

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	30
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 23x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151k3u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	luction		9
2	Descr	ription .		11
	2.1	Device of	overview	12
	2.2	Ultra-lov	<i>w</i> -power continuum	13
3	Funct	tional ov	verview	14
	3.1	Low-pov	wer modes	15
	3.2	Central	processing unit STM8	16
		3.2.1	Advanced STM8 Core	16
		3.2.2	Interrupt controller	16
	3.3	Reset a	nd supply management	17
		3.3.1	Power supply scheme	17
		3.3.2	Power supply supervisor	17
		3.3.3	Voltage regulator	17
	3.4	Clock m	nanagement	18
	3.5	Low pov	wer real-time clock	19
	3.6	LCD (Lie	quid crystal display)	20
	3.7	Memorie	es	20
	3.8	DMA		20
	3.9	Analog-	to-digital converter	20
	3.10	Digital-to	o-analog converter (DAC)	21
	3.11	Ultra-lov	<i>w</i> -power comparators	21
	3.12	System	configuration controller and routing interface	21
	3.13	Touch s	ensing	21
	3.14	Timers	~	22
		3.14.1	TIM1 - 16-bit advanced control timer	22
		3.14.2	16-bit general purpose timers	23
		3.14.3	8-bit basic timer	23
3	3.15	Watchdo	og timers	23
		3.15.1	Window watchdog timer	23
		3.15.2	Independent watchdog timer	23

The medium-density STM8L15x microcontroller family is suitable for a wide range of applications:

- Medical and hand-held equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, wired and wireless sensors

2 Description

The medium-density STM8L151x4/6 and STM8L152x4/6 devices are members of the STM8L ultra-low-power 8-bit family. The medium-density STM8L15x family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85 °C and -40 to +125 °C temperature ranges.

The medium-density STM8L15x ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-Application debugging and ultra-fast Flash programming.

All medium-density STM8L15x microcontrollers feature embedded data EEPROM and low-power, low-voltage, single-supply program Flash memory.

They incorporate an extensive range of enhanced I/Os and peripherals.

The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

Six different packages are proposed from 28 to 48 pins. Depending on the device chosen, different sets of peripherals are included.

All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

Figure 2. Medium-density STM8L151x4/6 and STM8L152x4/6 clock tree diagram

- The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
- The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x reference manual (RM0031).

3.5 Low power real-time clock

The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.

Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically.

It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability.

- Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours
- Periodic alarms based on the calendar can also be generated from every second to every year

Note: ADC1 can be served by DMA1.

3.10 Digital-to-analog converter (DAC)

- 12-bit DAC with output buffer
- Synchronized update capability using TIM4
- DMA capability
- External triggers for conversion
- Input reference voltage V_{REF+} for better resolution

Note: DAC can be served by DMA1.

3.11 Ultra-low-power comparators

The medium-density STM8L151x4/6 and STM8L152x4/6 embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O).

- One comparator with fixed threshold (COMP1).
- One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4)

The two comparators can be used together to offer a window function. They can wake up from Halt mode.

3.12 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.

The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1, COMP2, DAC and the internal reference voltage V_{REFINT} . It also provides a set of registers for efficiently managing the charge transfer acquisition sequence (*Section 3.13: Touch sensing*).

3.13 Touch sensing

Medium-density STM8L151x4/6 and STM8L152x4/6 devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (example, glass, plastic). The capacitive variation introduced by a finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. In medium-density STM8L151x4/6

have a fixed value: 0x3.

4. Refer to *Table 9* for an overview of hardware register mapping, to *Table 8* for details on I/O port hardware registers, and to *Table 10* for information on CPU/SWIM/debug module controller registers.

Memory area	Size	Start address	End address
RAM	2 Kbyte	0x00 0000	0x00 07FF
Flash program memory	16 Kbyte	0x00 8000	0x00 BFFF
r iash program memory	32 Kbyte	0x00 8000	0x00 FFFF

Table 6. Flash and RAM boundary addresses

5.2 Register map

Table 7. Factory conversion registers

Address	Block	Register label Register name		Reset status
0x00 4910	-	VREFINT_Factory_ CONV ⁽¹⁾	Internal reference voltage factory conversion	0xXX
0x00 4911	-	TS_Factory_CONV_ V90 ⁽²⁾	Temperature sensor output voltage	0xXX

1. The VREFINT_Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in factory. The MSB have a fixed value: 0x6.

2. The TS_Factory_CONV_V90 byte represents the 8 LSB of the result of the V90 12-bit ADC conversion performed in factory. The 2 MSB have a fixed value: 0x3.

Table 0. 1/0 port naruware register map	Table 8	3. I/O	port	hardware	register	map
---	---------	--------	------	----------	----------	-----

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR Port A input pin value register		0xXX
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x01
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00

Address	Block	Register label	Register name	Reset status			
0x00 50D0 to 0x00 50D2		Reserved area (3 bytes)					
0x00 50D3		WWDG_CR	WWDG control register	0x7F			
0x00 50D4	wwbg	WWDG_WR	WWDR window register	0x7F			
0x00 50D5 to 00 50DF		Reserved area (11 bytes)					
0x00 50E0		IWDG_KR	IWDG key register	0xXX			
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00			
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF			
0x00 50E3 to 0x00 50EF		F	Reserved area (13 bytes)				
0x00 50F0		BEEP_CSR1	BEEP control/status register 1	0x00			
0x00 50F1 0x00 50F2	BEEP		Reserved area (2 bytes)				
0x00 50F3		BEEP_CSR2	_CSR2 BEEP control/status register 2				
0x00 50F4 to 0x00 513F		F	Reserved area (76 bytes)				

	-					
Table 9.	General	hardware	reaister	map	(continued))

			Makaun	Wakeup	Wakeup	Wakeup	
IRQ No.	Source block	Description	from Halt mode	from Active-halt mode	from Wait (WFI mode)	from Wait (WFE mode) ⁽¹⁾	Vector address
19	TIM2	TIM2 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 8054
20	TIM2	TIM2 capture/ compare interrupt	-	-	Yes	Yes	0x00 8058
21	TIM3	TIM3 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 805C
22	TIM3	TIM3 capture/ compare interrupt	-	-	Yes	Yes	0x00 8060
23	TIM1	Update /overflow/trigger/ COM	-	-	-	Yes	0x00 8064
24	TIM1	Capture/compare	-	-	-	Yes	0x00 8068
25	TIM4	TIM4 update/overflow/ trigger interrupt	-	-	Yes	Yes	0x00 806C
26	SPI1	SPI1 TX buffer empty/ RX buffer not empty/ error/wakeup interrupt	Yes	Yes	Yes	Yes	0x00 8070
27	USART1	USART1 transmit data register empty/ transmission complete interrupt	-	-	Yes	Yes	0x00 8074
28	USART1	USART1 received data ready/overrun error/ idle line detected/parity error/global error interrupt	-	-	Yes	Yes	0x00 8078
29	I ² C1	I ² C1 interrupt ⁽³⁾	Yes	Yes	Yes	Yes	0x00 807C

Table 11. Interrupt mapping (continued)

The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see *External interrupt port select register (EXTI_CONF)* in the RM0031).

3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

In the following table, data is based on characterization results, unless otherwise specified.

						Мах				
Symbol	ol Parameter Conditions ⁽¹⁾			Тур	55°C	85 °C ⁽²⁾	105 °C (3)	125 °C (4)	Unit	
				f _{CPU} = 125 kHz	0.33	0.39	0.41	0.43	0.45	
				f _{CPU} = 1 MHz	0.35	0.41	0.44	0.45	0.48	
			HSI	f _{CPU} = 4 MHz	0.42	0.51	0.52	0.54	0.58	
				f _{CPU} = 8 MHz	0.52	0.57	0.58	0.59	0.62	
	Supply current in Wait mode	upply irrent in ait mode CPU not clocked, all peripherals OFF, code executed from RAM with Flash in I _{DDQ} mode ⁽⁵⁾ , V _{DD} from 1.65 V to 3.6 V		f _{CPU} = 16 MHz	0.68	0.76	0.79	0.82 (7)	0.85 (7)	
			HSE external clock (f _{CPU} =f _{HSE}) (6)	f _{CPU} = 125 kHz	0.032	0.056	0.068	0.072	0.093	mA
				f _{CPU} = 1 MHz	0.078	0.121	0.144	0.163	0.197	
I _{DD(Wait)}				f _{CPU} = 4 MHz	0.218	0.26	0.30	0.36	0.40	
				f _{CPU} = 8 MHz	0.40	0.52	0.57	0.62	0.66	
				f _{CPU} = 16 MHz	0.760	1.01	1.05	1.09 (7)	1.16 (7)	
			LSI	f _{CPU} = f _{LSI}	0.035	0.044	0.046	0.049	0.054	
			LSE ⁽⁸⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.032	0.036	0.038	0.044	0.051	

 Table 21. Total current consumption in Wait mode

Figure 14. Typ. I_{DD(Wait)} vs. V_{DD}, f_{CPU} = 16 MHz ¹⁾

1. Typical current consumption measured with code executed from Flash memory.

Figure 15. Typ. I_{DD(LPR)} vs. V_{DD} (LSI clock source)

Symbol	Parameter	Condition	Тур	Unit	
	Oursels summer to read an		V _{DD} = 1.8 V	48	
I _{DD(RST)}	external reset ⁽¹⁾	tied to V _{DD}	V _{DD} = 3 V	76	μA
			V _{DD} = 3.6 V	91	

Table 28. Current consumption under external reset

1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External clock source frequency ⁽¹⁾		1	-	16	MHz
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 \times V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	0.3 x V _{DD}	v
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	2.6	-	pF
I _{LEAK_HSE}	OSC_IN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-	-	±1	μA

Table 29. HSE external clock characteristics

1. Data guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 30. LSE external clock characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSE_ext}	External clock source frequency ⁽¹⁾	-	32.768	-	kHz
V _{LSEH} ⁽²⁾	OSC32_IN input pin high level voltage	0.7 x V _{DD}	-	V _{DD}	V
V _{LSEL} ⁽²⁾	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 x V _{DD}	v
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-	-	±1	μA

1. Data guaranteed by design.

2. Data based on characterization results.

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 R_m : Motional resistance (see crystal specification), L_m : Motional inductance (see crystal specification), C_m : Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), CL_1=CL_2=C: Grounded external capacitance gm >> gmcrit

LSE crystal/ceramic resonator oscillator

The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz
R _F	Feedback resistor	∆V = 200 mV	-	1.2	-	MΩ
C ⁽¹⁾	Recommended load capacitance (2)	-	-	8	-	pF
I _{DD(LSE)}	LSE oscillator power consumption	-	-	-	1.4 ⁽³⁾	μA
		V _{DD} = 1.8 V	-	450	-	nA
		V _{DD} = 3 V	-	600	-	
		V _{DD} = 3.6 V	-	750	-	
9 _m	Oscillator transconductance	-	3 ⁽³⁾	-	-	µA/V
t _{SU(LSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized	-	1	-	S

Table 32. L	_SE oscillator	characteristics
-------------	----------------	-----------------

1. C=C_{L1}=C_{L2} is approximately equivalent to 2 x crystal C_{LOAD}.

 The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R_m value. Refer to crystal manufacturer for more details.

3. Data guaranteed by design.

 t_{SU/LSE} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 34. SPI1 timing diagram - slave mode and CPHA=0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

In the following table, data is based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Тур	Max	Unit
	Differential non linearity ⁽¹⁾	R _L ≥5 kΩ, C _L ≤50 pF	15	3	
DNI		DACOUT buffer ON ⁽²⁾	1.5		
DNL		No load DACOUT buffer OFF	1.5	3	
		R _L ≥5 kΩ, C _L ≤ 50 pF	2	Λ	
INI	Integral non linearity ⁽³⁾	DACOUT buffer ON ⁽²⁾	2	4	12 hit
		No load DACOUT buffer OFF	2	4	LSB
	Offset error ⁽⁴⁾	R _L ≥5 kΩ, C _L ≤ 50 pF	±10	±25	
Offset		DACOUT buffer ON ⁽²⁾			
Onset		No load DACOUT buffer OFF	±5	±8	
Offset1	Offset error at Code 1 ⁽⁵⁾	DACOUT buffer OFF	±1.5	±5	
	Gain error ⁽⁶⁾	R _L ≥5 kΩ, C _L ≤ 50 pF	+0.1/.0.2	+0.2/-0.5	
Gain error		DACOUT buffer ON ⁽²⁾	+0.1/-0.2		%
Gain entri		No load DACOUT buffer OFF	+0/-0.2	+0/-0.4	
		$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}$	12	30	
TUE	Total unadiusted error	DACOUT buffer ON ⁽²⁾	12	50	12-bit
IUL		No load DACOUT buffer OFF	8	12	LSB

Table	51.	DAC	accu	racv
Iable	U I.	DAO	accu	iacy

1. Difference between two consecutive codes - 1 LSB.

2. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be applied.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.

4. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.

5. Difference between the value measured at Code (0x001) and the ideal value.

6. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (V_{DDA} -0.2) V when buffer is OFF.

In the following table, data is guaranteed by design, not tested in production.

Table 52. DAC output on PB4-PB5-PB6⁽¹⁾

Symbol	Parameter	Conditions	Max	Unit
Internal resistance R _{int} between DAC output and PB4-PB5-PB6 output	2.7 V < V _{DD} < 3.6 V	1.4		
	Internal resistance between DAC output and PB4-PB5-PB6 output	2.4 V < V _{DD} < 3.6 V	1.6	kO
		2.0 V < V _{DD} < 3.6 V	3.2	K22
		1.8 V < V _{DD} < 3.6 V	8.2	

1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers.

9.3.14 12-bit ADC1 characteristics

In the following table, data is guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V	
	Reference supply	2.4 V ≤V _{DDA} ≤ 3.6 V	2.4	-	V _{DDA}	V	
V _{REF+}	voltage	1.8 V ≤V _{DDA} ≤ 2.4 V		V _{DDA}		V	
V _{REF-}	Lower reference voltage	-		V _{SSA}		V	
I _{VDDA}	Current on the VDDA input pin	-	-	1000	1450	μA	
	Current on the VREF+	-	-	400	700 (peak) ⁽¹⁾	μA	
I _{VREF+} input	input pin	-	-	400	450 (average) ⁽¹⁾	μA	
V _{AIN}	Conversion voltage range	-	0 ⁽²⁾	-	V _{REF+}	V	
T _A	Temperature range	-	-40	-	125	°C	
External resista	External resistance on	on PF0 fast channel	-	-	50 ⁽³⁾	kO	
''AIN	V _{AIN}	on all other channels	-	-	50.	K52	
Cura	Internal sample and hold	on PF0 fast channel	-	16	-	pF	
CADC	capacitor	on all other channels	-	10	-		
f	ADC sampling clock	2.4 V≤V _{DDA} ≤3.6 V without zooming	0.320	-	16	MHz	
IADC	frequency	1.8 V≤V _{DDA} ≤2.4 V with zooming	0.320	-	8	MHz	
f	12 hit conversion rate	V _{AIN} on PF0 fast channel	-	-	1 ⁽⁴⁾⁽⁵⁾	MHz	
'CONV	12-bit conversion rate	V _{AIN} on all other channels	-	-	760 ⁽⁴⁾⁽⁵⁾	kHz	
f _{TRIG}	External trigger frequency	-	-	-	t _{conv}	1/f _{ADC}	
t _{LAT}	External trigger latency	-	-	-	3.5	1/f _{SYSCLK}	

Table 53. ADC1 characteristics

Figure 40. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 57.	R _{AIN} max	for f _{ADC} =	16	MHz ⁽¹⁾
-----------	----------------------	------------------------	----	--------------------

		R _{AIN} max (kohm)				
Ts Ts (cvcles) (us)	Ts (μs)	Slow channels		Fast channels		
		2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V	
4	0.25	Not allowed	Not allowed	0.7	Not allowed	
9	0.5625	0.8	Not allowed	2.0	1.0	
16	1	2.0	0.8	4.0	3.0	
24	1.5	3.0	1.8	6.0	4.5	
48	3	6.8	4.0	15.0	10.0	
96	6	15.0	10.0	30.0	20.0	
192	12	32.0	25.0	50.0	40.0	
384	24	50.0	50.0	50.0	50.0	

1. Guaranteed by design.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 41* or *Figure 42*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 57. UFQFPN28 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Date	Revision	Changes
10-Feb-2012	8	<i>Features:</i> replaced "Dynamic consumption' with 'Consumption'. <i>Table: Medium density STM8L15x pin description:</i> updated OD column of NRST/PA1 pin. <i>Table: Interrupt mapping:</i> removed tamper 1, tamper 2 and tamper 3. <i>Figure: UFQFPN48 package outline:</i> replaced. <i>Table: UFQFPN48 package mechanical data:</i> updated title. <i>Figure: UFQFPN32 - 32-lead ultra thin fine pitch quad</i> <i>flat no-lead package outline (5 x 5):</i> removed the line over A1. <i>Figure: UFQFPN28 package outline:</i> replaced to improve readability of UFQFPN28 package dimensions A, L, and L1. <i>Figure: Recommended UFQFPN28 footprint</i> (<i>dimensions in mm</i>): updated title. <i>Figure: WLCSP28 package outline:</i> updated title. <i>Table: WLCSP28 package mechanical data:</i> updated title.
02-Mar-2012	9	Updated Table: UFQFPN48 package mechanical data. Updated Figure: UFQFPN28 package outline, Figure: Recommended UFQFPN28 footprint (dimensions in mm) and Table: UFQFPN28 package mechanical data. Table: WLCSP28 package mechanical data: Min and Max values removed for e1, e2, e3, e4, F and G dimensions.
30-Mar-2012	10	<i>Figure: SPI1 timing diagram - master mode(1):</i> changed SCK signals to 'output' instead of 'input'. <i>Figure: Medium density STM8L15x ordering information scheme</i> : added 'Tape & reel' to package section.
26-Apr-2012	11	Updated Table: WLCSP28 package mechanical data.
12-Nov-2013	12	Updated Table: WLCSP28 package mechanical data. Updated Table: Medium-density STM8L15x pin description. Updated Table 2: Medium density STM8L15x low power device features and peripheral counts. Added Figure: Recommended LQFP48 footprint and Figure: Recommended LQFP32 footprint.
12-Aug-2013	13	Changed the default setting value of OPT5 to 0x00 in <i>Table: Option byte addresses.</i> Added tTEMP 'BOR detector enabled' and 'disabled' characteristics in <i>Table: Embedded reset and power</i> <i>control block characteristics.</i> Updated E2, D2 and ddd in <i>Table: UFQFPN48 package</i> <i>mechanical data</i>

