57	0.58	0.62	0.66	
				f _{CPU} = 8 MHz	0.60	0.66	0.68	0.72	0.74	
		CPU not		f _{CPU} = 16 MHz	0.79	0.84	0.86	0.87	'C 125 °C (4) 0 0.56 3 0.59 2 0.66 2 0.74 7 0.90 0 0.12 9 0.22 1 0.44 2 0.64 6 1.18 '3 0.080 05 0.073	
	Supply	clocked,		f _{CPU} = 125 kHz	0.06	0.08	0.09	0.10	0.12	
	current in	OFF,	HSE ⁽⁶⁾ external	f _{CPU} = 1 MHz	0.10	0.17	0.18	0.19	0.22	mΔ
'DD(vvait)	wait	code executed from Flash,	clock	f _{CPU} = 4 MHz	0.24	0.36	0.39	0.41	0.44	
	mode	V _{DD} from	(I _{CPU} =HSE)	f _{CPU} = 8 MHz	0.50	0.58	0.61	0.62	0.64	
		1.05 V (0 3.0 V		f _{CPU} = 16 MHz	1.00	1.08	1.14	1.16	1.18	
			LSI	$f_{CPU} = f_{LSI}$	0.055	0.058	0.065	0.073	0.080	
			LSE ⁽⁸⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.051	0.056	0.060	0.065	0.073	

Table 21. Total current consumption in Wait mode (continued)

1. All peripherals OFF, V_{DD} from 1.65 V to 3.6 V, HSI internal RC osc., f_{CPU} = f_{SYSCLK}

2. For temperature range 6.

3. For temperature range 7.

4. For temperature range 3.

5. Flash is configured in I_{DDQ} mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.

Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I_{DD HSE}) must be added. Refer to Table 37.

7. Tested in production.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD HSE}) must be added. Refer to Table 32.

I²C - Inter IC control interface

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{SYSCLK}},$ and T_{A} unless otherwise specified.

The STM8L I²C interface (I2C1) meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standar I ²	d mode C	Fast mo	Unit	
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	-	0	900	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs
C _b	Capacitive load for each bus line	-	400		400	pF

Table 44. I2C characteristics

1. f_{SYSCLK} must be at least equal to 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

Note: For speeds around 200 kHz, the achieved speed can have a± 5% tolerance For other speed ranges, the achieved speed can have a± 2% tolerance The above variations depend on the accuracy of the external components used.

9.3.13 12-bit DAC characteristics

In the following table, data is guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V
V _{REF+}	Reference supply voltage	-	1.8	-	V _{DDA}	
	Current consumption on V _{REF+}	V _{REF+} = 3.3 V, no load, middle code (0x800)	-	130	220	
'VREF	supply	V _{REF+} = 3.3 V, no load, worst code (0x000)	-	220	350	μA
h	Current consumption on V _{DDA}	V _{DDA} = 3.3 V, no load, middle code (0x800)	-	210	320	
'VDDA	supply	V _{DDA} = 3.3 V, no load, worst code (0x000)	-	320	520	
T _A	Temperature range	-	-40	-	125	°C
R _L	Resistive load ^{(1) (2)}	DACOUT buffer ON	5	-	-	kΩ
R _O	Output impedance	DACOUT buffer OFF	-	8	10	kΩ
CL	Capacitive load ⁽³⁾	-	-	-	50	pF
		DACOUT buffer ON	0.2	-	V _{DDA} -0.2	V
DAC_001		DACOUT buffer OFF	0	-	V _{REF+} -1 LSB	V
t _{settling}	Settling time (full scale: for a 12- bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB)	R _L ≥5 kΩ, C _L ≤ 50 pF	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT (@95%) change when small variation of the input code (from code i to i+1LSB).	R _L ≥ 5 kΩ, C _L ≤50 pF	-		1	Msps
twakeup	Wakeup time from OFF state. Input code between lowest and highest possible codes.	R _L ≥5 kΩ, C _L ≤50 pF	-	9	15	μs
PSRR+	Power supply rejection ratio (to VDDA) (static DC measurement)	$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}$	-	-60	-35	dB

Table 50. DAC characteristics

1. Resistive load between DACOUT and GNDA.

2. Output on PF0 (48-pin package only).

3. Capacitive load at DACOUT pin.

4. It gives the output excursion of the DAC.

In the following table, data is based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Тур	Max	Unit	
		R _L ≥5 kΩ, C _L ≤50 pF	15	3		
DNL	Differential non linearity ⁽¹⁾	DACOUT buffer ON ⁽²⁾	1.5	3		
		No load DACOUT buffer OFF	1.5	3		
		R _L ≥5 kΩ, C _L ≤ 50 pF	2	4		
INI	Integral non linearity ⁽³⁾	DACOUT buffer ON ⁽²⁾	2		12 hit	
		No load DACOUT buffer OFF	2	4	LSB	
		R _L ≥5 kΩ, C _L ≤ 50 pF	+10	±25		
Offset	Offset error ⁽⁴⁾	DACOUT buffer ON ⁽²⁾	ΞIU			
Chool		No load DACOUT buffer OFF	±5	±8		
Offset1	Offset error at Code 1 ⁽⁵⁾	DACOUT buffer OFF	±1.5	±5		
		R _L ≥5 kΩ, C _L ≤ 50 pF	+0.1/0.2	+0.2/.0.5		
Gain error	Gain error ⁽⁶⁾	DACOUT buffer ON ⁽²⁾	+0.1/-0.2	+0.2/-0.5	%	
		No load DACOUT buffer OFF	+0/-0.2	+0/-0.4	70	
		$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}$	12	30		
TUE	Total unadiusted error	DACOUT buffer ON ⁽²⁾	12	30	12-bit	
		No load DACOUT buffer OFF	8	12	LSB	

Table	51.	DAC	accu	racv
Iable	U I.	DAO	accu	iacy

1. Difference between two consecutive codes - 1 LSB.

2. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be applied.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.

4. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.

5. Difference between the value measured at Code (0x001) and the ideal value.

6. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (V_{DDA} -0.2) V when buffer is OFF.

In the following table, data is guaranteed by design, not tested in production.

Table 52. DAC output on PB4-PB5-PB6⁽¹⁾

Symbol	Parameter	Conditions	Max	Unit
R _{int}	Internal resistance between DAC output and PB4-PB5-PB6 output	2.7 V < V _{DD} < 3.6 V	1.4	kΩ
		2.4 V < V _{DD} < 3.6 V	1.6	
		2.0 V < V _{DD} < 3.6 V	3.2	
		1.8 V < V _{DD} < 3.6 V	8.2	

1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _S Samp	Sampling time	V _{AIN} on PF0 fast channel V _{DDA} < 2.4 V	0.43 ⁽⁴⁾⁽⁵⁾	-	-	μs
		V _{AIN} on PF0 fast channel 2.4 V ≤V _{DDA} ≤ 3.6 V	0.22 ⁽⁴⁾⁽⁵⁾	-	-	μs
		V _{AIN} on slow channels V _{DDA} < 2.4 V	0.86 ⁽⁴⁾⁽⁵⁾	-	-	μs
		V_{AIN} on slow channels 2.4 V \leq V_{DDA} \leq 3.6 V	0.41 ⁽⁴⁾⁽⁵⁾	-	-	μs
t _{conv}	12-bit conversion time	-	12 + t _S			1/f _{ADC}
		16 MHz		1 ⁽⁴⁾		μs
t _{WKUP}	Wakeup time from OFF state	-	-	-	3	μs
t _{IDLE} ⁽⁶⁾ T	Time before a new conversion	T _A = +25 °C	-	-	1 ⁽⁷⁾	s
		$T_{A} = +70 \ ^{\circ}C$	-	-	20 ⁽⁷⁾	ms
		T _A = +125 °C	-	-	2 ⁽⁷⁾	ms
t _{VREFINT}	Internal reference voltage startup time	-	-	-	refer to <i>Table 46</i>	ms

Table 53. ADC1 characteristics (continued)

The current consumption through V_{REF} is composed of two parameters:

 one constant (max 300 μA)
 one variable (max 400 μA), only during sampling time + 2 first conversion pulses.
 So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

2. V_{REF-} or V_{DDA} must be tied to ground.

3. Guaranteed by design.

4. Minimum sampling and conversion time is reached for maximum Rext = $0.5 \text{ k}\Omega$

5. Value obtained for continuous conversion on fast channel.

6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than t_{IDLE.}

7. The t_{IDLE} maximum value is ∞on the "Z" revision code of the device.

Figure 38. ADC1 accuracy characteristics

Figure 39. Typical connection diagram using the ADC

- 1. Refer to Table 53 for the values of R_{AIN} and C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Figure 41. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

Figure 42. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

10.4 LQFP32 package information

Figure 49. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Figure 50. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering

Samples to run qualification activity.

10.5 UFQFPN32 package information

1. Drawing is not to scale.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 54. UFQFPN32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

10.7 WLCSP28 package information

Figure 58. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

DocID15962 Rev 15

