

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDT
Number of I/O	41
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l152c4t3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The medium-density STM8L151x4/6 and STM8L152x4/6 feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

3.4 Clock management

The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- **Clock prescaler:** to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** Clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock sources:** 4 different clock sources can be used to drive the system clock:
 - 1-16 MHz High speed external crystal (HSE)
 - 16 MHz High speed internal RC oscillator (HSI)
 - 32.768 kHz Low speed external crystal (LSE)
 - 38 kHz Low speed internal RC (LSI)
- **RTC and LCD clock sources:** the above four sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

Note: ADC1 can be served by DMA1.

3.10 Digital-to-analog converter (DAC)

- 12-bit DAC with output buffer
- Synchronized update capability using TIM4
- DMA capability
- External triggers for conversion
- Input reference voltage V_{REF+} for better resolution

Note: DAC can be served by DMA1.

3.11 Ultra-low-power comparators

The medium-density STM8L151x4/6 and STM8L152x4/6 embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O).

- One comparator with fixed threshold (COMP1).
- One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4)

The two comparators can be used together to offer a window function. They can wake up from Halt mode.

3.12 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.

The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1, COMP2, DAC and the internal reference voltage V_{REFINT} . It also provides a set of registers for efficiently managing the charge transfer acquisition sequence (*Section 3.13: Touch sensing*).

3.13 Touch sensing

Medium-density STM8L151x4/6 and STM8L152x4/6 devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (example, glass, plastic). The capacitive variation introduced by a finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. In medium-density STM8L151x4/6

3.14.2 16-bit general purpose timers

- 16-bit autoreload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- 2 individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

3.14.3 8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow or for DAC trigger generation.

3.15 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

3.15.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.15.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.

3.16 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

Туре	I= input, O	= input, O = output, S = power supply					
	FT	Five-volt tolerant					
Level	TT	3.6 V tolerant					
	Output	HS = high sink/source (20 mA)					
Port and control	Input	float = floating, wpu = weak pull-up					
configuration	Output	T = true open drain, OD = open drain, PP = push pull					
Reset state	Unless othe	Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. 'under reset") and after internal reset release (i.e. at reset state).					

Table 4. Legend/abbreviation for table 5

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description

nı	Pin umbe	er						nput	t	0	utpu	ıt		
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	ao	dd	Main function (after reset)	Default alternate function
2	1	1	C3	NRST/PA1 ⁽¹⁾	I/O			X		HS		Х	Reset	PA1
3	2	2	B4	PA2/OSC_IN/ [USART1_TX] ⁽⁴⁾ / [SPI1_MISO] ⁽⁴⁾	I/O		x	х	х	HS	х	х	Port A2	HSE oscillator input / [USART1 transmit] / [SPI1 master in- slave out] /
4	3	3	C4	PA3/OSC_OUT/[USART1 _RX] ⁽⁴⁾ /[SPI1_MOSI] ⁽⁴⁾	I/O		x	х	х	HS	х	х	Port A3	HSE oscillator output / [USART1 receive]/ [SPI1 master out/slave in]/
5	-	-	-	PA4/TIM2_BKIN/ LCD_COM0 ⁽²⁾ /ADC1_IN2/ COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port A4	Timer 2 - break input / LCD COM 0 / ADC1 input 2 / Comparator 1 positive input
-	4	4	D3	PA4/TIM2_BKIN/ <i>[TIM2_ETRJ⁽⁴⁾/ LCD_COM0⁽²⁾/ ADC1_IN2/COMP1_INP</i>	I/O	TT (3)	x	x	х	HS	x	х	Port A4	Timer 2 - break input / [<i>Timer 2 - external</i> <i>trigger</i>] / LCD_COM 0 / ADC1 input 2 / Comparator 1 positive input
6	-	-	-	PA5/TIM3_BKIN/ LCD_COM1 ⁽²⁾ /ADC1_IN1/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port A5	Timer 3 - break input / LCD_COM 1 / ADC1 input 1/ Comparator 1 positive input

n	Pin umb			. Mealum-density STM				Input			utpu			
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	ЪР	Main function (after reset)	Default alternate function
-	_	9	G2	PD1/TIM1_CH3/[<i>TIM3_ET R</i>] ⁽⁴⁾ /LCD_COM3 ⁽²⁾ / ADC1_IN21/COMP2_INP/ COMP1_INP	I/O	TT (3)	x	x	x	HS	x	x	Port D1	Timer 1 channel 3 / [<i>Timer 3 - external</i> <i>trigger</i>] / LCD_COM3/ ADC1_IN21 / Comparator 2 positive input / Comparator 1 positive input
22	11	10		PD2/TIM1_CH1 /LCD_SEG8 ⁽²⁾ / ADC1_IN20/COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port D2	Timer 1 - channel 1 / LCD segment 8 / ADC1_IN20 / Comparator 1 positive input
23	12	1		PD3/ TIM1_ETR/ LCD_SEG9 ⁽²⁾ /ADC1_IN1 9/COMP1_INP	I/O	TT (3)	x	x	x	HS	x	х	Port D3	Timer 1 - external trigger / LCD segment 9 / ADC1_IN19 / Comparator 1 positive input
-	-	11	F3	PD3/ TIM1_ETR/ LCD_SEG9 ^{(2)/} ADC1_IN19/TIM1_BKIN/ COMP1_INP/ RTC_CALIB	I/O	TT (3)	x	x	х	HS	x	х	Port D3	Timer 1 - external trigger / LCD segment 9 / ADC1_IN19 / Timer 1 break input / RTC calibration / Comparator 1 positive input
33	21	20	C1	PD4/TIM1_CH2 /LCD_SEG18 ^{(2)/} ADC1_IN10/COMP1_INP	I/O	TT (3)	x	x	x	HS	x	х	Port D4	Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10/ Comparator 1 positive input
34	22	-		PD5/TIM1_CH3 /LCD_SEG19 ⁽²⁾ / ADC1_IN9/COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port D5	Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9/ Comparator 1 positive input
35	23	_	_	PD6/TIM1_BKIN /LCD_SEG20 ⁽²⁾ / ADC1_IN8/RTC_CALIB/ /VREFINT/ COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port D6	Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration / Internal voltage reference output / Comparator 1 positive input

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)

4.1 System configuration options

As shown in *Table 5: Medium-density STM8L151x4/6, STM8L152x4/6 pin description*, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the "Routing interface (RI) and system configuration controller" section in the STM8L15xxx and STM8L16xxx reference manual (RM0031).

5 Memory and register map

5.1 Memory mapping

The memory map is shown in *Figure 9*.

1. *Table 6* lists the boundary addresses for each memory size. The top of the stack is at the RAM end address.

- 2. The VREFINT_Factory_CONV byte represents the LSB of the V_{REFINT} 12-bit ADC conversion result. The MSB have a fixed value: 0x6.
- 3. The TS_Factory_CONV_V90 byte represents the LSB of the V_{90} 12-bit ADC conversion result. The MSB

Address	Block	Register label	Register name	Reset status
0x00 52B0		TIM1_CR1	TIM1 control register 1	0x00
0x00 52B1		TIM1_CR2	TIM1 control register 2	0x00
0x00 52B2		TIM1_SMCR	TIM1 Slave mode control register	0x00
0x00 52B3		TIM1_ETR	TIM1 external trigger register	0x00
0x00 52B4		TIM1_DER	TIM1 DMA1 request enable register	0x00
0x00 52B5		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 52B6		TIM1_SR1	TIM1 status register 1	0x00
0x00 52B7		TIM1_SR2	TIM1 status register 2	0x00
0x00 52B8		TIM1_EGR	TIM1 event generation register	0x00
0x00 52B9		TIM1_CCMR1	TIM1 Capture/Compare mode register 1	0x00
0x00 52BA		TIM1_CCMR2	TIM1 Capture/Compare mode register 2	0x00
0x00 52BB		TIM1_CCMR3	TIM1 Capture/Compare mode register 3	0x00
0x00 52BC		TIM1_CCMR4	TIM1 Capture/Compare mode register 4	0x00
0x00 52BD		TIM1_CCER1	TIM1 Capture/Compare enable register 1	0x00
0x00 52BE		TIM1_CCER2	TIM1 Capture/Compare enable register 2	0x00
0x00 52BF		TIM1_CNTRH	TIM1 counter high	0x00
0x00 52C0		TIM1_CNTRL	TIM1 counter low	0x00
0x00 52C1	TIM1	TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 52C2		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 52C3		TIM1_ARRH	TIM1 Auto-reload register high	0xFF
0x00 52C4		TIM1_ARRL	TIM1 Auto-reload register low	0xFF
0x00 52C5		TIM1_RCR	TIM1 Repetition counter register	0x00
0x00 52C6		TIM1_CCR1H	TIM1 Capture/Compare register 1 high	0x00
0x00 52C7		TIM1_CCR1L	TIM1 Capture/Compare register 1 low	0x00
0x00 52C8		TIM1_CCR2H	TIM1 Capture/Compare register 2 high	0x00
0x00 52C9		TIM1_CCR2L	TIM1 Capture/Compare register 2 low	0x00
0x00 52CA		TIM1_CCR3H	TIM1 Capture/Compare register 3 high	0x00
0x00 52CB	1	TIM1_CCR3L	TIM1 Capture/Compare register 3 low	0x00
0x00 52CC		TIM1_CCR4H	TIM1 Capture/Compare register 4 high	0x00
0x00 52CD		TIM1_CCR4L	TIM1 Capture/Compare register 4 low	0x00
0x00 52CE		TIM1_BKR	TIM1 break register	0x00
0x00 52CF		TIM1_DTR	TIM1 dead-time register	0x00
0x00 52D0		TIM1_OISR	TIM1 output idle state register	0x00
0x00 52D1	1	TIM1_DCR1	DMA1 control register 1	0x00

Table 9, Ge	neral hardware	register map	(continued)
	norur nurumuro	, register map	(continued)

Figure 16. Typ. $I_{DD(LPW)}$ vs. V_{DD} (LSI clock source)

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
High sink			I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	V
	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	V
			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	0.7	V
High			I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	V
	V _{OH} ⁽²⁾	H ⁽²⁾ Output high level voltage for an I/O pin	I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -0.7	-	V

Table 39. Output driving current (high sink por	'ts)
---	------

The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
drain	$\sim V_{OI}$ (1) Output low level voltage for an I/O pin	I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V	
Open			I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V

Table 40. Output driving current (true open drain ports)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

I/О Туре	Symbol	Parameter	Conditions	Min	Max	Unit
R	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.45	V

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
f _{SCK}	SPI1 clock frequency	Master mode	0	8	
1/t _{c(SCK)}	SPTT Clock frequency	Slave mode	0	8	MHz
t _{r(SCK)} t _{f(SCK)}	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-	
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145	-
t _{su(MI)} (2)	Data input setup time	Master mode	30	-	
t _{su(MI)} (2) t _{su(SI)} (2)	Data input setup time	Slave mode	3	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	15	-	
t _{h(MI)} (2) t _{h(SI)} (2)	Data input hold time	Slave mode	0	-	ns
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}	
$t_{dis(SO)}^{(2)(4)}$	Data output disable time	Slave mode	30	-	
t _{v(SO)} (2)	Data output valid time	Slave mode (after enable edge)	-	60	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20	
t _{h(SO)} ⁽²⁾		Slave mode (after enable edge)	15	-	1
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode (after enable edge)	1	-	

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

Figure 36. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Figure 41. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

Figure 42. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Samples to run qualification activity.

10.5 UFQFPN32 package information

1. Drawing is not to scale.

10.6 UFQFPN28 package information

1. Drawing is not to scale.

Table 66. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat					
package mechanical data ⁽¹⁾					

		paonage				
Symbol	millimeters			inches		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	-	0.000	0.050	-	0.0000	0.0020
D	3.900	4.000	4.100	0.1535	0.1575	0.1614
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220
E	3.900	4.000	4.100	0.1535	0.1575	0.1614
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-

DocID15962 Rev 15

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 57. UFQFPN28 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Sympol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.540	0.570	0.600	0.0213	0.0224	0.0236
A1	-	0.190	-	-	0.0075	-
A2	-	0.380	-	-	0.0150	-
b ⁽²⁾	0.240	0.270	0.300	0.0094	0.0106	0.0118
D	1.668	1.703	1.738	0.0657	0.0670	0.0684
E	2.806	2.841	2.876	0.1105	0.1119	0.1132
е	-	0.400	-	-	0.0157	-
e1	-	1.200	-	-	0.0472	-
e2	-	2.400	-	-	0.0945	-
F	-	0.251	-	-	0.0099	-
G	-	0.222	-	-	0.0087	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ccc	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

Table 67. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

12 Revision history

Date	Revision	Changes
06-Aug-2009	1	Initial release
10-Sep-2009	2	Updated peripheral naming throughout document. Added <i>Figure: STM8L151Cx 48-pin pinout (without LCD).</i> Added capacitive sensing channels in <i>Features.</i> Updated PA7, PC0 and PC1 in <i>Table: Medium density STM8L15x pin description.</i> Changed CLK and REMAP register names. Changed description of WDGHALT. Added typical power consumption values in <i>Table 18</i> to <i>Table 26.</i> Corrected VIH max value.
11-Dec-2009	3	Added WLCSP28 package Modified <i>Figure: Memory map</i> and added 2 notes. Modified Low power run mode in <i>Section: Low power</i> <i>modes</i> . Added <i>Section: Unique ID</i> . Modified <i>Table: Interrupt mapping</i> (added reserved area at address 0x00 8008) Modified OPT4 option bits in <i>Table: Option byte</i> <i>addresses</i> . <i>Table: Option byte description:</i> modified OPT0 description ("disable" instead of "enable") and OPT1 description Added OPTBL option bytes Modified <i>Section: Electrical parameters</i> .
02-Apr-2010	4	Changed title of the document (STM8L151x4, STM8L151x6, STM8L152x4, STM8L152x6) Changed pinout (V _{SS1} , V _{DD1} , V _{SS2} , V _{DD 2} instead of V _{SS} , V _{DD} , V _{SSI0} , V _{DDI0} Changed packages Changed first page Modified note 1 in <i>Table: Medium density STM8L15x pin</i> <i>description.</i> Added note to PA7, PC0, PC1 and PE0 in <i>Table:</i> <i>Medium density STM8L15x pin description.</i> Modified <i>Figure: Memory map.</i> Modified <i>Table: WLCSP28 – 28-pin wafer level chip</i> <i>scale package, package mechanical data</i> (min and max columns swapped) Modified <i>Figure: WLCSP28 – 28-pin wafer level chip</i> <i>scale package, package outline</i> (A1 ball location) Renamed Rm, Lm and Cm EXTI_CONF replaced with EXTI_CONF1 in <i>Table:</i> <i>General hardware register map.</i> Updated Section: Electrical parameters.

Table 69. Document revision history

