

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151k6u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 47.	TS characteristics
Table 48.	Comparator 1 characteristics
Table 49.	Comparator 2 characteristics
Table 50.	DAC characteristics
Table 51.	DAC accuracy
Table 52.	DAC output on PB4-PB5-PB6 107
Table 53.	ADC1 characteristics
Table 54.	ADC1 accuracy with VDDA = 3.3 V to 2.5 V
Table 55.	ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Table 56.	ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Table 57.	R _{AIN} max for f _{ADC} = 16 MHz
Table 58.	EMS data
Table 59.	EMI data
Table 60.	ESD absolute maximum ratings
Table 61.	Electrical sensitivities
Table 62.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 63.	UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package mechanical data 121
Table 64.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 65.	UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
	package mechanical data 127
Table 66.	UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package mechanical data 129
Table 67.	WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale
	package mechanical data 133
Table 68.	Thermal characteristics
Table 69.	Document revision history

List of figures

Figure 1.	Medium-density STM8L151x4/6 and STM8L152x4/6 device block diagram	4
Figure 2.	Medium-density STM8L151x4/6 and STM8L152x4/6 clock tree diagram	9
Figure 3.	STM8L151C4, STM8L151C6 48-pin pinout (without LCD)	6
Figure 4.	STM8L151K4, STM8L151K6 32-pin package pinout (without LCD)	6
Figure 5.	STM8L151Gx UFQFPN28 package pinout	6
Figure 6.	STM8L151G4, STM8L151G6 WLCSP28 package pinout	7
Figure 7.	STM8L152C4, STM8L152C6 48-pin pinout (with LCD)	7
Figure 8.	STM8L152K4, STM8L152K6 32-pin package pinout (with LCD)	8
Figure 9.	Memory map	8
Figure 10.	Pin loading conditions	3
Figure 11.	Pin input voltage	4
Figure 12.	POR/BOR thresholds	8
Figure 13.	Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz	0
Figure 14.	Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1)	3
Figure 15.	Typ. IDD(LPR) vs. VDD (LSI clock source)	5
Figure 16.	Tvp. IDD(LPW) vs. VDD (LSI clock source)	7
Figure 17.	HSE oscillator circuit diagram	3
Figure 18.	LSE oscillator circuit diagram	5
Figure 19.	Typical HSI frequency vs V _{DD} 8	6
Figure 20.	Typical LSI frequency vs. VDD	7
Figure 21.	Typical VIL and VIH vs VDD (high sink I/Os)	1
Figure 22.	Typical VIL and VIH vs VDD (true open drain I/Os)	1
Figure 23.	Typical pull-up resistance R_{Pll} vs V_{D} with VIN=VSS	2
Figure 24.	Typical pull-up current I_{pull} vs V_{D} with VIN=VSS	2
Figure 25.	Typ. VOL @ VDD = 3.0 V (high sink ports)	4
Figure 26.	Typ. VOL @ VDD = 1.8 V (high sink ports)	4
Figure 27.	Typ. VOL @ VDD = 3.0 V (true open drain ports)	4
Figure 28.	Typ. VOL @ VDD = 1.8 V (true open drain ports)	4
Figure 29.	Typ. VDD - VOH @ VDD = 3.0 V (high sink ports).	4
Figure 30	Typ VDD - VOH @ VDD = 1.8 V (high sink ports) 9	4
Figure 31	Typical NRST pull-up resistance R_{PU} vs V_{PP}	5
Figure 32	Typical NRST pull-up current I_{m} vs V_{DD}	6
Figure 33	Recommended NRST pin configuration	6
Figure 34	SPI1 timing diagram - slave mode and CPHA=0 9	8
Figure 35	SPI1 timing diagram - slave mode and CPHA=1 ⁽¹⁾	8
Figure 36	SPI1 timing diagram - master mode ^{(1)}	9
Figure 37	Typical application with I2C bus and timing diagram 1)	1
Figure 38	ADC1 accuracy characteristics	1
Figure 39	Typical connection diagram using the ADC 11	1
Figure 40	Maximum dynamic current consumption on V_{PPP} , supply pin during ADC	•
rigure 40.	conversion 11	2
Figure 41	Power supply and reference decoupling $(V_{PPP}, \text{not connected to } V_{PP})$ 11	3
Figure 42	Power supply and reference decoupling (VREF+ connected to VDDA) 11	3
Figure 43	I OEP48 - 48-nin 7 x 7 mm low-profile guad flat package outline	6
Figure 44	I OEP48 - 48-nin 7 x 7 mm low-profile quad flat package outline	5
i igui e नन.	recommended footprint 11	8
Figure 45	I OEP48 marking example (nackage top view)	g
Figure 46	UEOFPN48 - 48-lead 7 x 7 mm 0.5 mm nitch ultra thin fine nitch quad flat	5
i iguie - 0.	or arr reso storedu, r x r min, o.o min piton, uita tim me piton quad nat	

	package outline	120
Figure 47.	UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
U	package recommended footprint	121
Figure 48.	UFQFPN48 marking example (package top view)	122
Figure 49.	LQFP32 - 32-pin, 7 x 7 mm low-profile guad flat package outline	123
Figure 50.	LQFP32 - 32-pin, 7 x 7 mm low-profile guad flat package	
0	recommended footprint	125
Figure 51.	LQFP32 marking example (package top view)	125
Figure 52.	UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch guad flat	
0	package outline.	126
Figure 53.	UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch guad flat	
U	package recommended footprint	127
Figure 54.	UFQFPN32 marking example (package top view)	128
Figure 55.	UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch guad flat	
0	package outline.	129
Figure 56.	UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch guad flat	
0	package recommended footprint	130
Fiaure 57.	UFQFPN28 marking example (package top view)	131
Figure 58.	WLCSP28 - 28-pin. 1.703 x 2.841 mm. 0.4 mm pitch wafer level chip scale	
0	package outline.	132
Fiaure 59.	WLCSP28 marking example (package top view)	134
Figure 60.	Medium-density STM8L15x ordering information scheme	136

2 Description

The medium-density STM8L151x4/6 and STM8L152x4/6 devices are members of the STM8L ultra-low-power 8-bit family. The medium-density STM8L15x family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85 °C and -40 to +125 °C temperature ranges.

The medium-density STM8L15x ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-Application debugging and ultra-fast Flash programming.

All medium-density STM8L15x microcontrollers feature embedded data EEPROM and low-power, low-voltage, single-supply program Flash memory.

They incorporate an extensive range of enhanced I/Os and peripherals.

The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

Six different packages are proposed from 28 to 48 pins. Depending on the device chosen, different sets of peripherals are included.

All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

3.19 Development support

Development tools

Development tools for the STM8 microcontrollers include:

- The STice emulation system offering tracing and code profiling
- The STVD high-level language debugger including C compiler, assembler and integrated development environment
- The STVP Flash programming software

The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

Single wire data interface (SWIM) and debug module

The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming.

The single-wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes.

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in real-time by means of shadow registers.

Bootloader

A bootloader is available to reprogram the Flash memory using the USART1 interface. The reference document for the bootloader is *UM0560: STM8 bootloader user manual*.

Figure 8. STM8L152K4, STM8L152K6 32-pin package pinout (with LCD)

1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.

Address	Block	Register label	Register name	Reset status
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PC_IDR	Port C input pin value register	0xXX
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x00
0x00 5013		PD_CR2	Port D control register 2	0x00
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C]	PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00

Table 8 I/O	nort hardware	redister i	man ((continued)
	port nuranuro	registeri	nup (continueu)

Table 9. General hardware register map

Address	Block	Register label	Register name	Reset status	
0x00 501E to 0x00 5049		Reserved area (28 bytes)			
0x00 5050		FLASH_CR1	Flash control register 1	0x00	
0x00 5051		FLASH_CR2	Flash control register 2	0x00	
0x00 5052	Flash	FLASH_PUKR	Flash program memory unprotection key register	0x00	
0x00 5053		FLASH _DUKR	Data EEPROM unprotection key register	0x00	
0x00 5054		FLASH_IAPSR	Flash in-application programming status register	0x00	

Address	Block	Register label	Register name	Reset status	
0x00 50D0 to 0x00 50D2		Reserved area (3 bytes)			
0x00 50D3		WWDG_CR	WWDG control register	0x7F	
0x00 50D4	wwbg	WWDG_WR	WWDR window register	0x7F	
0x00 50D5 to 00 50DF		Reserved area (11 bytes)			
0x00 50E0		IWDG_KR	IWDG key register	0xXX	
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00	
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF	
0x00 50E3 to 0x00 50EF		Reserved area (13 bytes)			
0x00 50F0		BEEP_CSR1	BEEP control/status register 1	0x00	
0x00 50F1 0x00 50F2	BEEP	Reserved area (2 bytes)			
0x00 50F3		BEEP_CSR2 BEEP control/status register 2 0		0x1F	
0x00 50F4 to 0x00 513F		F	Reserved area (76 bytes)		

	-					
Table 9.	General	hardware	reaister	map	(continued))

Address	Block	Register label	Register name	Reset status	
0x00 5200		SPI1_CR1	SPI1 control register 1	0x00	
0x00 5201		SPI1_CR2	SPI1 control register 2	0x00	
0x00 5202		SPI1_ICR	SPI1 interrupt control register	0x00	
0x00 5203	0014	SPI1_SR	SPI1 status register	0x02	
0x00 5204	5011	SPI1_DR	SPI1 data register	0x00	
0x00 5205		SPI1_CRCPR	SPI1 CRC polynomial register	0x07	
0x00 5206		SPI1_RXCRCR	SPI1 Rx CRC register	0x00	
0x00 5207		SPI1_TXCRCR	SPI1 Tx CRC register	0x00	
0x00 5208 to 0x00 520F			Reserved area (8 bytes)		
0x00 5210		I2C1_CR1	I2C1 control register 1	0x00	
0x00 5211		I2C1_CR2	I2C1 control register 2	0x00	
0x00 5212		I2C1_FREQR	I2C1 frequency register	0x00	
0x00 5213		I2C1_OARL	I2C1 own address register low	0x00	
0x00 5214		I2C1_OARH	I2C1 own address register high	0x00	
0x00 5215		Reserved (1 byte)			
0x00 5216		I2C1_DR	I2C1 data register	0x00	
0x00 5217	I2C1	I2C1_SR1	I2C1 status register 1	0x00	
0x00 5218		I2C1_SR2	I2C1 status register 2	0x00	
0x00 5219		I2C1_SR3	I2C1 status register 3	0x0x	
0x00 521A		I2C1_ITR	I2C1 interrupt control register	0x00	
0x00 521B		I2C1_CCRL	I2C1 clock control register low	0x00	
0x00 521C		I2C1_CCRH	I2C1 clock control register high	0x00	
0x00 521D]	I2C1_TRISER	I2C1 TRISE register	0x02	
0x00 521E]	I2C1_PECR	I2C1 packet error checking register	0x00	
0x00 521F to 0x00 522F		Reserved area (17 bytes)			

Table O. Canar	l havduvaya yaniatay w	
Table 9. Genera	al naruware register n	iap (continued)

Address	Block	Register label	Register name	Reset status
0x00 5430			Reserved area (1 byte)	0x00
0x00 5431		RI_ICR1	Timer input capture routing register 1	0x00
0x00 5432		RI_ICR2	Timer input capture routing register 2	0x00
0x00 5433		RI_IOIR1	I/O input register 1	undefined
0x00 5434		RI_IOIR2	I/O input register 2	undefined
0x00 5435		RI_IOIR3	I/O input register 3	undefined
0x00 5436		RI_IOCMR1	I/O control mode register 1	0x00
0x00 5437		RI_IOCMR2	I/O control mode register 2	0x00
0x00 5438		RI_IOCMR3	I/O control mode register 3	0x00
0x00 5439		RI_IOSR1	I/O switch register 1	0x00
0x00 543A		RI_IOSR2	I/O switch register 2	0x00
0x00 543B		RI_IOSR3	I/O switch register 3	0x00
0x00 543C		RI_IOGCR	I/O group control register	0x3F
0x00 543D		RI_ASCR1	Analog switch register 1	0x00
0x00 543E		RI_ASCR2	Analog switch register 2	0x00
0x00 543F		RI_RCR	Resistor control register 1	0x00
0x00 5440		COMP_CSR1	Comparator control and status register 1	0x00
0x00 5441		COMP_CSR2	Comparator control and status register 2	0x00
0x00 5442	COMP	COMP_CSR3	Comparator control and status register 3	0x00
0x00 5443		COMP_CSR4	Comparator control and status register 4	0x00
0x00 5444		COMP_CSR5	Comparator control and status register 5	0x00

Table 9. Ge	eneral hardware	register map	(continued)
			(001101000)

1. These registers are not impacted by a system reset. They are reset at power-on.

8 Unique ID

STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content	Unique ID bits							
Address	description	7	6	5	4	3	2	1	0
0x4926	X co-ordinate on				U_	ID[7:0]			
0x4927	the wafer				U_I	D[15:8]			
0x4928	Y co-ordinate on				U_II	D[23:16]			
0x4929	the wafer				U_II	D[31:24]			
0x492A	Wafer number				U_II	D[39:32]			
0x492B					U_II	D[47:40]			
0x492C					U_II	D[55:48]			
0x492D					U_II	D[63:56]			
0x492E	Lot number				U_II	D[71:64]			
0x492F					U_II	D[79:72]			
0x4930					U_II	D[87:80]			
0x4931					U_II	D[95:88]			

Table 14. Unique ID registers (96 bits)

9.3.2 Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min		May	Unit
Symbol	Falameter	Conditions	IVIIII	тур	INIAX	Unit
t	V_{DD} rise time rate	BOR detector enabled	0 ⁽¹⁾	-	_∞ (1)	ue//
עטעי	V _{DD} fall time rate	BOR detector enabled	20 ⁽¹⁾	-	_∞ (1)	μ9/ ν
	Reset release delay	V _{DD} rising BOR detector enabled	-	3	-	ms
ЧЕМР		V _{DD} rising BOR detector disabled	-	1	-	119
V_{PDR}	Power-down reset threshold	Falling edge	1.30 ⁽²⁾	1.50	1.65	V
Vaaaa	Brown-out reset threshold 0	Falling edge	1.67	1.70	1.74	
▼BOR0	(BOR_TH[2:0]=000)	Rising edge	1.69	1.75	1.80	
V	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97	
VBOR1	(BOR_TH[2:0]=001)	Rising edge	1.96	2.04	2.07	
V	Brown-out reset threshold 2 (BOR_TH[2:0]=010)	Falling edge	2.22	2.3	2.35	V
VBOR2		Rising edge	2.31	2.41	2.44	v
Vaaaa	Brown-out reset threshold 3	Falling edge	2.45	2.55	2.60	
¥BOR3	(BOR_TH[2:0]=011)	Rising edge	2.54	2.66	2.7	
Vaaak	Brown-out reset threshold 4	Falling edge	2.68	2.80	2.85	
VBOR4	(BOR_TH[2:0]=100)	Rising edge	2.78	2.90	2.95	
V	P\/D threshold 0	Falling edge	1.80	1.84	1.88	
V PVD0		Rising edge	1.88	1.94	1.99	
V	P\/D threshold 1	Falling edge	1.98	2.04	2.09	
VPVD1		Rising edge	2.08	2.14	2.18	
V	PVD throshold 2	Falling edge	2.2	2.24	2.28	
V PVD2		Rising edge	2.28	2.34	2.38	
V	P\/D threshold 3	Falling edge	2.39	2.44	2.48	V
V PVD3		Rising edge	2.47	2.54	2.58	v
V	RVD throshold 4	Falling edge	2.57	2.64	2.69	
♥ PVD4		Rising edge	2.68	2.74	2.79	
V -	PVD threshold 5	Falling edge	2.77	2.83	2.88	
▼PVD5		Rising edge	2.87	2.94	2.99	
V	PVD threshold 6	Falling edge	2.97	3.05	3.09	
V _{PVD6}	PVD threshold 6	Rising edge	3.08	3.15	3.20]

Table 19. Embedded reset and power control block characteristics

DocID15962 Rev 15

Current consumption of on-chip peripherals

Symbol	Parameter		Typ. V _{DD} = 3.0 V	Unit	
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾		13		
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾		8		
I _{DD(TIM3)}	TIM3 supply current ⁽¹⁾		8		
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾		3		
I _{DD(USART1)}	USART1 supply current ⁽²⁾		6	µA/MHz	
I _{DD(SPI1)}	SPI1 supply current ⁽²⁾		3		
I _{DD(I2C1)}	I ² C1 supply current ⁽²⁾		5		
I _{DD(DMA1)}	DMA1 supply current ⁽²⁾	DMA1 supply current ⁽²⁾			
I _{DD(WWDG)}	WWDG supply current ⁽²⁾	2			
I _{DD(ALL)}	Peripherals ON ⁽³⁾	44	µA/MHz		
I _{DD(ADC1)}	ADC1 supply current ⁽⁴⁾	1500	μA		
I _{DD(DAC)}	DAC supply current ⁽⁵⁾		370	μA	
I _{DD(COMP1)}	Comparator 1 supply current ⁽⁶⁾		0.160		
	Comparator 2 oundly ourrant(6)	Slow mode	2		
'DD(COMP2)	Comparator 2 supply current	Fast mode	5		
I _{DD(PVD/BOR)}	Power voltage detector and brownout Recurrent ⁽⁷⁾	2.6	μA		
I _{DD(BOR)}	Brownout Reset unit supply current (7)	2.4			
	Independent watchdog supply surrent	including LSI supply current	0.45		
יDU(IDWDG)		excluding LSI supply current	0.05		

Table 27. Peripheral current consumption

 Data based on a differential I_{DD} measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.

 Data based on a differential I_{DD} measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production.

3. Peripherals listed above the I_{DD(ALL)} parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.

4. Data based on a differential I_{DD} measurement between ADC in reset configuration and continuous ADC conversion.

 Data based on a differential I_{DD} measurement between DAC in reset configuration and continuous DAC conversion of V_{DD} /2. Floating DAC output.

 Data based on a differential I_{DD} measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded.

7. Including supply current of internal reference voltage.

9.3.5 Memory characteristics

 T_A = -40 to 125 °C unless otherwise specified.

			lo logio			
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{RM}	Data retention mode ⁽¹⁾	Halt mode (or Reset)	1.65	-	-	V

Table 35. RAM and hardware registers

1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production.

Flash memory

Symbol	Parameter	Conditions	Min	Тур	Max (1)	Unit	
V _{DD}	Operating voltage (all modes, read/write/erase)	f _{SYSCLK} = 16 MHz	1.65	-	3.6	V	
+	Programming time for 1 or 64 bytes (block) erase/write cycles (on programmed byte)	-	-	6	-	ms	
۲prog	Programming time for 1 to 64 bytes (block) write cycles (on erased byte)	-	-	3	-	ms	
	Programming/oracing consumption	T _A =+25 °C, V _{DD} = 3.0 V	-	0.7	-	m۸	
'prog		T _A =+25 °C, V _{DD} = 1.8 V	-	0.7	-	MA	
(2)	Data retention (program memory) after 10000 erase/write cycles at T_A = -40 to +85 °C (6 suffix)	T _{RET} = +85 °C	30 ⁽¹⁾	-	-		
	Data retention (program memory) after 10000 erase/write cycles at T_A = -40 to +125 °C (3 suffix)	T _{RET} = +125 °C	5 ⁽¹⁾	-	-	Voars	
'RET`	Data retention (data memory) after 300000 erase/write cycles at T_A = -40 to +85 °C (6 suffix)	T _{RET} = +85 °C	30 ⁽¹⁾	-	-	years	
	Data retention (data memory) after 300000 erase/write cycles at T_A = -40 to +125 °C (3 suffix)	T _{RET} = +125 °C	5 ⁽¹⁾	-	-		
	Erase/write cycles (program memory)	$T_{A} = -40$ to +85 °C	10 ⁽¹⁾	-	-		
N _{RW} ⁽³⁾	Erase/write cycles (data memory)	(6 suffix), $T_A = -40 \text{ to } +125 \text{ °C}$ (3 suffix)	300 ⁽¹⁾ (4)	-	-	kcycles	

Table 36. Flash program and data EEPROM memory

1. Data based on characterization results.

2. Conforming to JEDEC JESD22a117

3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.

4. Data based on characterization performed on the whole data memory.

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit	
f _{SCK}	SPI1 clock frequency	Master mode	0	8		
1/t _{c(SCK)}	SI TI Clock irequency	Slave mode	0	8	MHz	
$t_{r(SCK)} \ t_{f(SCK)}$	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30		
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-		
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-		
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145		
t _{su(MI)} (2)	Data input setup time	Master mode	30	-		
t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	3	-		
t _{h(MI)} (2)	Data input hold time	Master mode	15	-	ne	
t _{h(SI)} ⁽²⁾		Slave mode	0	-	115	
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}		
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	30	-		
t _{v(SO)} (2)	Data output valid time	Slave mode (after enable edge)	-	60		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20		
t _{h(SO)} ⁽²⁾		Slave mode (after enable edge)	15	-		
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode (after enable edge)	1	-		

Table 43. SPI1	characteristics
----------------	-----------------

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

In the following table, data is guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V_{DDA}	Analog supply voltage	-	1.65	-	3.6	V	
Τ _Α	Temperature range	-	-40	-	125	°C	
V _{IN}	Comparator 2 input voltage range	-	0	-	V_{DDA}	V	
t _{START}	Comparator startup timo	Fast mode	-	15	20		
		Slow mode	-	20	25		
4	Propagation delay in slow mode ⁽²⁾	1.65 V ≤V _{DDA} ≤2.7 V	-	1.8	3.5		
^L d slow		2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μο	
tur	Propagation delay in fast mode ⁽²⁾	1.65 V ≤V _{DDA} ≤2.7 V	-	0.8	2		
^L d fast		2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4		
V _{offset}	Comparator offset error	-	-	±4	±20	mV	
1	Current consumption $^{(3)}$	Fast mode	-	3.5	5		
'COMP2		Slow mode	-	0.5	2	μΑ	

Table 49. Comparator 2 characteristics

1. Based on characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

In the following table, data is based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Тур	Max	Unit
	Differential non linearity ⁽¹⁾	R _L ≥5 kΩ, C _L ≤50 pF	15	3	
DNI		DACOUT buffer ON ⁽²⁾	1.5	3	
DNL		No load DACOUT buffer OFF	1.5	3	
		R _L ≥5 kΩ, C _L ≤ 50 pF	2	Λ	
INI	Integral non linearity ⁽³⁾	DACOUT buffer ON ⁽²⁾	2	4	12 hit
		No load DACOUT buffer OFF	2	4	LSB
	Offset error ⁽⁴⁾	R _L ≥5 kΩ, C _L ≤ 50 pF	+10	±25	
Offset		DACOUT buffer ON ⁽²⁾	ΞIU		
Chool		No load DACOUT buffer OFF	±5	±8	
Offset1	Offset error at Code 1 ⁽⁵⁾	DACOUT buffer OFF	±1.5	±5	
	Gain error ⁽⁶⁾	R _L ≥5 kΩ, C _L ≤ 50 pF	+0.1/0.2		
Gain error		DACOUT buffer ON ⁽²⁾	+0.1/-0.2	+0.2/-0.5	%
		No load DACOUT buffer OFF	+0/-0.2	+0/-0.4	,,,
		$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}$	12	30	12-bit LSB
TUE	Total unadiusted error	DACOUT buffer ON ⁽²⁾	12	50	
		No load DACOUT buffer OFF	8	12	

Table	51.	DAC	accu	racy
Iable	U I.	DAO	accu	Iacy

1. Difference between two consecutive codes - 1 LSB.

2. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be applied.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.

4. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.

5. Difference between the value measured at Code (0x001) and the ideal value.

6. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (V_{DDA} -0.2) V when buffer is OFF.

In the following table, data is guaranteed by design, not tested in production.

Table 52. DAC output on PB4-PB5-PB6⁽¹⁾

Symbol	Parameter	Conditions	Max	Unit
R _{int}	Internal resistance between DAC output and PB4-PB5-PB6 output	2.7 V < V _{DD} < 3.6 V	1.4	
		2.4 V < V _{DD} < 3.6 V	1.6	kO
		2.0 V < V _{DD} < 3.6 V	3.2	K52
		1.8 V < V _{DD} < 3.6 V	8.2	

1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers.

10.3 UFQFPN48 package information

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

10.7 WLCSP28 package information

Figure 58. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

DocID15962 Rev 15

