

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151k6t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Reset and supply management

3.3.1 Power supply scheme

The device requires a 1.65 V to 3.6 V operating supply voltage (V_{DD}). The external power supply pins must be connected as follows:

- V_{SS1}; V_{DD1} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for I/Os and for the internal regulator. Provided externally through V_{DD1} pins, the corresponding ground pin is V_{SS1}.
- $V_{SSA;} V_{DDA} = 1.8$ to 3.6 V, down to 1.65 V at power down: external power supplies for analog peripherals (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC1 is used). V_{DDA} and V_{SSA} must be connected to V_{DD1} and V_{SS1} , respectively.
- V_{SS2}; V_{DD2} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for I/Os. V_{DD2} and V_{SS2} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{REF+}; V_{REF-} (for ADC1): external reference voltage for ADC1. Must be provided externally through V_{REF+} and V_{REF-} pin.
- V_{REF+} (for DAC): external voltage reference for DAC must be provided externally through V_{REF+}.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the V_{DD} min value at power down is 1.65 V).

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The medium-density STM8L151x4/6 and STM8L152x4/6 embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.

This regulator has two different modes:

- Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes.
- Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low power wait modes.

When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.

3.17 Communication interfaces

3.17.1 SPI

The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices.

- Maximum speed: 8 Mbit/s (f_{SYSCLK}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on 2 lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- Hardware CRC calculation
- Slave/master selection input pin

Note: SPI1 can be served by the DMA1 Controller.

3.17.2 l²C

The I²C bus interface (I²C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing.

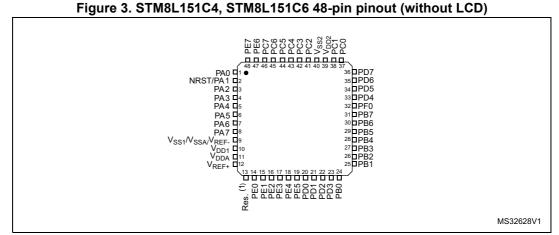
- Master, slave and multi-master capability
- Standard mode up to 100 kHz and fast speed modes up to 400 kHz.
- 7-bit and 10-bit addressing modes.
- SMBus 2.0 and PMBus support
- Hardware CRC calculation

Note: l^2C1 can be served by the DMA1 Controller.

3.17.3 USART

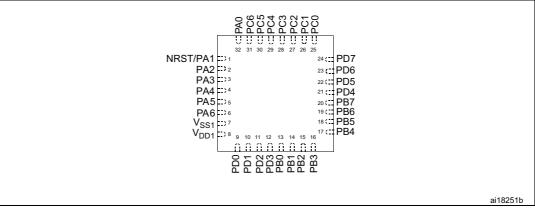
The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.

- 1 Mbit/s full duplex SCI
- SPI1 emulation
- High precision baud rate generator
- SmartCard emulation
- IrDA SIR encoder decoder
- Single wire half duplex mode

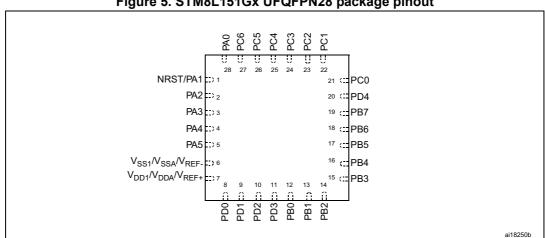

Note: USART1 can be served by the DMA1 Controller.

3.18 Infrared (IR) interface

The medium-density STM8L151x4/6 and STM8L152x4/6 devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.



Pinout and pin description 4



Reserved. Must be tied to V_{DD}. 1.

1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.

Figure 5. STM8L151Gx UFQFPN28 package pinout

DocID15962 Rev 15

nı	Pin umb	er						Input	t	o	utpu	ıt		
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	wpu	Ext. interrupt	High sink/source	OD	РР	Main function (after reset)	Default alternate function
-	5	5	D4	PA5/TIM3_BKIN/ <i>[TIM3_ETRJ⁽⁴⁾/</i> LCD_COM1 ⁽²⁾ /ADC1_IN1/ COMP1_INP	I/O	TT (3)	x	x	x	HS	х	х	Port A5	Timer 3 - break input / [<i>Timer 3 - external</i> <i>trigger</i>] / LCD_COM 1 / ADC1 input 1 / Comparator 1 positive input
7	6	-	-	PA6/[<i>ADC1_TRIG</i>] ⁽⁴⁾ / LCD_COM2 ⁽²⁾ /ADC1_IN0/ COMP1_INP	I/O	TT (3)	x	x	х	HS	х	х	Port A6	[ADC1 - trigger] / LCD_COM2 / ADC1 input 0 / Comparator 1 positive input
8	-	-	-	PA7/LCD_SEG0 ⁽²⁾⁽⁵⁾	I/O	FT	Х	Х	Х	HS	Х	Х	Port A7	LCD segment 0
24	13	12	E3	PB0 ⁽⁶⁾ /TIM2_CH1/ LCD_SEG10 ⁽²⁾ / ADC1_IN18/COMP1_INP	I/O	TT (3)	X ⁽⁶⁾	X ⁽⁶⁾	x	HS	х	x	Port B0	Timer 2 - channel 1 / LCD segment 10 / ADC1_IN18 / Comparator 1 positive input
25	14	13	G1	PB1/TIM3_CH1/ LCD_SEG11 ^{(2)/} ADC1_IN17/COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port B1	Timer 3 - channel 1 / LCD segment 11 / ADC1_IN17 / Comparator 1 positive input
26	15	14	F2	PB2/ TIM2_CH2/ LCD_SEG12 ^{(2)/} ADC1_IN16/COMP1_INP	I/O	TT (3)	x	x	х	HS	х	х	Port B2	Timer 2 - channel 2 / LCD segment 12 / ADC1_IN16/ Comparator 1 positive input
27	-	-		PB3/TIM2_ETR/ LCD_SEG13 ^{(2)/} ADC1_IN15/COMP1_INP	I/O	TT (3)	x	x	х	HS	х	х	Port B3	Timer 2 - external trigger / LCD segment 13 /ADC1_IN15 / Comparator 1 positive input

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)

n	Pin umb			. Mealum-density STM				Input			utpu			
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	ЪР	Main function (after reset)	Default alternate function
-	_	9	G2	PD1/TIM1_CH3/[<i>TIM3_ET R</i>] ⁽⁴⁾ /LCD_COM3 ⁽²⁾ / ADC1_IN21/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port D1	Timer 1 channel 3 / [<i>Timer 3 - external</i> <i>trigger</i>] / LCD_COM3/ ADC1_IN21 / Comparator 2 positive input / Comparator 1 positive input
22	11	10		PD2/TIM1_CH1 /LCD_SEG8 ⁽²⁾ / ADC1_IN20/COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port D2	Timer 1 - channel 1 / LCD segment 8 / ADC1_IN20 / Comparator 1 positive input
23	12	1		PD3/ TIM1_ETR/ LCD_SEG9 ⁽²⁾ /ADC1_IN1 9/COMP1_INP	I/O	TT (3)	x	x	x	HS	x	х	Port D3	Timer 1 - external trigger / LCD segment 9 / ADC1_IN19 / Comparator 1 positive input
-	-	11	F3	PD3/ TIM1_ETR/ LCD_SEG9 ^{(2)/} ADC1_IN19/TIM1_BKIN/ COMP1_INP/ RTC_CALIB	I/O	TT (3)	x	x	х	HS	x	х	Port D3	Timer 1 - external trigger / LCD segment 9 / ADC1_IN19 / Timer 1 break input / RTC calibration / Comparator 1 positive input
33	21	20	C1	PD4/TIM1_CH2 /LCD_SEG18 ^{(2)/} ADC1_IN10/COMP1_INP	I/O	TT (3)	x	x	x	HS	x	х	Port D4	Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10/ Comparator 1 positive input
34	22	-		PD5/TIM1_CH3 /LCD_SEG19 ⁽²⁾ / ADC1_IN9/COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port D5	Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9/ Comparator 1 positive input
35	23	_	_	PD6/TIM1_BKIN /LCD_SEG20 ⁽²⁾ / ADC1_IN8/RTC_CALIB/ /VREFINT/ COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port D6	Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration / Internal voltage reference output / Comparator 1 positive input

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)

Address	Block	Register label	Register name	Reset status		
0x00 5055 to 0x00 506F		Reserved area (27 bytes)				
0x00 5070		DMA1_GCSR	DMA1 global configuration & status register	0xFC		
0x00 5071		DMA1_GIR1	DMA1 global interrupt register 1	0x00		
0x00 5072 to 0x00 5074			Reserved area (3 bytes)			
0x00 5075		DMA1_C0CR	DMA1 channel 0 configuration register	0x00		
0x00 5076		DMA1_C0SPR	DMA1 channel 0 status & priority register	0x00		
0x00 5077		DMA1_C0NDTR	DMA1 number of data to transfer register (channel 0)	0x00		
0x00 5078		DMA1_C0PARH	DMA1 peripheral address high register (channel 0)	0x52		
0x00 5079		DMA1_C0PARL	DMA1 peripheral address low register (channel 0)	0x00		
0x00 507A	DMA1		Reserved area (1 byte)			
0x00 507B		DMA1_C0M0ARH	DMA1 memory 0 address high register (channel 0)	0x00		
0x00 507C		DMA1_C0M0ARL	DMA1 memory 0 address low register (channel 0)	0x00		
0x00 507D to 0x00 507E			Reserved area (2 bytes)			
0x00 507F		DMA1_C1CR	DMA1 channel 1 configuration register	0x00		
0x00 5080		DMA1_C1SPR	DMA1 channel 1 status & priority register	0x00		
0x00 5081		DMA1_C1NDTR	DMA1 number of data to transfer register (channel 1)	0x00		
0x00 5082		DMA1_C1PARH	DMA1 peripheral address high register (channel 1)	0x52		
0x00 5083		DMA1_C1PARL	DMA1 peripheral address low register (channel 1)	0x00		

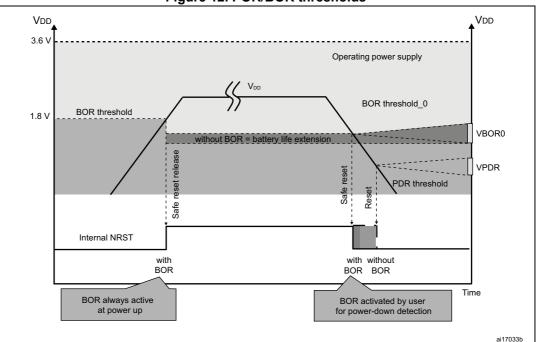
 Table 9. General hardware register map (continued)

Table 9. General hardware register map (continued)							
Address	Block	Register label	Register name	Reset status			
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00			
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00			
0x00 50A2		EXTI_CR3	External interrupt control register 3	0x00			
0x00 50A3	ITC - EXTI	EXTI_SR1	External interrupt status register 1	0x00			
0x00 50A4		EXTI_SR2	External interrupt status register 2	0x00			
0x00 50A5		EXTI_CONF1	External interrupt port select register 1	0x00			
0x00 50A6		WFE_CR1	WFE control register 1	0x00			
0x00 50A7	WFE	WFE_CR2	WFE control register 2	0x00			
0x00 50A8		WFE_CR3	WFE control register 3	0x00			
0x00 50A9 to 0x00 50AF		Reserved area (7 bytes)					
0x00 50B0	RST	RST_CR	Reset control register	0x00			
0x00 50B1	- KOT	RST_SR	Reset status register	0x01			
0x00 50B2	PWR	PWR_CSR1	Power control and status register 1	0x00			
0x00 50B3		PWR_CSR2	Power control and status register 2	0x00			
0x00 50B4 to 0x00 50BF		R	Reserved area (12 bytes)				
0x00 50C0		CLK_DIVR	Clock master divider register	0x03			
0x00 50C1		CLK_CRTCR	Clock RTC register	0x00			
0x00 50C2		CLK_ICKR	Internal clock control register	0x11			
0x00 50C3		CLK_PCKENR1	Peripheral clock gating register 1	0x00			
0x00 50C4		CLK_PCKENR2	Peripheral clock gating register 2	0x80			
0x00 50C5		CLK_CCOR	Configurable clock control register	0x00			
0x00 50C6		CLK_ECKR	External clock control register	0x00			
0x00 50C7	CLK	CLK_SCSR	System clock status register	0x01			
0x00 50C8		CLK_SWR	System clock switch register	0x01			
0x00 50C9		CLK_SWCR	Clock switch control register	0bxxxx0000			
0x00 50CA		CLK_CSSR	Clock security system register	0x00			
0x00 50CB	1	CLK_CBEEPR	Clock BEEP register	0x00			
0x00 50CC	1	CLK_HSICALR	HSI calibration register	0xxx			
0.00.5000	1	CLK_HSITRIMR	HSI clock calibration trimming register	0x00			
0x00 50CD							
0x00 50CD 0x00 50CE	-	CLK_HSIUNLCKR	HSI unlock register	0x00			

Table 9. General	hardware	register ma	ap ((continued)

Address	Block	Register label	Register name	Reset status	
0x00 5280		TIM3_CR1	TIM3 control register 1	0x00	
0x00 5281		TIM3_CR2	TIM3 control register 2	0x00	
0x00 5282		TIM3_SMCR	TIM3 Slave mode control register	0x00	
0x00 5283		TIM3_ETR	TIM3 external trigger register	0x00	
0x00 5284		TIM3_DER	TIM3 DMA1 request enable register	0x00	
0x00 5285		TIM3_IER	TIM3 interrupt enable register	0x00	
0x00 5286		TIM3_SR1	TIM3 status register 1	0x00	
0x00 5287		TIM3_SR2	TIM3 status register 2	0x00	
0x00 5288		TIM3_EGR	TIM3 event generation register	0x00	
0x00 5289		TIM3_CCMR1	TIM3 Capture/Compare mode register 1	0x00	
0x00 528A		TIM3_CCMR2	TIM3 Capture/Compare mode register 2	0x00	
0x00 528B	ТІМЗ	TIM3_CCER1	TIM3 Capture/Compare enable register 1	0x00	
0x00 528C		TIM3_CNTRH	TIM3 counter high	0x00	
0x00 528D		TIM3_CNTRL	TIM3 counter low	0x00	
0x00 528E		TIM3_PSCR	TIM3 prescaler register	0x00	
0x00 528F		TIM3_ARRH	TIM3 Auto-reload register high	0xFF	
0x00 5290		TIM3_ARRL	TIM3 Auto-reload register low	0xFF	
0x00 5291		TIM3_CCR1H	TIM3 Capture/Compare register 1 high	0x00	
0x00 5292		TIM3_CCR1L	TIM3 Capture/Compare register 1 low	0x00	
0x00 5293		TIM3_CCR2H	TIM3 Capture/Compare register 2 high	0x00	
0x00 5294		TIM3_CCR2L	TIM3 Capture/Compare register 2 low	0x00	
0x00 5295		TIM3_BKR	TIM3 break register	0x00	
0x00 5296		TIM3_OISR	TIM3 output idle state register	0x00	
0x00 5297 to 0x00 52AF		Reserved area (25 bytes)			

		-	-			
Table 9.	General h	nardware	reaister	map	(continued)	


6 Interrupt vector mapping

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address
-	RESET	Reset	Yes	Yes	Yes	Yes	0x00 8000
-	TRAP	Software interrupt	-	-	-	-	0x00 8004
0			Reserved				0x00 8008
1	FLASH	FLASH end of programing/ write attempted to protected page interrupt	-	-	Yes	Yes	0x00 800C
2	DMA1 0/1	DMA1 channels 0/1 half transaction/transaction complete interrupt	-	-	Yes	Yes	0x00 8010
3	DMA1 2/3	DMA1 channels 2/3 half transaction/transaction complete interrupt	-	-	Yes	Yes	0x00 8014
4	RTC	RTC alarm A/ wakeup	Yes	Yes	Yes	Yes	0x00 8018
5	EXTI E/F/ PVD ⁽²⁾	External interrupt port E/F PVD interrupt	Yes	Yes	Yes	Yes	0x00 801C
6	EXTIB/G	External interrupt port B/G	Yes	Yes	Yes	Yes	0x00 8020
7	EXTID/H	External interrupt port D/H	Yes	Yes	Yes	Yes	0x00 8024
8	EXTI0	External interrupt 0	Yes	Yes	Yes	Yes	0x00 8028
9	EXTI1	External interrupt 1	Yes	Yes	Yes	Yes	0x00 802C
10	EXTI2	External interrupt 2	Yes	Yes	Yes	Yes	0x00 8030
11	EXTI3	External interrupt 3	Yes	Yes	Yes	Yes	0x00 8034
12	EXTI4	External interrupt 4	Yes	Yes	Yes	Yes	0x00 8038
13	EXTI5	External interrupt 5	Yes	Yes	Yes	Yes	0x00 803C
14	EXTI6	External interrupt 6	Yes	Yes	Yes	Yes	0x00 8040
15	EXTI7	External interrupt 7	Yes	Yes	Yes	Yes	0x00 8044
16	LCD	LCD interrupt	-	-	Yes	Yes	0x00 8048
17	CLK/TIM1/ DAC	CLK system clock switch/ CSS interrupt/ TIM 1 break/DAC	-	-	Yes	Yes	0x00 804C
18	COMP1/ COMP2/ ADC1	COMP1 interrupt COMP2 interrupt ACD1 end of conversion/ analog watchdog/ overrun interrupt	Yes	Yes	Yes	Yes	0x00 8050

Table 11. Interrupt mapping

- 1. Data guaranteed by design.
- 2. Data based on characterization results.

Figure 12. POR/BOR thresholds

9.3.3 Supply current characteristics

Total current consumption

The MCU is placed under the following conditions:

- I All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- I All peripherals are disabled except if explicitly mentioned.

In the following table, data is based on characterization results, unless otherwise specified. Subject to general operating conditions for V_{DD} and T_A .

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter		Conditions ⁽¹⁾			Max	Unit
				T_A = -40 °C to 25 °C	0.9	2.1	
				T _A = 55 °C	1.2	3	
			LCD OFF ⁽²⁾	T _A = 85 °C	1.5	3.4	
				T _A = 105 °C	2.6	6.6	
				T _A = 125 °C	5.1	12	
				T_A = -40 °C to 25 °C	1.4	3.1	
				T _A = 55 °C	1.5	3.3	
	Supply current in Active-halt mode	LSI RC (at 38 kHz)		T _A = 85 °C	1.9	4.3	μΑ
				T _A = 105 °C	2.9	6.8	
I _{DD(AH)}				T _A = 125 °C	5.5	13	
'DD(AH)			LCD ON (1/4 duty/ external	T_A = -40 °C to 25 °C	1.9	4.3	
				T _A = 55 °C	1.95	4.4	
				T _A = 85 °C	2.4	5.4	
			V _{LCD}) ⁽⁴⁾	T _A = 105 °C	3.4	7.6	
				T _A = 125 °C	6.0	15	
				T_A = -40 °C to 25 °C	3.9	8.75	
			LCD ON (1/4 duty/	T _A = 55 °C	4.15	9.3	
			internal	T _A = 85 °C	4.5	10.2	
				T _A = 105 °C	5.6	13.5	
				T _A = 125 °C	6.8	16.3	

Table 24. Total current consumption and timing in Active-halt mode at V_{DD} = 1.65 V to 3.6 V

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 R_m : Motional resistance (see crystal specification), L_m : Motional inductance (see crystal specification), C_m : Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), CL_1=C_{L2}=C: Grounded external capacitance $g_m >> g_{mcrit}$

LSE crystal/ceramic resonator oscillator

The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz	
R _F	Feedback resistor	∆V = 200 mV	-	1.2	-	MΩ	
C ⁽¹⁾	Recommended load capacitance (2)	-	-	8	-	pF	
		-	-	-	1.4 ⁽³⁾	μA	
1	LSE oscillator power consumption	V _{DD} = 1.8 V	-	450	-		
IDD(LSE)		V _{DD} = 3 V	-	600	-	nA	
		V _{DD} = 3.6 V	-	750	-		
9 _m	Oscillator transconductance	-	3 ⁽³⁾	-	-	µA/V	
$t_{SU(LSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	1	-	S	

Table 32. LSE	oscillator	characteristics
---------------	------------	-----------------

1. C=C_{L1}=C_{L2} is approximately equivalent to 2 x crystal C_{LOAD}.

 The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R_m value. Refer to crystal manufacturer for more details.

3. Data guaranteed by design.

 t_{SU/LSE} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

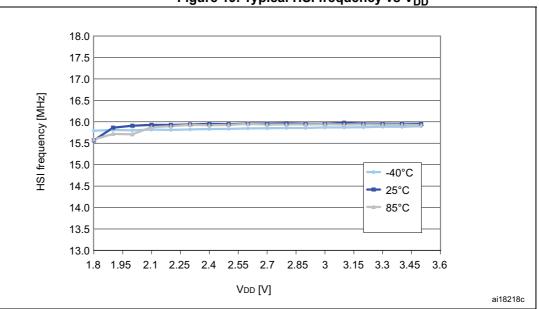


Figure 19. Typical HSI frequency vs V_{DD}

Low speed internal RC oscillator (LSI)

In the following table, data is based on characterization results, not tested in production.

Symbol	Parameter ⁽¹⁾	Conditions ⁽¹⁾	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	26	38	56	kHz
t _{su(LSI)}	LSI oscillator wakeup time	-	-	-	200 ⁽²⁾	μs
I _{DD(LSI)}	LSI oscillator frequency drift ⁽³⁾	0 °C ≤T _A ≤ 85 °C	-12	-	11	%

Table 34. LSI oscillator characteristics

1. V_{DD} = 1.65 V to 3.6 V, T_A = -40 to 125 $^\circ C$ unless otherwise specified.

2. Guaranteed by design.

3. This is a deviation for an individual part, once the initial frequency has been measured.

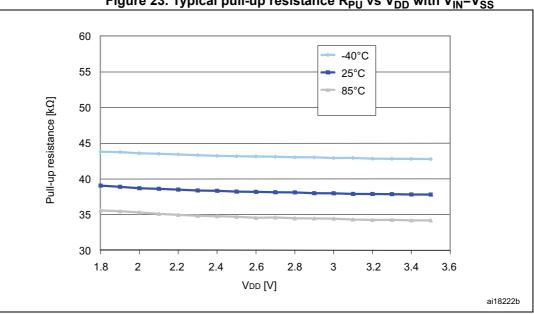
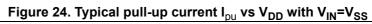
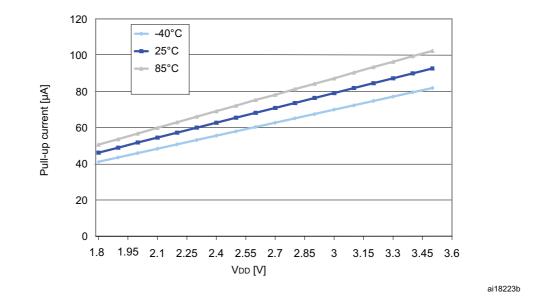




Figure 23. Typical pull-up resistance R_{PU} vs V_{DD} with V_{IN} = V_{SS}

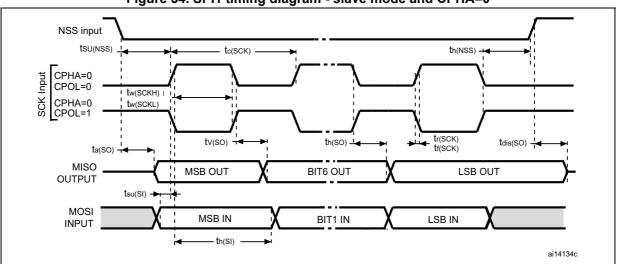
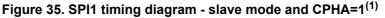
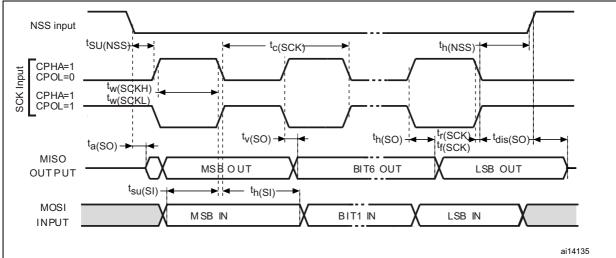




Figure 34. SPI1 timing diagram - slave mode and CPHA=0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

9.3.10 Embedded reference voltage

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter Conditions		Min	Тур	Max.	Unit
I _{REFINT}	Internal reference voltage consumption	-	-	1.4	-	μA
T _{S_VREFINT} ⁽¹⁾⁽²⁾	ADC sampling time when reading the internal reference voltage	-	-	5	10	μs
I _{BUF} ⁽²⁾	Internal reference voltage buffer consumption (used for ADC)	-	-	13.5	25	μA
V _{REFINT out}	Reference voltage output	-	1.202 ⁽³⁾	1.224	1.242 ⁽³⁾	V
I _{LPBUF} ⁽²⁾	Internal reference voltage low power buffer consumption (used for comparators or output)	-	-	730	1200	nA
I _{REFOUT} ⁽²⁾	Buffer output current ⁽⁴⁾	-	-	-	1	μA
C _{REFOUT}	Reference voltage output load	-	-	-	50	pF
	Internal reference voltage startup time	-	-	2	3	ms
t _{BUFEN} ⁽²⁾	Internal reference voltage buffer startup time once enabled ⁽¹⁾	-	-	-	10	μs
ACC _{VREFINT}	Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte ⁽⁵⁾	-	-	-	± 5	mV
STAR	Stability of V _{REFINT} over temperature	-40 °C ≤T _A ≤ 125 °C	-	20	50	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} over temperature	0 °C ≤T _A ≤ 50 °C	-	-	20	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} after 1000 hours	-	-	-	TBD	ppm

Table 46	Reference	voltage	characteristics
----------	-----------	---------	-----------------

1. Defined when ADC output reaches its final value $\pm 1/2LSB$

2. Data guaranteed by design.

3. Tested in production at V_{DD} = 3 V ±10 mV.

4. To guaranty less than 1% $V_{\mbox{\scriptsize REFOUT}}$ deviation.

5. Measured at V_{DD} = 3 V ±10 mV. This value takes into account V_{DD} accuracy and ADC conversion accuracy.

In the following table, data is based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Тур	Max	Unit	
DNL	Differential non linearity ⁽¹⁾	$R_L ≥5 kΩ$ C _L ≤50 pF DACOUT buffer ON ⁽²⁾	1.5	3		
DIL	Directential non-incarty	No load DACOUT buffer OFF	1.5	3		
INL	Integral non linearity ⁽³⁾	$R_L ≥5 kΩ$ C _L ≤ 50 pF DACOUT buffer ON ⁽²⁾	2	4	10 hit	
INL	Integral nor inteanty	No load DACOUT buffer OFF	2	4	12-bit LSB	
Offset	Offset error ⁽⁴⁾	$R_L \ge 5 \text{ k}\Omega \text{ C}_L \le 50 \text{ pF}$ DACOUT buffer $ON^{(2)}$	±10	±25		
Oliset		No load DACOUT buffer OFF	±5	±8		
Offset1	Offset error at Code 1 ⁽⁵⁾	DACOUT buffer OFF	±1.5	±5		
Gain error	Gain error ⁽⁶⁾	$R_L ≥5 kΩ$ C _L ≤ 50 pF DACOUT buffer ON ⁽²⁾	+0.1/-0.2	+0.2/-0.5	- %	
		No load DACOUT buffer OFF		+0/-0.4		
		$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}$	12	30		
TUE	Total unadjusted error	$DACOUT$ buffer $ON^{(2)}$	50	12-bit		
IUE		No load DACOUT buffer OFF	8	12	LSB	

Table	51.	DAC	accu	racy
IUNIC	v	DAO	accu	IUCY

1. Difference between two consecutive codes - 1 LSB.

2. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be applied.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.

4. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.

5. Difference between the value measured at Code (0x001) and the ideal value.

6. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (V_{DDA} -0.2) V when buffer is OFF.

In the following table, data is guaranteed by design, not tested in production.

Table 52. DAC output on PB4-PB5-PB6⁽¹⁾

Symbol	Parameter	Conditions	Мах	Unit	
R _{int}	Internal resistance	2.7 V < V _{DD} < 3.6 V	1.4		
		2.4 V < V _{DD} < 3.6 V	1.6	ko	
	between DAC output and PB4-PB5-PB6 output	2.0 V < V _{DD} < 3.6 V	3.2	kΩ	
		1.8 V < V _{DD} < 3.6 V	8.2		

1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers.

9.3.15 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

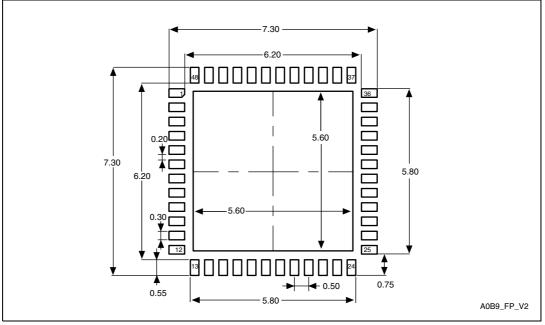
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions				
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{CPU} = 16 MHz, conforms to IEC 61000		3B		
V _{EETB}	V_{EFTB} V_{DD} and V_{SS} pins to induce a	V _{DD} = 3.3 V, T _A = +25 °C, f _{CPU} = 16 MHz,	Using HSI	4A		
		conforms to IEC 61000 Using HSE		2B		

Table 58. EMS data

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.



	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 63. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 47. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Date	Revision	Changes
11-Mar-2011	6 cont'd	 Modified OPT1 and OPT4 description in <i>Table: Option byte description.</i> Updated <i>Section: Electrical parameters</i> "standard I/Os" replaced with "high sink I//Os". Updated R_{HN and} R_{HN} descriptions in <i>Table: LCD characteristics.</i> Added Tape & Reel option to <i>Figure: Medium density STM8L15x ordering information scheme.</i>
06-Sep-2011	7	Features: updated bullet point concerning capacitive sensing channels. Section: Low power modes: updated Wait mode and Halt mode definitions. Section: Clock management: added 'kHz' to 32.768 in the 'System clock sources bullet point'. Section: System configuration controller and routing interface: replaced last sentence concerning management of charge transfer acquisition sequence. Added Section: Touchsensing Section Development support: updated the Bootloader. Table: Medium density STM8L15x pin description: added LQFP32 to second column (same pinout as UFQFPN32); "Timer X - trigger" replaced by "Timer X - external trigger"; added note at the end of this table concerning the slope control of all GPIO pins. Table: Interrupt mapping: merged footnotes 1 and 2; updated some of the source blocks and descriptions. Section: Option bytes: replaced PM0051 by PM0054 and UM0320 by UM0470. Table: Option byte description: replaced the factory default setting (0xAA) for OPT0. NRST pin: updated text above the Figure; updated Figure: Recommended NRST pin configuration. Table: Comparator 1 characteristics: added typ value for 'Comparator offset error'; added footnotes 1. and 3. Table: DAC characteristics: updated max values for the parameter T _{S_TEMP} ; added min value for same. Table: Comparator 2 characteristics: updated t _{START} , t _{dslow} , t _{dfast} , V _{offset} , I _{COMP2} ; added footnotes 1. and 3. Table: DAC characteristics: updated max value for DAC_OUT voltage (DACOUT buffer ON).

