



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                               |
|----------------------------|----------------------------------------------------------------------|
| Core Processor             | STM8                                                                 |
| Core Size                  | 8-Bit                                                                |
| Speed                      | 16MHz                                                                |
| Connectivity               | I <sup>2</sup> C, IrDA, SPI, UART/USART                              |
| Peripherals                | Brown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDT                  |
| Number of I/O              | 41                                                                   |
| Program Memory Size        | 16KB (16K x 8)                                                       |
| Program Memory Type        | FLASH                                                                |
| EEPROM Size                | 1K x 8                                                               |
| RAM Size                   | 2K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                          |
| Data Converters            | A/D 25x12b; D/A 1x12b                                                |
| Oscillator Type            | Internal                                                             |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                    |
| Mounting Type              | Surface Mount                                                        |
| Package / Case             | 48-LQFP                                                              |
| Supplier Device Package    | 48-LQFP (7x7)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l152c4t6 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 3.17 Communication interfaces

### 3.17.1 SPI

The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices.

- Maximum speed: 8 Mbit/s (f<sub>SYSCLK</sub>/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on 2 lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- Hardware CRC calculation
- Slave/master selection input pin

Note: SPI1 can be served by the DMA1 Controller.

### 3.17.2 l<sup>2</sup>C

The I<sup>2</sup>C bus interface (I<sup>2</sup>C1) provides multi-master capability, and controls all I<sup>2</sup>C busspecific sequencing, protocol, arbitration and timing.

- Master, slave and multi-master capability
- Standard mode up to 100 kHz and fast speed modes up to 400 kHz.
- 7-bit and 10-bit addressing modes.
- SMBus 2.0 and PMBus support
- Hardware CRC calculation

Note:  $l^2C1$  can be served by the DMA1 Controller.

### 3.17.3 USART

The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.

- 1 Mbit/s full duplex SCI
- SPI1 emulation
- High precision baud rate generator
- SmartCard emulation
- IrDA SIR encoder decoder
- Single wire half duplex mode

Note: USART1 can be served by the DMA1 Controller.

## 3.18 Infrared (IR) interface

The medium-density STM8L151x4/6 and STM8L152x4/6 devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.



| n               | Pin<br>umb      | er       |         |                                                                                                                          |      |           | I                       | Input            |                | 0                | utpu | ıt |                                |                                                                                                                                               |  |
|-----------------|-----------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------|------|-----------|-------------------------|------------------|----------------|------------------|------|----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| LQFP48/UFQFPN48 | LQFP32/UFQFPN32 | UFQFPN28 | WLCSP28 | Pin name                                                                                                                 | Type | I/O level | floating                | ndw              | Ext. interrupt | High sink/source | ao   | dd | Main function<br>(after reset) | Default alternate<br>function                                                                                                                 |  |
| -               | 16              | _        | -       | PB3/ <i>[TIM2_ETR]</i> <sup>(4)</sup> /<br>TIM1_CH2N/LCD_SEG13<br><sup>(2)</sup> /ADC1_IN15/<br>COMP1_INP                | I/O  | TT<br>(3) | x                       | x                | х              | HS               | х    | x  | Port B3                        | [Timer 2 - external<br>trigger] / Timer 1 inverted<br>channel 2 / LCD<br>segment 13 /<br>ADC1_IN15 /<br>Comparator 1 positive<br>input        |  |
| -               | -               | 15       | E2      | PB3/[ <i>TIM2_ETR]</i> <sup>(4)</sup> /<br>TIM1_CH1N/<br>LCD_SEG13 <sup>(2)</sup> /<br>ADC1_IN15/RTC_ALARM<br>/COMP1_INP | I/O  | TT<br>(3) | x                       | x                | x              | HS               | x    | x  | Port B3                        | [Timer 2 - external<br>trigger] / Timer 1 inverted<br>channel 1/ LCD segment<br>13 / ADC1_IN15 /<br>RTC alarm/ Comparator<br>1 positive input |  |
| 28              | -               | -        | -       | PB4 <sup>(6)</sup> /[ <i>SPI1_NSS]</i> <sup>(4)</sup> /<br>LCD_SEG14 <sup>(2)</sup> /<br>ADC1_IN14/COMP1_INP             | I/O  | TT<br>(3) | <b>X</b> <sup>(6)</sup> | X <sup>(6)</sup> | x              | HS               | х    | x  | Port B4                        | [SPI1 master/slave<br>select] / LCD segment<br>14 / ADC1_IN14 /<br>Comparator 1 positive<br>input                                             |  |
| -               | 17              | 16       | D2      | PB4 <sup>(6)</sup> /[SPI1_NSS] <sup>(4)</sup> /<br>LCD_SEG14 <sup>(2)</sup> /<br>ADC1_IN14/<br>COMP1_INP/DAC_OUT         | I/O  | TT<br>(3) | <b>X</b> <sup>(6)</sup> | X <sup>(6)</sup> | x              | HS               | x    | x  | Port B4                        | [SPI1 master/slave<br>select] / LCD segment<br>14 / ADC1_IN14 /<br>DAC output /<br>Comparator 1 positive<br>input                             |  |
| 29              | -               | -        | -       | PB5/[SPI1_SCK] <sup>(4)</sup> /<br>LCD_SEG15 <sup>(2)/</sup><br>ADC1_IN13/COMP1_INP                                      | I/O  | TT<br>(3) | x                       | x                | х              | HS               | х    | x  | Port B5                        | [SPI1 clock] / LCD<br>segment 15 /<br>ADC1_IN13 /<br>Comparator 1 positive<br>input                                                           |  |
| -               | 18              | 17       | D1      | PB5/[SPI1_SCK] <sup>(4)</sup> /<br>LCD_SEG15 <sup>(2)</sup> /<br>ADC1_IN13/DAC_OUT/<br>COMP1_INP                         | I/O  | TT<br>(3) | x                       | x                | x              | HS               | x    | x  | Port B5                        | [SPI1 clock] / LCD<br>segment 15 /<br>ADC1_IN13 / DAC<br>output/<br>Comparator 1 positive<br>input                                            |  |

| Table 5. Medium-density 51 M8L151X4/6, 51 M8L152X4/6 p | pin aescri | ption | (continuea) |
|--------------------------------------------------------|------------|-------|-------------|
|--------------------------------------------------------|------------|-------|-------------|



| Address   | Block  | Register label | Register name                     | Reset<br>status |
|-----------|--------|----------------|-----------------------------------|-----------------|
| 0x00 500A |        | PC_ODR         | Port C data output latch register | 0x00            |
| 0x00 500B |        | PC_IDR         | Port C input pin value register   | 0xXX            |
| 0x00 500C | Port C | PC_DDR         | Port C data direction register    | 0x00            |
| 0x00 500D |        | PC_CR1         | Port C control register 1         | 0x00            |
| 0x00 500E |        | PC_CR2         | Port C control register 2         | 0x00            |
| 0x00 500F |        | PD_ODR         | Port D data output latch register | 0x00            |
| 0x00 5010 |        | PD_IDR         | Port D input pin value register   | 0xXX            |
| 0x00 5011 | Port D | PD_DDR         | Port D data direction register    | 0x00            |
| 0x00 5012 |        | PD_CR1         | Port D control register 1         | 0x00            |
| 0x00 5013 |        | PD_CR2         | PD_CR2 Port D control register 2  |                 |
| 0x00 5014 |        | PE_ODR         | Port E data output latch register | 0x00            |
| 0x00 5015 |        | PE_IDR         | Port E input pin value register   | 0xXX            |
| 0x00 5016 | Port E | PE_DDR         | Port E data direction register    | 0x00            |
| 0x00 5017 |        | PE_CR1         | Port E control register 1         | 0x00            |
| 0x00 5018 |        | PE_CR2         | Port E control register 2         | 0x00            |
| 0x00 5019 |        | PF_ODR         | Port F data output latch register | 0x00            |
| 0x00 501A |        | PF_IDR         | Port F input pin value register   | 0xXX            |
| 0x00 501B | Port F | PF_DDR         | Port F data direction register    | 0x00            |
| 0x00 501C | ]      | PF_CR1         | Port F control register 1         | 0x00            |
| 0x00 501D |        | PF_CR2         | Port F control register 2         | 0x00            |

| Table 8 I/O | nort hardware | redister i | man ( | (continued) |
|-------------|---------------|------------|-------|-------------|
|             | port nuranuro | registeri  | nup ( | continueu)  |

### Table 9. General hardware register map

| Address                      | Block          | Register label | Register name                                     | Reset<br>status |
|------------------------------|----------------|----------------|---------------------------------------------------|-----------------|
| 0x00 501E<br>to<br>0x00 5049 |                | F              | Reserved area (28 bytes)                          |                 |
| 0x00 5050                    | 5050 FLASH_CR1 |                | Flash control register 1                          | 0x00            |
| 0x00 5051                    |                | FLASH_CR2      | Flash control register 2                          | 0x00            |
| 0x00 5052                    | Flash          | FLASH_PUKR     | Flash program memory unprotection key<br>register | 0x00            |
| 0x00 5053                    |                | FLASH _DUKR    | Data EEPROM unprotection key register             | 0x00            |
| 0x00 5054                    |                | FLASH_IAPSR    | Flash in-application programming status register  | 0x00            |



| Address                      | Block | Register label           | Register name                  | Reset<br>status |  |  |  |  |
|------------------------------|-------|--------------------------|--------------------------------|-----------------|--|--|--|--|
| 0x00 50D0<br>to<br>0x00 50D2 |       |                          | Reserved area (3 bytes)        |                 |  |  |  |  |
| 0x00 50D3                    |       | WWDG_CR                  | WWDG control register          | 0x7F            |  |  |  |  |
| 0x00 50D4                    | WWDG  | WWDG_WR                  | WWDR window register           | 0x7F            |  |  |  |  |
| 0x00 50D5<br>to<br>00 50DF   |       | Reserved area (11 bytes) |                                |                 |  |  |  |  |
| 0x00 50E0                    |       | IWDG_KR                  | IWDG key register              | 0xXX            |  |  |  |  |
| 0x00 50E1                    | IWDG  | IWDG_PR                  | IWDG prescaler register        | 0x00            |  |  |  |  |
| 0x00 50E2                    |       | IWDG_RLR                 | IWDG reload register           | 0xFF            |  |  |  |  |
| 0x00 50E3<br>to<br>0x00 50EF |       | F                        | Reserved area (13 bytes)       |                 |  |  |  |  |
| 0x00 50F0                    |       | BEEP_CSR1                | BEEP control/status register 1 | 0x00            |  |  |  |  |
| 0x00 50F1<br>0x00 50F2       | BEEP  |                          | Reserved area (2 bytes)        |                 |  |  |  |  |
| 0x00 50F3                    |       | BEEP_CSR2                | BEEP control/status register 2 | 0x1F            |  |  |  |  |
| 0x00 50F4<br>to<br>0x00 513F |       | F                        | Reserved area (76 bytes)       |                 |  |  |  |  |

|          | -       |          |          |     |             |   |
|----------|---------|----------|----------|-----|-------------|---|
| Table 9. | General | hardware | reaister | map | (continued) | ) |





| Address                   | Block | Register label | Register name                          | Reset<br>status |
|---------------------------|-------|----------------|----------------------------------------|-----------------|
| 0x00 5280                 |       | TIM3_CR1       | TIM3 control register 1                | 0x00            |
| 0x00 5281                 |       | TIM3_CR2       | TIM3 control register 2                | 0x00            |
| 0x00 5282                 |       | TIM3_SMCR      | TIM3 Slave mode control register       | 0x00            |
| 0x00 5283                 |       | TIM3_ETR       | TIM3 external trigger register         | 0x00            |
| 0x00 5284                 |       | TIM3_DER       | TIM3 DMA1 request enable register      | 0x00            |
| 0x00 5285                 |       | TIM3_IER       | TIM3 interrupt enable register         | 0x00            |
| 0x00 5286                 |       | TIM3_SR1       | TIM3 status register 1                 | 0x00            |
| 0x00 5287                 |       | TIM3_SR2       | TIM3 status register 2                 | 0x00            |
| 0x00 5288                 |       | TIM3_EGR       | TIM3 event generation register         | 0x00            |
| 0x00 5289                 |       | TIM3_CCMR1     | TIM3 Capture/Compare mode register 1   | 0x00            |
| 0x00 528A                 |       | TIM3_CCMR2     | TIM3 Capture/Compare mode register 2   | 0x00            |
| 0x00 528B                 | TIM3  | TIM3_CCER1     | TIM3 Capture/Compare enable register 1 | 0x00            |
| 0x00 528C                 |       | TIM3_CNTRH     | TIM3 counter high                      | 0x00            |
| 0x00 528D                 |       | TIM3_CNTRL     | TIM3 counter low                       | 0x00            |
| 0x00 528E                 |       | TIM3_PSCR      | TIM3 prescaler register                | 0x00            |
| 0x00 528F                 |       | TIM3_ARRH      | TIM3 Auto-reload register high         | 0xFF            |
| 0x00 5290                 |       | TIM3_ARRL      | TIM3 Auto-reload register low          | 0xFF            |
| 0x00 5291                 |       | TIM3_CCR1H     | TIM3 Capture/Compare register 1 high   | 0x00            |
| 0x00 5292                 |       | TIM3_CCR1L     | TIM3 Capture/Compare register 1 low    | 0x00            |
| 0x00 5293                 |       | TIM3_CCR2H     | TIM3 Capture/Compare register 2 high   | 0x00            |
| 0x00 5294                 |       | TIM3_CCR2L     | TIM3 Capture/Compare register 2 low    | 0x00            |
| 0x00 5295                 | 1     | TIM3_BKR       | TIM3 break register                    | 0x00            |
| 0x00 5296                 | 1     | TIM3_OISR      | TIM3 output idle state register        | 0x00            |
| 0x00 5297 to<br>0x00 52AF |       | F              | Reserved area (25 bytes)               |                 |

|          | -       |          |          |     |             |   |
|----------|---------|----------|----------|-----|-------------|---|
| Table 9. | General | hardware | reaister | map | (continued) | ) |



## 7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.

All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 12* for details on option byte addresses.

The option bytes can also be modified 'on the fly' by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM).

Refer to the STM8L15x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

| Adda      | Ontion name                                                                  | Option        | On Option bits         |          |   |               |             |               |             | Factory |         |
|-----------|------------------------------------------------------------------------------|---------------|------------------------|----------|---|---------------|-------------|---------------|-------------|---------|---------|
| Addi.     | Option name                                                                  | No.           | 7                      | 6        | 5 | 4             | 3           | 2             | 1           | 0       | setting |
| 0x00 4800 | Read-out<br>protection<br>(ROP)                                              | OPT0          | ROP[7:0]               |          |   |               |             |               | 0xAA        |         |         |
| 0x00 4802 | UBC (User<br>Boot code size)                                                 | OPT1          |                        | UBC[7:0] |   |               |             |               |             |         | 0x00    |
| 0x00 4807 |                                                                              |               |                        | Reserved |   |               |             |               |             |         |         |
| 0x00 4808 | Independent<br>watchdog<br>option                                            | OPT3<br>[3:0] | Reserved               |          |   | WWDG<br>_HALT | WWDG<br>_HW | IWDG<br>_HALT | IWDG<br>_HW | 0x00    |         |
| 0x00 4809 | Number of<br>stabilization<br>clock cycles for<br>HSE and LSE<br>oscillators | OPT4          | Reserved               |          |   | LSECI         | NT[1:0]     | NT[1:0]       | 0x00        |         |         |
| 0x00 480A | Brownout reset<br>(BOR)                                                      | OPT5<br>[3:0] | Reserved BOR_TH BOR_ON |          |   |               | BOR_<br>ON  | 0x00          |             |         |         |
| 0x00 480B | Bootloader                                                                   | OPTBL         |                        |          |   |               |             | 01            |             |         | 0x00    |
| 0x00 480C | (OPTBL)                                                                      | [15:0]        |                        |          |   | O             | - IBC[12:0  | J             |             |         | 0x00    |

 Table 12. Option byte addresses



In the following table, data is based on characterization results, unless otherwise specified.

| Symbol               | Parameter                                   |                      | Тур                             | Мах                                      | Unit |      |    |
|----------------------|---------------------------------------------|----------------------|---------------------------------|------------------------------------------|------|------|----|
|                      |                                             |                      |                                 | $T_A$ = -40 °C to 25 °C                  | 3    | 3.3  |    |
|                      | Supply current in<br>Low power wait<br>mode |                      |                                 | T <sub>A</sub> = 55 °C                   | 3.3  | 3.6  |    |
|                      |                                             |                      | all peripherals OFF             | T <sub>A</sub> = 85 °C                   | 4.4  | 5    |    |
|                      |                                             |                      |                                 | T <sub>A</sub> = 105 °C                  | 6.7  | 8    |    |
|                      |                                             | LSI RC osc.          |                                 | T <sub>A</sub> = 125 °C                  | 11   | 14   |    |
|                      |                                             | (at 38 kHz)          |                                 | $T_A$ = -40 °C to 25 °C                  | 3.4  | 3.7  |    |
|                      |                                             |                      | with TIM2 active <sup>(2)</sup> | T <sub>A</sub> = 55 °C                   | 3.7  | 4    |    |
|                      |                                             |                      |                                 | T <sub>A</sub> = 85 °C                   | 4.8  | 5.4  | μΑ |
| I <sub>DD(LPW)</sub> |                                             |                      |                                 | T <sub>A</sub> = 105 °C                  | 7    | 8.3  |    |
|                      |                                             |                      |                                 | T <sub>A</sub> = 125 °C                  | 11.3 | 14.5 |    |
|                      |                                             |                      |                                 | $T_A = -40 \text{ °C to } 25 \text{ °C}$ | 2.35 | 2.7  |    |
|                      |                                             |                      | all peripherals OFF             | T <sub>A</sub> = 55 °C                   | 2.42 | 2.82 |    |
|                      |                                             |                      |                                 | T <sub>A</sub> = 85 °C                   | 3.10 | 3.71 |    |
|                      |                                             |                      |                                 | T <sub>A</sub> = 105 °C                  | 4.36 | 5.7  |    |
|                      |                                             | clock <sup>(3)</sup> |                                 | T <sub>A</sub> = 125 °C                  | 7.20 | 11   |    |
|                      |                                             | (32.768 kHz)         |                                 | $T_A = -40 \ ^\circ C$ to 25 $^\circ C$  | 2.46 | 2.75 |    |
|                      |                                             |                      |                                 | T <sub>A</sub> = 55 °C                   | 2.50 | 2.81 |    |
|                      |                                             |                      | with TIM2 active <sup>(2)</sup> | T <sub>A</sub> = 85 °C                   | 3.16 | 3.82 |    |
|                      |                                             |                      |                                 | T <sub>A</sub> = 105 °C                  | 4.51 | 5.9  |    |
|                      |                                             |                      |                                 | T <sub>A</sub> = 125 °C                  | 7.28 | 11   |    |

| Table 23. | Total cu | rrent consu | nption in | Low power | wait mo | ode at <b>\</b> | / <sub>DD</sub> = | 1.65 \ | V to 3 | .6 V |
|-----------|----------|-------------|-----------|-----------|---------|-----------------|-------------------|--------|--------|------|
|           |          |             |           |           |         |                 |                   |        |        |      |

1. No floating I/Os.

2. Timer 2 clock enabled and counter is running.

Oscillator bypassed (LSEBYP = 1 in CLK\_ECKCR). When configured for external crystal, the LSE consumption (I<sub>DD LSE</sub>) must be added. Refer to Table 32.



| Symbol      | Parameter                                         | Condition <sup>(1)</sup> |                       | Тур  | Unit |
|-------------|---------------------------------------------------|--------------------------|-----------------------|------|------|
|             |                                                   | V - 1 8 V                | LSE                   | 1.15 | - μΑ |
|             | <sup>(2)</sup> Supply current in Active-halt mode | v <sub>DD</sub> - 1.0 v  | LSE/32 <sup>(3)</sup> | 1.05 |      |
| (2)         |                                                   | V <sub>DD</sub> = 3 V    | LSE                   | 1.30 |      |
| IDD(AH) ` ' |                                                   |                          | LSE/32 <sup>(3)</sup> | 1.20 |      |
|             |                                                   |                          | LSE                   | 1.45 |      |
|             |                                                   | v <sub>DD</sub> = 3.6 V  | LSE/32 <sup>(3)</sup> | 1.35 |      |

 Table 25. Typical current consumption in Active-halt mode, RTC clocked by LSE

 external crystal

1. No floating I/O, unless otherwise specified.

2. Based on measurements on bench with 32.768 kHz external crystal oscillator.

3. RTC clock is LSE divided by 32.

In the following table, data is based on characterization results, unless otherwise specified.

| Symbol                                      | Parameter                                                          | Condition <sup>(1)</sup> | Тур  | Мах                 | Unit       |  |
|---------------------------------------------|--------------------------------------------------------------------|--------------------------|------|---------------------|------------|--|
|                                             |                                                                    | $T_A$ = -40 °C to 25 °C  | 350  | 1400 <sup>(2)</sup> |            |  |
|                                             | Supply current in Halt mode                                        | T <sub>A</sub> = 55 °C   | 580  | 2000                | <b>~</b> ^ |  |
| I <sub>DD(Halt)</sub>                       | (Ultra-low-power ULP bit =1 in the PWR_CSR2 register)              | T <sub>A</sub> = 85 °C   | 1160 | 2800 <sup>(2)</sup> | ΠA         |  |
|                                             |                                                                    | T <sub>A</sub> = 105 °C  | 2560 | 6700 <sup>(2)</sup> |            |  |
|                                             |                                                                    | T <sub>A</sub> = 125 °C  | 4.4  | 13 <sup>(2)</sup>   | μA         |  |
| I <sub>DD</sub> (WUHait)                    | Supply current during wakeup<br>time from Halt mode (using<br>HSI) | -                        | 2.4  | -                   | mA         |  |
| t <sub>WU_HSI(Halt)</sub> <sup>(3)(4)</sup> | Wakeup time from Halt to Run<br>mode (using HSI)                   | -                        | 4.7  | 7                   | μs         |  |
| t <sub>WU_LSI(Halt)</sub> <sup>(3)(4)</sup> | Wakeup time from Halt mode to Run mode (using LSI)                 | -                        | 150  | -                   | μs         |  |

1.  $T_A = -40$  to 125 °C, no floating I/O, unless otherwise specified.

2. Tested in production.

3. ULP=0 or ULP=1 and FWU=1 in the PWR\_CSR2 register.

4. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after  $t_{\rm WU}.$ 

### Current consumption of on-chip peripherals

| Symbol                   | Parameter                                                                    |                                 | Тур.<br>V <sub>DD</sub> = 3.0 V | Unit   |  |
|--------------------------|------------------------------------------------------------------------------|---------------------------------|---------------------------------|--------|--|
| I <sub>DD(TIM1)</sub>    | TIM1 supply current <sup>(1)</sup>                                           |                                 | 13                              |        |  |
| I <sub>DD(TIM2)</sub>    | TIM2 supply current <sup>(1)</sup>                                           |                                 | 8                               |        |  |
| I <sub>DD(TIM3)</sub>    | TIM3 supply current <sup>(1)</sup>                                           |                                 | 8                               |        |  |
| I <sub>DD(TIM4)</sub>    | TIM4 timer supply current <sup>(1)</sup>                                     |                                 | 3                               |        |  |
| I <sub>DD(USART1)</sub>  | USART1 supply current <sup>(2)</sup>                                         |                                 | 6                               | µA/MHz |  |
| I <sub>DD(SPI1)</sub>    | SPI1 supply current <sup>(2)</sup>                                           |                                 | 3                               |        |  |
| I <sub>DD(I2C1)</sub>    | I <sup>2</sup> C1 supply current <sup>(2)</sup>                              |                                 | 5                               |        |  |
| I <sub>DD(DMA1)</sub>    | DMA1 supply current <sup>(2)</sup>                                           |                                 | 3                               |        |  |
| I <sub>DD(WWDG)</sub>    | WWDG supply current <sup>(2)</sup>                                           |                                 | 2                               |        |  |
| I <sub>DD(ALL)</sub>     | Peripherals ON <sup>(3)</sup>                                                |                                 | 44                              | µA/MHz |  |
| I <sub>DD(ADC1)</sub>    | ADC1 supply current <sup>(4)</sup>                                           |                                 | 1500                            | μA     |  |
| I <sub>DD(DAC)</sub>     | DAC supply current <sup>(5)</sup>                                            |                                 | 370                             | μA     |  |
| I <sub>DD(COMP1)</sub>   | Comparator 1 supply current <sup>(6)</sup>                                   |                                 | 0.160                           |        |  |
|                          | Compositor 2 oursely oursent(6)                                              | Slow mode                       | 2                               |        |  |
| 'DD(COMP2)               | Comparator 2 supply current <sup>(3)</sup>                                   | Fast mode                       | 5                               |        |  |
| I <sub>DD(PVD/BOR)</sub> | Power voltage detector and brownout Reset unit supply current <sup>(7)</sup> |                                 | 2.6                             | μA     |  |
| I <sub>DD(BOR)</sub>     | Brownout Reset unit supply current <sup>(7)</sup>                            |                                 | 2.4                             |        |  |
|                          | Independent watchdog supply surrent                                          | including LSI supply current    | 0.45                            |        |  |
| I <sub>DD(IDWDG)</sub>   |                                                                              | excluding LSI<br>supply current | 0.05                            |        |  |

#### Table 27. Peripheral current consumption

 Data based on a differential I<sub>DD</sub> measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.

 Data based on a differential I<sub>DD</sub> measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production.

3. Peripherals listed above the I<sub>DD(ALL)</sub> parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.

4. Data based on a differential I<sub>DD</sub> measurement between ADC in reset configuration and continuous ADC conversion.

 Data based on a differential I<sub>DD</sub> measurement between DAC in reset configuration and continuous DAC conversion of V<sub>DD</sub> /2. Floating DAC output.

 Data based on a differential I<sub>DD</sub> measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded.

7. Including supply current of internal reference voltage.



### 9.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below  $V_{SS}$  or above  $V_{DD}$  (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

### Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).

The test results are given in the following table.

|                  |                                                        | Functional s               |                    |      |
|------------------|--------------------------------------------------------|----------------------------|--------------------|------|
| Symbol           | Description                                            | Negative injection         | Positive injection | Unit |
| I <sub>INJ</sub> | Injected current on true open-drain pins (PC0 and PC1) | -5                         | +0                 |      |
|                  | Injected current on all five-volt tolerant (FT) pins   | t tolerant (FT) pins -5 -4 |                    | mA   |
|                  | Injected current on all 3.6 V tolerant (TT) pins       | -5                         | +0                 |      |
|                  | Injected current on any other pin                      | -5                         | +5                 |      |

### Table 37. I/O current injection susceptibility

### 9.3.7 I/O port pin characteristics

### **General characteristics**

Subject to general operating conditions for  $V_{DD}$  and  $T_A$  unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.





Figure 23. Typical pull-up resistance  $R_{PU}$  vs  $V_{DD}$  with  $V_{IN}{=}V_{SS}$ 







### **Output driving current**

Subject to general operating conditions for  $V_{DD}$  and  $T_A$  unless otherwise specified.

| I/O<br>Туре | Symbol                         | Parameter                                | Conditions                                           | Min                   | Max  | Unit |
|-------------|--------------------------------|------------------------------------------|------------------------------------------------------|-----------------------|------|------|
| High sink   | V <sub>OL</sub> <sup>(1)</sup> | Output low level voltage for an I/O pin  | I <sub>IO</sub> = +2 mA,<br>V <sub>DD</sub> = 3.0 V  | -                     | 0.45 | V    |
|             |                                |                                          | I <sub>IO</sub> = +2 mA,<br>V <sub>DD</sub> = 1.8 V  | -                     | 0.45 | V    |
|             |                                |                                          | I <sub>IO</sub> = +10 mA,<br>V <sub>DD</sub> = 3.0 V | -                     | 0.7  | V    |
|             | V <sub>OH</sub> <sup>(2)</sup> | Output high level voltage for an I/O pin | I <sub>IO</sub> = -2 mA,<br>V <sub>DD</sub> = 3.0 V  | V <sub>DD</sub> -0.45 | -    | V    |
|             |                                |                                          | I <sub>IO</sub> = -1 mA,<br>V <sub>DD</sub> = 1.8 V  | V <sub>DD</sub> -0.45 | -    | V    |
|             |                                |                                          | I <sub>IO</sub> = -10 mA,<br>V <sub>DD</sub> = 3.0 V | V <sub>DD</sub> -0.7  | -    | V    |

| Table 39. Output driving current (high | sink ports) |
|----------------------------------------|-------------|
|----------------------------------------|-------------|

The I<sub>IO</sub> current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VSS</sub>.

2. The I<sub>IO</sub> current sourced must always respect the absolute maximum rating specified in *Table 16* and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VDD</sub>.

| l/O<br>Type | Symbol                         | Parameter                               | Conditions                                          | Min | Max  | Unit |
|-------------|--------------------------------|-----------------------------------------|-----------------------------------------------------|-----|------|------|
| drain       | Open drain<br>O <sup>(1)</sup> | Output low level voltage for an I/O pin | I <sub>IO</sub> = +3 mA,<br>V <sub>DD</sub> = 3.0 V | -   | 0.45 | V    |
| Open        |                                |                                         | I <sub>IO</sub> = +1 mA,<br>V <sub>DD</sub> = 1.8 V | -   | 0.45 | V    |

#### Table 40. Output driving current (true open drain ports)

1. The I<sub>IO</sub> current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VSS</sub>.

| l/O<br>Type | Symbol                         | Parameter                               | Conditions                                           | Min | Max  | Unit |
|-------------|--------------------------------|-----------------------------------------|------------------------------------------------------|-----|------|------|
| R           | V <sub>OL</sub> <sup>(1)</sup> | Output low level voltage for an I/O pin | I <sub>IO</sub> = +20 mA,<br>V <sub>DD</sub> = 2.0 V | -   | 0.45 | V    |

1. The I<sub>IO</sub> current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VSS</sub>.





Figure 36. SPI1 timing diagram - master mode<sup>(1)</sup>

1. Measurement points are done at CMOS levels:  $0.3V_{\text{DD}}$  and  $0.7V_{\text{DD}}$ 



### 9.3.11 Temperature sensor

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

| Symbol                               | Parameter                                             | Min   | Тур   | Max.  | Unit  |
|--------------------------------------|-------------------------------------------------------|-------|-------|-------|-------|
| V <sub>90</sub> <sup>(1)</sup>       | Sensor reference voltage at 90°C ±5 °C,               | 0.580 | 0.597 | 0.614 | V     |
| ΤL                                   | V <sub>SENSOR</sub> linearity with temperature        | -     | ±1    | ±2    | °C    |
| Avg_slope (2)                        | Average slope                                         | 1.59  | 1.62  | 1.65  | mV/°C |
| I <sub>DD(TEMP)</sub> <sup>(2)</sup> | Consumption                                           | -     | 3.4   | 6     | μA    |
| T <sub>START</sub> <sup>(2)(3)</sup> | Temperature sensor startup time                       | -     | -     | 10    | μs    |
| T <sub>S_TEMP</sub> <sup>(2)</sup>   | ADC sampling time when reading the temperature sensor | 10    | -     | -     | μs    |

| Table 47  | . тs | characteristics |
|-----------|------|-----------------|
| 10.010 11 |      |                 |

 Tested in production at V<sub>DD</sub> = 3 V ±10 mV. The 8 LSB of the V<sub>90</sub> ADC conversion result are stored in the TS\_Factory\_CONV\_V90 byte.

- 2. Data guaranteed by design.
- 3. Defined for ADC output reaching its final value  $\pm 1/2$ LSB.

### 9.3.12 Comparator characteristics

In the following table, data is guaranteed by design, not tested in production, unless otherwise specified.

| Symbol              | Parameter                                      | Min  | Тур   | Max <sup>(1)</sup> | Unit |  |
|---------------------|------------------------------------------------|------|-------|--------------------|------|--|
| V <sub>DDA</sub>    | Analog supply voltage                          | 1.65 | -     | 3.6                | V    |  |
| T <sub>A</sub>      | Temperature range                              | -40  | -     | 125                | °C   |  |
| R <sub>400K</sub>   | R <sub>400K</sub> value                        | 300  | 400   | 500                | kO   |  |
| R <sub>10K</sub>    | R <sub>10K</sub> value                         | 7.5  | 10    | 12.5               | K32  |  |
| V <sub>IN</sub>     | Comparator 1 input voltage range               | 0.6  | -     | $V_{DDA}$          | V    |  |
| V <sub>REFINT</sub> | FINT Internal reference voltage <sup>(2)</sup> |      | 1.224 | 1.242              | V    |  |
| t <sub>START</sub>  | Comparator startup time                        | -    | 7     | 10                 | 116  |  |
| t <sub>d</sub>      | Propagation delay <sup>(3)</sup>               | -    | 3     | 10                 | μο   |  |
| V <sub>offset</sub> | Comparator offset error                        | -    | ±3    | ±10                | mV   |  |
| I <sub>COMP1</sub>  | Current consumption <sup>(4)</sup>             | -    | 160   | 260                | nA   |  |

#### Table 48. Comparator 1 characteristics

1. Based on characterization.

2. Tested in production at V<sub>DD</sub> = 3 V ±10 mV.

- 3. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
- 4. Comparator consumption only. Internal reference voltage not included.

In the following three tables, data is guaranteed by characterization result, not tested in production.

| Symbol | Parameter                  | Conditions                | Тур | Мах | Unit |
|--------|----------------------------|---------------------------|-----|-----|------|
|        |                            | f <sub>ADC</sub> = 16 MHz | 1   | 1.6 |      |
| DNL    | Differential non linearity | f <sub>ADC</sub> = 8 MHz  | 1   | 1.6 |      |
|        |                            | f <sub>ADC</sub> = 4 MHz  | 1   | 1.5 |      |
|        |                            | f <sub>ADC</sub> = 16 MHz | 1.2 | 2   |      |
| INL    | Integral non linearity     | f <sub>ADC</sub> = 8 MHz  | 1.2 | 1.8 | LSB  |
|        |                            | f <sub>ADC</sub> = 4 MHz  | 1.2 | 1.7 |      |
|        | Total unadjusted error     | f <sub>ADC</sub> = 16 MHz | 2.2 | 3.0 |      |
| TUE    |                            | f <sub>ADC</sub> = 8 MHz  | 1.8 | 2.5 |      |
|        |                            | f <sub>ADC</sub> = 4 MHz  | 1.8 | 2.3 |      |
|        |                            | f <sub>ADC</sub> = 16 MHz | 1.5 | 2   |      |
| Offset | Offset error               | f <sub>ADC</sub> = 8 MHz  | 1   | 1.5 |      |
|        |                            | f <sub>ADC</sub> = 4 MHz  | 0.7 | 1.2 |      |
| Gain   |                            | f <sub>ADC</sub> = 16 MHz |     |     | LOD  |
|        | Gain error                 | f <sub>ADC</sub> = 8 MHz  | 1   | 1.5 |      |
|        |                            | f <sub>ADC</sub> = 4 MHz  |     |     |      |

| Table 54 ADC1 as  | ouroov with V                | - 2 2 \/ to 2   | E \/       |
|-------------------|------------------------------|-----------------|------------|
| Table 54. ADCT ac | curacy with v <sub>DDA</sub> | . – 3.3 V LO Z. | <b>y</b> c |

## Table 55. ADC1 accuracy with $V_{DDA}$ = 2.4 V to 3.6 V

| Symbol | Parameter                  | Тур | Max | Unit |
|--------|----------------------------|-----|-----|------|
| DNL    | Differential non linearity | 1   | 2   | LSB  |
| INL    | Integral non linearity     | 1.7 | 3   | LSB  |
| TUE    | Total unadjusted error     | 2   | 4   | LSB  |
| Offset | Offset error               | 1   | 2   | LSB  |
| Gain   | Gain error                 | 1.5 | 3   | LSB  |

| Table 56. ADC1 | accuracy with Vn | $V_{REE}^+ = 1.8 \text{ V to } 2.4 \text{ V}$ |  |
|----------------|------------------|-----------------------------------------------|--|
|                |                  |                                               |  |

| Symbol | Parameter                  | Тур | Max | Unit |
|--------|----------------------------|-----|-----|------|
| DNL    | Differential non linearity | 1   | 2   | LSB  |
| INL    | Integral non linearity     | 2   | 3   | LSB  |
| TUE    | Total unadjusted error     | 3   | 5   | LSB  |
| Offset | Offset error               | 2   | 3   | LSB  |
| Gain   | Gain error                 | 2   | 3   | LSB  |



### **Device marking**

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



#### Figure 57. UFQFPN28 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.



# 11 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

| Figure 60. M | Medium-density | STM8L15x | ordering | information | scheme |
|--------------|----------------|----------|----------|-------------|--------|
|--------------|----------------|----------|----------|-------------|--------|

| Example:                                                | STM8 | L | 151 | С | 4 | U | 6 | TR |
|---------------------------------------------------------|------|---|-----|---|---|---|---|----|
| Product class<br>STM8 microcontroller                   |      |   |     |   |   |   |   |    |
| Family type<br>L = Low power                            | <br> |   |     |   |   |   |   |    |
| Sub-family type                                         |      |   |     |   |   |   |   |    |
| 151 = Ultra-low-power<br>152 = Ultra-low-power with LCD |      |   |     |   |   |   |   |    |
| Pin count                                               |      |   |     |   |   |   |   |    |
| C = 48 pins                                             |      |   |     |   |   |   |   |    |
| K = 32 pins                                             |      |   |     |   |   |   |   |    |
| G = 28 pins                                             |      |   |     |   |   |   |   |    |
| Program memory size                                     |      |   |     |   |   |   |   |    |
| 4 = 16 Kbyte                                            |      |   |     |   |   |   |   |    |
| 6 = 32 Kbyte                                            |      |   |     |   |   |   |   |    |
| Package                                                 |      |   |     |   |   |   |   |    |
| U = UFQFPN                                              |      |   |     |   |   |   |   |    |
| T = LQFP                                                |      |   |     |   |   |   |   |    |
| Y = WLCSP                                               |      |   |     |   |   |   |   |    |
| Temperature range                                       |      |   |     |   |   |   |   |    |
| 3 = - 40 °C to 125 °C                                   |      |   |     |   |   |   |   |    |
| 7 = - 40 °C to 105 °C                                   |      |   |     |   |   |   |   |    |
| 6 = - 40 °C to 85 °C                                    |      |   |     |   |   |   |   |    |
| Delivery                                                |      |   |     |   |   |   |   |    |
| TR = Tape & Reel                                        |      |   |     |   |   |   |   |    |

1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please contact the ST sales office nearest to you.



# 12 Revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 06-Aug-2009 | 1        | Initial release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10-Sep-2009 | 2        | Updated peripheral naming throughout document.<br>Added <i>Figure: STM8L151Cx 48-pin pinout (without LCD).</i><br>Added capacitive sensing channels in <i>Features.</i><br>Updated PA7, PC0 and PC1 in <i>Table: Medium density STM8L15x pin description.</i><br>Changed CLK and REMAP register names.<br>Changed description of WDGHALT.<br>Added typical power consumption values in <i>Table 18</i> to<br><i>Table 26.</i><br>Corrected VIH max value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11-Dec-2009 | 3        | Added WLCSP28 package<br>Modified <i>Figure: Memory map</i> and added 2 notes.<br>Modified Low power run mode in <i>Section: Low power</i><br><i>modes.</i><br>Added <i>Section: Unique ID.</i><br>Modified <i>Table: Interrupt mapping</i> (added reserved area<br>at address 0x00 8008)<br>Modified OPT4 option bits in <i>Table: Option byte</i><br><i>addresses.</i><br><i>Table: Option byte description:</i> modified OPT0<br>description ("disable" instead of "enable") and OPT1<br>description<br>Added OPTBL option bytes<br>Modified <i>Section: Electrical parameters.</i>                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 02-Apr-2010 | 4        | Changed title of the document (STM8L151x4,<br>STM8L151x6, STM8L152x4, STM8L152x6)<br>Changed pinout (V <sub>SS1</sub> , V <sub>DD1</sub> , V <sub>SS2</sub> , V <sub>DD 2</sub> instead of<br>V <sub>SS</sub> , V <sub>DD</sub> , V <sub>SSI0</sub> , V <sub>DDI0</sub><br>Changed packages<br>Changed first page<br>Modified note 1 in <i>Table: Medium density STM8L15x pin</i><br><i>description</i> .<br>Added note to PA7, PC0, PC1 and PE0 in <i>Table:</i><br><i>Medium density STM8L15x pin description</i> .<br>Modified <i>Figure: Memory map</i> .<br>Modified <i>Table: WLCSP28 – 28-pin wafer level chip</i><br><i>scale package, package mechanical data</i> (min and max<br>columns swapped)<br>Modified <i>Figure: WLCSP28 – 28-pin wafer level chip</i><br><i>scale package, package outline</i> (A1 ball location)<br>Renamed Rm, Lm and Cm<br>EXTI_CONF replaced with EXTI_CONF1 in <i>Table:</i><br><i>General hardware register map</i> .<br>Updated Section: Electrical parameters. |

### Table 69. Document revision history



| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11-Mar-2011 | 6 conťd  | Modified OPT1 and OPT4 description in <i>Table: Option</i><br><i>byte description.</i><br>Updated <i>Section: Electrical parameters</i> "standard I/Os"<br>replaced with "high sink I//Os".<br>Updated R <sub>HN and</sub> R <sub>HN</sub> descriptions in <i>Table: LCD</i><br><i>characteristics.</i><br>Added Tape & Reel option to <i>Figure: Medium density</i><br><i>STM8L15x ordering information scheme.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 06-Sep-2011 | 7        | <i>Features:</i> updated bullet point concerning capacitive<br>sensing channels.<br><i>Section: Low power modes:</i> updated Wait mode and<br>Halt mode definitions.<br><i>Section: Clock management:</i> added 'kHz' to 32.768 in<br>the 'System clock sources bullet point'.<br><i>Section: System configuration controller and routing</i><br><i>interface:</i> replaced last sentence concerning<br>management of charge transfer acquisition sequence.<br>Added Section: Touchsensing<br><i>Section Development support:</i> updated the Bootloader.<br>Table: Medium density STM8L15x pin description:<br>added LQFP32 to second column (same pinout as<br>UFQFPN32); "Timer X - trigger" replaced by "Timer X -<br>external trigger"; added note at the end of this table<br>concerning the slope control of all GPIO pins.<br>Table: Interrupt mapping: merged footnotes 1 and 2;<br>updated some of the source blocks and descriptions.<br>Section: Option bytes: replaced PM0051 by PM0054<br>and UM0320 by UM0470.<br>Table: Option byte description: replaced the factory<br>default setting (0xAA) for OPT0.<br><i>NRST pin:</i> updated text above the <i>Figure</i> ; updated<br><i>Figure: Recommended NRST pin configuration.</i><br>Table: TS characteristics: removed typ and max values<br>for the parameter T <sub>S_TEMP</sub> ; added min value for same.<br>Table: Comparator 1 characteristics: updated t <sub>START</sub> ,<br>t <sub>dslow</sub> , t <sub>dfast</sub> , V <sub>offset</sub> , I <sub>COMP2</sub> ; added footnotes 1. and 3.<br>Table: DAC characteristics: updated tor<br>DAC_OUT voltage (DACOUT buffer ON).<br>Section: 12-bit ADC1 characteristics: updated.<br>Replaced <i>Figure: UFQFPN48 7 x 7 mm</i> , 0.5 mm pitch,<br>package outline and Figure: UFQFPN48 7 x 7 mm<br>recommended footprint (dimensions in mm).<br><i>Figure: Medium density STM8L15x ordering information</i><br>scheme: removed 'TR = Tape & Reel". |



| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21-Apr-2015 | 14       | <ul> <li>Added:</li> <li>Figure 45: LQFP48 marking example (package top view),</li> <li>Figure 48: UFQFPN48 marking example (package top view),</li> <li>Figure 51: LQFP32 marking example (package top view),</li> <li>Figure 54: UFQFPN32 marking example (package top view),</li> <li>Figure 57: UFQFPN28 marking example (package top view),</li> <li>Figure 59: WLCSP28 marking example (package top view).</li> </ul>                                                                                                                                                                                                                            |
| 07-Apr-2017 | 15       | Changed symbol $V_{125}$ to $V_{90}$ in <i>Table 47: TS</i><br>characteristics and updated related Min/Typ/Max values.<br>Updated Section 9.2: Absolute maximum ratings.<br>Updated table notes for <i>Table 30</i> , <i>Table 31</i> , <i>Table 32</i> ,<br><i>Table 33</i> , <i>Table 34</i> , <i>Table 36</i> , <i>Table 38</i> , <i>Table 42</i> ,<br><i>Table 43</i> , <i>Table 46</i> , <i>Table 47</i> , <i>Table 48</i> , <i>Table 49</i> ,<br><i>Table 53</i> , <i>Table 57</i> , and <i>Table 60</i> . Updated device<br>marking paragraphs in Section 10.2, Section 10.3,<br>Section 10.4, Section 10.5, Section 10.6, and<br>Section 10.7. |

