

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDT
Number of I/O	41
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l152c6u3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The medium-density STM8L151x4/6 and STM8L152x4/6 devices are members of the STM8L ultra-low-power 8-bit family. The medium-density STM8L15x family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85 °C and -40 to +125 °C temperature ranges.

The medium-density STM8L15x ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-Application debugging and ultra-fast Flash programming.

All medium-density STM8L15x microcontrollers feature embedded data EEPROM and low-power, low-voltage, single-supply program Flash memory.

They incorporate an extensive range of enhanced I/Os and peripherals.

The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

Six different packages are proposed from 28 to 48 pins. Depending on the device chosen, different sets of peripherals are included.

All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

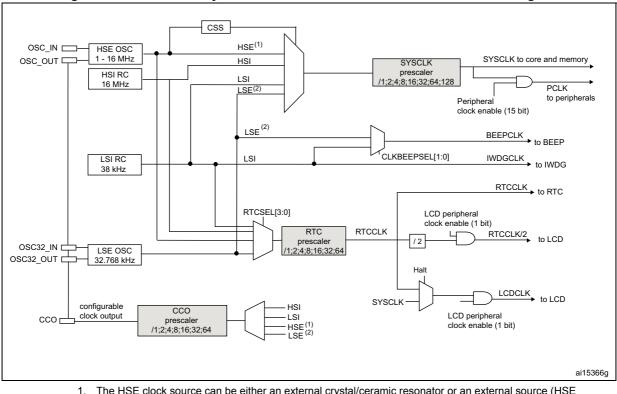
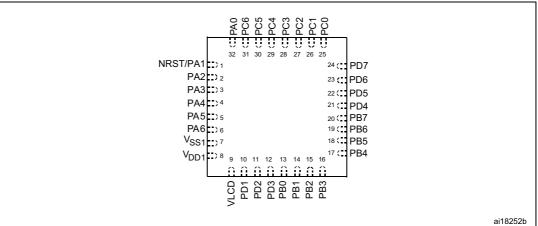


Figure 2. Medium-density STM8L151x4/6 and STM8L152x4/6 clock tree diagram

- The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
- The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x reference manual (RM0031).

3.5 Low power real-time clock


The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.

Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically.

It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability.

- Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours
- Periodic alarms based on the calendar can also be generated from every second to every year

Figure 8. STM8L152K4, STM8L152K6 32-pin package pinout (with LCD)

1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.

n	Pin umb			s. Mealum-aensity STM	_			Input			outpu			
LQFP48/UFQFPN48	LQFP32/UFQFPN32	UFQFPN28	WLCSP28	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	ЪР	Main function (after reset)	Default alternate function
30	-	-		PB6/[<i>SPI1_MOSI]</i> ⁽⁴⁾ / LCD_SEG16 ^{(2)/} ADC1_IN12/COMP1_INP	I/O	TT (3)	x	x	x	HS	x	х	Port B6	[SPI1 master out/slave in]/ LCD segment 16 / ADC1_IN12 / Comparator 1 positive input
-	19	18	F1	PB6/[SPI1_MOSI] ⁽⁴⁾ / LCD_SEG16 ^{(2)/} ADC1_IN12/COMP1_INP/ DAC_OUT	I/O	TT (3)	x	x	х	HS	x	х	Port B6	[SPI1 master out]/ slave in / LCD segment 16 / ADC1_IN12 / DAC output / Comparator 1 positive input
31	20	19	E1	PB7/[SPI1_MISO] ⁽⁴⁾ / LCD_SEG17 ^{(2)/} ADC1_IN11/COMP1_INP	I/O	TT (3)	x	x	x	HS	x	х	Port B7	[SPI1 master in- slave out] / LCD segment 17 / ADC1_IN11 / Comparator 1 positive input
37	25	21	B1	PC0 ⁽⁵⁾ /I2C1_SDA	I/O	FT	X		Х		T ⁽⁷⁾		Port C0	I2C1 data
38	26	22	A1	PC1 ⁽⁵⁾ /I2C1_SCL	I/O	FT	Х		Х		T ⁽⁷⁾		Port C1	I2C1 clock
41	27	23	B2	PC2/USART1_RX/ LCD_SEG22/ADC1_IN6/ COMP1_INP/VREFINT	I/O	TT (3)	x	x	x	HS	x	х	Port C2	USART1 receive / LCD segment 22 / ADC1_IN6 / Comparator 1 positive input / Internal voltage reference output
42	28	24	A2	PC3/USART1_TX/ LCD_SEG23 ^{(2)/} ADC1_IN5/COMP1_INP/ COMP2_INM	I/O	TT (3)	x	x	x	HS	x	x	Port C3	USART1 transmit / LCD segment 23 / ADC1_IN5 / Comparator 1 positive input / Comparator 2 negative input
43	29	25	C2	PC4/USART1_CK/ I2C1_SMB/CCO/ LCD_SEG24 ^{(2)/} ADC1_IN4/COMP2_INM/ COMP1_INP	I/O	TT (3)	x	x	х	HS	x	х	Port C4	USART1 synchronous clock / I2C1_SMB / Configurable clock output / LCD segment 24 / ADC1_IN4 / Comparator 2 negative input / Comparator 1 positive input

Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)

4.1 System configuration options

As shown in *Table 5: Medium-density STM8L151x4/6, STM8L152x4/6 pin description*, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the "Routing interface (RI) and system configuration controller" section in the STM8L15xxx and STM8L16xxx reference manual (RM0031).

Address	Block	Register label	Register name	Reset status				
0x00 5230		USART1_SR	USART1 status register	0xC0				
0x00 5231		USART1_DR	USART1 data register	undefined				
0x00 5232		USART1_BRR1	USART1 baud rate register 1	0x00				
0x00 5233		USART1_BRR2	USART1 baud rate register 2	0x00				
0x00 5234		USART1_CR1	USART1 control register 1	0x00				
0x00 5235	USART1	USART1_CR2	USART1 control register 2	0x00				
0x00 5236		USART1_CR3	USART1 control register 3	0x00				
0x00 5237		USART1_CR4	USART1 control register 4	0x00				
0x00 5238		USART1_CR5	USART1 control register 5	0x00				
0x00 5239		USART1_GTR	USART1 guard time register	0x00				
0x00 523A		USART1_PSCR	USART1 prescaler register	0x00				
0x00 523B to 0x00 524F		Reserved area (21 bytes)						

	_					
Table 9	General	hardware	register	man	(continued)	
	Contorui	indi di tital c	register	map	(continued)	

Table 9. General hardware register map (continued)									
Address	Block	Register label	Register name	Reset status					
0x00 52D2	TIN 44	TIM1_DCR2	TIM1 DMA1 control register 2	0x00					
0x00 52D3	TIM1	TIM1_DMA1R	TIM1 DMA1 address for burst mode	0x00					
0x00 52D4 to 0x00 52DF		F	Reserved area (12 bytes)						
0x00 52E0		TIM4_CR1	TIM4 control register 1	0x00					
0x00 52E1		TIM4_CR2	TIM4 control register 2	0x00					
0x00 52E2		TIM4_SMCR	TIM4 Slave mode control register	0x00					
0x00 52E3		TIM4_DER	TIM4 DMA1 request enable register	0x00					
0x00 52E4	TIN 4 4	TIM4_IER	TIM4 Interrupt enable register	0x00					
0x00 52E5	TIM4	TIM4_SR1	TIM4 status register 1	0x00					
0x00 52E6		TIM4_EGR	TIM4 Event generation register	0x00					
0x00 52E7		TIM4_CNTR	TIM4 counter	0x00					
0x00 52E8		TIM4_PSCR	TIM4 prescaler register	0x00					
0x00 52E9		TIM4_ARR	TIM4 Auto-reload register	0x00					
0x00 52EA to 0x00 52FE		F	Reserved area (21 bytes)						
0x00 52FF	IRTIM	IR_CR	Infrared control register	0x00					
0x00 5300 to 0x00 533F		F	Reserved area (64 bytes)						
0x00 5340		ADC1_CR1	ADC1 configuration register 1	0x00					
0x00 5341		ADC1_CR2	ADC1 configuration register 2	0x00					
0x00 5342		ADC1_CR3	ADC1 configuration register 3	0x1F					
0x00 5343		ADC1_SR	ADC1 status register	0x00					
0x00 5344	1	ADC1_DRH	ADC1 data register high	0x00					
0x00 5345		ADC1_DRL	ADC1 data register low	0x00					
0x00 5346		ADC1_HTRH	ADC1 high threshold register high	0x0F					
0x00 5347	ADC1	ADC1_HTRL	ADC1 high threshold register low	0xFF					
0x00 5348	1	ADC1_LTRH	ADC1 low threshold register high	0x00					
0x00 5349	1	ADC1_LTRL	ADC1 low threshold register low	0x00					
0x00 534A	1	ADC1_SQR1	ADC1 channel sequence 1 register	0x00					
0x00 534B		ADC1_SQR2	ADC1 channel sequence 2 register	0x00					
0x00 534C		ADC1_SQR3	ADC1 channel sequence 3 register	0x00					
0x00 534D	1	ADC1_SQR4	ADC1 channel sequence 4 register	0x00					

Table 9. General hardware register map (continued)

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter		Conditions ⁽¹⁾		Тур	Max	Unit
				T _A = -40 °C to 25 °C	5.1	5.4	
				T _A = 55 °C	5.7	6	
			all peripherals OFF	T _A = 85 °C	6.8	7.5	
				T _A = 105 °C	9.2	10.4	
		LSI RC osc.		T _A = 125 °C	13.4	16.6	
		(at 38 kHz)		T _A = -40 °C to 25 °C	5.4	5.7	
			with TIM2 active ⁽²⁾	T _A = 55 °C	6.0	6.3	μΑ
				T _A = 85 °C	7.2	7.8	
				T _A = 105 °C	9.4	10.7	
	Supply current in Low			T _A = 125 °C	13.8	17	
I _{DD(LPR)}	power run mode			T _A = -40 °C to 25 °C	5.25	5.6	
			all peripherals OFF	T _A = 55 °C	5.67	6.1	
				T _A = 85 °C	5.85	6.3	
				T _A = 105 °C	7.11	7.6	
		LSE ⁽³⁾ external		T _A = 125 °C	9.84	12	
		clock (32.768 kHz)		T _A = -40 °C to 25 °C	5.59	6	
				T _A = 55 °C	6.10	6.4	
			with TIM2 active ⁽²⁾	T _A = 85 °C	6.30	7	
				T _A = 105 °C	7.55	8.4	
				T _A = 125 °C	10.1	15	

Table 22. Total current consumption and timing in Low power run mode
at V _{DD} = 1.65 V to 3.6 V

1. No floating I/Os

2. Timer 2 clock enabled and counter running

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 32 In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter		Conditions ⁽¹⁾		Тур	Max	Unit
				T_A = -40 °C to 25 °C	3	3.3	
				T _A = 55 °C	3.3	3.6	
			all peripherals OFF	T _A = 85 °C	4.4	5	
				T _A = 105 °C	6.7	8	
		LSI RC osc.		T _A = 125 °C	11	14	
		(at 38 kHz)		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	3.4	3.7	
Sur				T _A = 55 °C	3.7	4	
	Supply current in Low power wait mode		with TIM2 active ⁽²⁾	T _A = 85 °C	4.8	5.4	μΑ
				T _A = 105 °C	7	8.3	
I _{DD(LPW)}				T _A = 125 °C	11.3	14.5	
·DD(LPVV)				$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	2.35	2.7	
			all peripherals OFF	T _A = 55 °C	2.42	2.82	
				T _A = 85 °C	3.10	3.71	
				T _A = 105 °C	4.36	5.7	
		LSE external clock ⁽³⁾		T _A = 125 °C	7.20	11	
		(32.768 kHz)		T_A = -40 °C to 25 °C	2.46	2.75	
		,		T _A = 55 °C	2.50	2.81	
			with TIM2 active ⁽²⁾	T _A = 85 °C	3.16	3.82	
				T _A = 105 °C	4.51	5.9	
				T _A = 125 °C	7.28	11	

Table 23. Total cu	rrent consumption in Low power wait mode at V_{DD} =	1.65	V to 3	.6 V	

1. No floating I/Os.

2. Timer 2 clock enabled and counter is running.

Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 32.

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter		Conditio	ns ⁽¹⁾	Тур	Max	Unit
				T_A = -40 °C to 25 °C	0.9 2.1		
				T _A = 55 °C	1.2	3	
			LCD OFF ⁽²⁾	T _A = 85 °C	1.5	3.4	
				T _A = 105 °C	2.6	6.6	
				T _A = 125 °C	5.1	12	
				T_A = -40 °C to 25 °C	1.4	3.1	
			LCD ON (static duty/	T _A = 55 °C	1.5	3.3	
	Supply current in Active-halt mode	LSI RC (at 38 kHz)	external V _{LCD}) ⁽³⁾ LCD ON (1/4 dutv/	T _A = 85 °C	1.9	4.3	μΑ
				T _A = 105 °C	2.9	6.8	
I _{DD(AH)}				T _A = 125 °C	5.5	13	
'DD(AH)				T_A = -40 °C to 25 °C	1.9	4.3	
				T _A = 55 °C	1.95	4.4	
				T _A = 85 °C	2.4	5.4	
				T _A = 105 °C	3.4	7.6	
				T _A = 125 °C	6.0	15	
				T_A = -40 °C to 25 °C	3.9	8.75	
			LCD ON (1/4 duty/	T _A = 55 °C	4.15	9.3	
			internal	T _A = 85 °C	4.5	10.2	
			V _{LCD}) ⁽⁵⁾	T _A = 105 °C	5.6	13.5	
				T _A = 125 °C	6.8	16.3	

Table 24. Total current consumption and timing in Active-halt mode at V_{DD} = 1.65 V to 3.6 V

Symbol	Parameter		Conditio	ns ⁽¹⁾	Тур	Max	Unit
				T_A = -40 °C to 25 °C	0.5	1.2	
				T _A = 55 °C	0.62	1.4	
			LCD OFF ⁽⁷⁾	T _A = 85 °C	0.88	2.1	
				T _A = 105 °C	2.1	4.85	
				T _A = 125 °C	4.8	11	
				$T_A = -40 \degree C$ to 25 $\degree C$	0.85	1.9	
			LCD ON (static duty/	T _A = 55 °C	0.95	2.2	
			external	T _A = 85 °C	1.3	3.2	
		LSE external	V _{LCD}) ⁽³⁾	T _A = 105 °C	2.3	5.3	
I	Supply current in	clock		T _A = 125 °C	5.0	12	
I _{DD(AH)}	Active-halt mode	(32.768 kHz) (6)	LCD ON (1/4 duty/ external V _{LCD}) ⁽⁴⁾ LCD ON (1/4 duty/ internal	$T_A = -40 \text{ °C to } 25 \text{ °C}$	1.5	2.5	μA 2.5 3.8 4.2 7.0 14 7.6 8.3
				T _A = 55 °C	1.6	3.8	
				T _A = 85 °C	1.8	4.2	
				T _A = 105 °C	2.9	7.0	
				T _A = 125 °C	5.7	14	
				$T_A = -40 \degree C$ to 25 $\degree C$	3.4	7.6	
				T _A = 55 °C	3.7	8.3	
				T _A = 85 °C	3.9	9.2	-
			V _{LCD}) ⁽⁵⁾	T _A = 105 °C	5.0	14.5	
				T _A = 125 °C	6.3	15.2	
I _{DD(WUFAH)}	Supply current during wakeup time from Active-halt mode (using HSI)			-	2.4	-	mA
t _{WU_HSI(AH)} ⁽⁸⁾⁽⁹⁾	Wakeup time from Active-halt mode to Run mode (using HSI)			-	4.7	7	μs
t _{WU_LSI(AH)} ⁽⁸⁾ (9)	Wakeup time from Active-halt mode to Run mode (using LSI)	-	-	-	150	-	μs

Table 24. Total current consumption and timing in Active-halt mode at V_{DD} = 1.65 V to 3.6 V

1. No floating I/O, unless otherwise specified.

2. RTC enabled. Clock source = LSI

3. RTC enabled, LCD enabled with external V_{LCD} = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.

4. RTC enabled, LCD enabled with external V_{LCD} , 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

LCD enabled with internal LCD booster V_{LCD} = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to *Table 32*.

7. RTC enabled. Clock source = LSE.

8. Wakeup time until start of interrupt vector fetch.

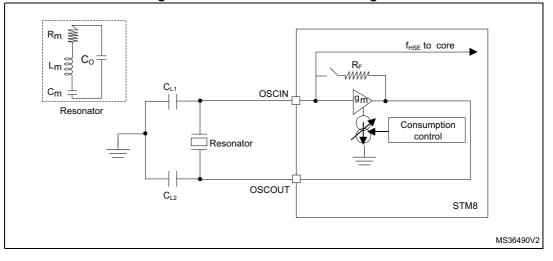
The first word of interrupt routine is fetched 4 CPU cycles after t_{WU} .

9. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

DocID15962 Rev 15

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE}	High speed external oscillator frequency	-	1	-	16	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
C ⁽¹⁾	Recommended load capacitance (2)	-	-	20	-	pF
	HSE oscillator power consumption	C = 20 pF, f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized) ⁽³⁾	mA
IDD(HSE)		C = 10 pF, f _{OSC} =16 MHz	-	-	2.5 (startup) 0.46 (stabilized) ⁽³⁾	
9 _m	Oscillator transconductance	-	3.5 ⁽³⁾	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized	-	1	-	ms

1. $C=C_{L1}=C_{L2}$ is approximately equivalent to 2 x crystal C_{LOAD} .

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Data guaranteed by design.

t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 17. HSE oscillator circuit diagram

Electrical parameters

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit		
		Input voltage on true open-drain pins (PC0 and PC1)	V _{SS} -0.3	-	0.3 x V _{DD}			
V _{IL}	Input low level voltage ⁽²⁾	Input voltage on five-volt tolerant (FT) pins (PA7 and PE0)	V _{SS} -0.3	-	0.3 x V _{DD}	V		
		Input voltage on 3.6 V tolerant (TT) pins	V _{SS} -0.3	-	0.3 x V _{DD}			
		Input voltage on any other pin	V _{SS} -0.3	-	0.3 x V _{DD}			
		Input voltage on true open-drain pins (PC0 and PC1) with V _{DD} < 2 V	0.70 x V _{DD}	-	5.2			
	Input high level voltage ⁽²⁾	Input voltage on true open-drain pins (PC0 and PC1) with $V_{DD} \ge 2 V$	0.70 x V _{DD}	-	5.5	V		
V _{IH}		Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with V_{DD} < 2 V		-	5.2			
		Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with $V_{DD} \ge 2 V$	0.70 x V _{DD}	-	5.5			
		Input voltage on 3.6 V tolerant (TT) pins		-	3.6			
		Input voltage on any other pin	0.70 x V _{DD}	-	V _{DD} +0.3	1		
V _{hys}	Schmitt trigger voltage	I/Os	-	200	-	mV		
• nys	hysteresis ⁽³⁾	True open drain I/Os	-	200	-	IIIV		
	Input leakage current ⁽⁴⁾	V _{SS} ⊴V _{IN} ⊴V _{DD} High sink I/Os	-	-	50 ⁽⁵⁾			
l _{ikg}		V _{SS} ⊴V _{IN} ⊴V _{DD} True open drain I/Os	-	-	200 ⁽⁵⁾	nA		
		V _{SS} ≤V _{IN} ≤V _{DD} PA0 with high sink LED driver capability	-	-	200 ⁽⁵⁾			
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾⁽⁶⁾	V _{IN} =V _{SS}	30	45	60	kΩ		
C _{IO}	I/O pin capacitance	-	-	5	-	pF		

Table 38. I/O st	atic characteristics
------------------	----------------------

1. V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.

2. Data based on characterization results.

3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

5. Not tested in production.

DocID15962 Rev 15

 R_{PU} pull-up equivalent resistor based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 24).

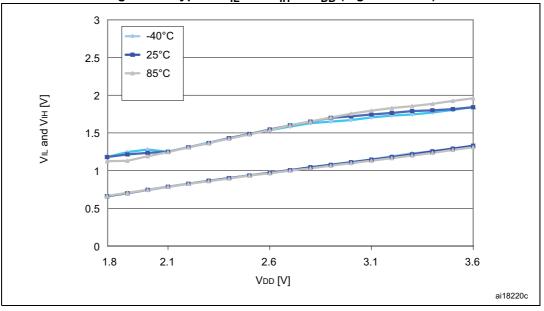


Figure 21. Typical V_{IL} and $V_{IH}\, vs \, V_{DD}$ (high sink I/Os)

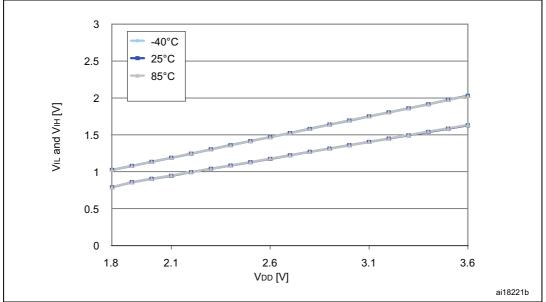


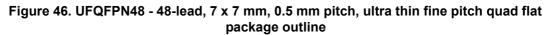
Figure 22. Typical V_{IL} and V_{IH} vs V_{DD} (true open drain I/Os)

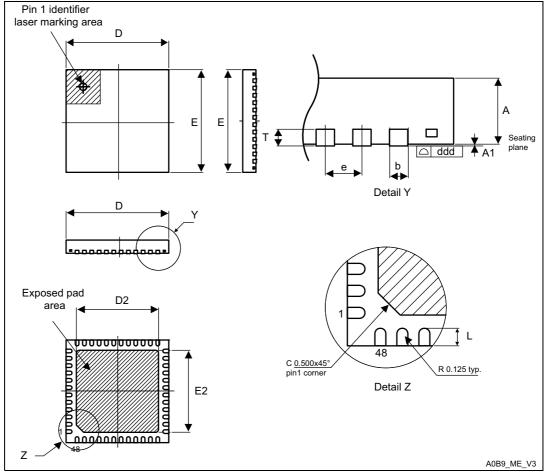
9.3.9 LCD controller (STM8L152xx only)

In the following table, data is guaranteed by design. Not tested in production.

Symbol	Parameter	Min	Тур	Max.	Unit
V_{LCD}	LCD external voltage	-	-	3.6	V
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-	V
V _{LCD1}	LCD internal reference voltage 1	-	2.7	-	V
V _{LCD2}	LCD internal reference voltage 2	-	2.8	-	V
V _{LCD3}	LCD internal reference voltage 3	-	2.9	-	V
V _{LCD4}	LCD internal reference voltage 4	-	3.0	-	V
V_{LCD5}	LCD internal reference voltage 5	-	3.1	-	V
V _{LCD6}	LCD internal reference voltage 6	-	3.2	-	V
V _{LCD7}	LCD internal reference voltage 7	-	3.3	-	V
C _{EXT}	V _{LCD} external capacitance	0.1	-	2	μF
Supply current ⁽¹⁾ at V _{DD} = 1.8 V		-	3	-	μA
I _{DD} Supply current ⁽¹⁾ at V _{DD} = 3 V		-	3	-	μA
R _{HN} ⁽²⁾	High value resistive network (low drive)	-	6.6	-	MΩ
$R_{LN}^{(3)}$	Low value resistive network (high drive)	-	360	-	kΩ
V ₃₃	Segment/Common higher level voltage	-	-	V _{LCDx}	V
V ₂₃	Segment/Common 2/3 level voltage	-	2/3V _{LCDx}	-	V
V ₁₂	Segment/Common 1/2 level voltage	-	1/2V _{LCDx}	-	V
V ₁₃	Segment/Common 1/3 level voltage	-	1/3V _{LCDx}	-	V
V ₀	Segment/Common lowest level voltage	0	-	-	V

1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected.


2. $\ R_{HN}$ is the total high value resistive network.


3. R_{LN} is the total low value resistive network.

VLCD external capacitor (STM8L152xx only)

The application can achieve a stabilized LCD reference voltage by connecting an external capacitor C_{EXT} to the V_{LCD} pin. C_{EXT} is specified in *Table 45*.

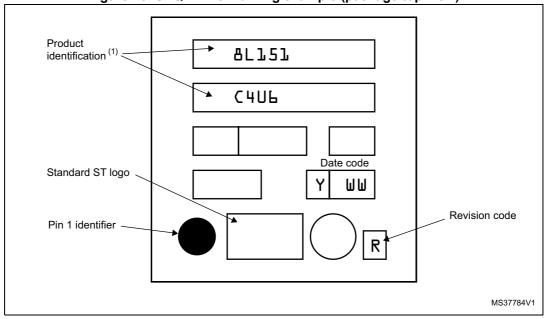
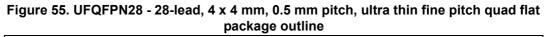
10.3 UFQFPN48 package information

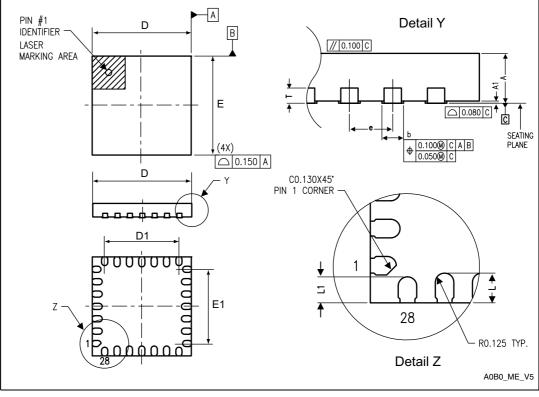
1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.


Figure 48. UFQFPN48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.6 UFQFPN28 package information

1. Drawing is not to scale.

Table 66. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
package mechanical data ⁽¹⁾	

Symbol	millimeters			inches				
Symbol	Min	Тур	Мах	Min	Тур	Мах		
А	0.500	0.550	0.600	0.0197	0.0217	0.0236		
A1	-	0.000	0.050	-	0.0000	0.0020		
D	3.900	4.000	4.100	0.1535	0.1575	0.1614		
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220		
E	3.900	4.000	4.100	0.1535	0.1575	0.1614		
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220		
L	0.300	0.400	0.500	0.0118	0.0157	0.0197		
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177		
Т	-	0.152	-	-	0.0060	-		
b	0.200	0.250	0.300	0.0079	0.0098	0.0118		
е	-	0.500	-	-	0.0197	-		

DocID15962 Rev 15

11 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Figure 60. Medium-density	/ STM8L15x ordering	g information scheme
---------------------------	---------------------	----------------------

Example:	STM8	L	151	С	4	U	6	TR
Product class STM8 microcontroller								
Family type L = Low power	 							
Sub-family type								
151 = Ultra-low-power 152 = Ultra-low-power with LCD								
Pin count								
C = 48 pins								
K = 32 pins								
G = 28 pins								
Program memory size								
4 = 16 Kbyte								
6 = 32 Kbyte								
Package								
U = UFQFPN								
T = LQFP								
Y = WLCSP								
Temperature range								
3 = - 40 °C to 125 °C								
7 = - 40 °C to 105 °C								
6 = - 40 °C to 85 °C								
Delivery								
TR = Tape & Reel								

1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please contact the ST sales office nearest to you.

Date	Revision	Changes			
23-Jul-2010	5	Modified Introduction and Description. Modified Table: Legend/abbreviation for table 5 and Table: Medium density STM8L15x pin description (for PA0, PA1, PB0 and PB4 and for reset states in the floating input column) Modified Figure: Low density STM8L151xx device block diagram, Figure: Low density STM8L151xx device block diagram, Figure: Low power modes and Figure : Low power real-time clock. Modified CLK_PCKENR2 and CLK_HSICALR reset values in Table: General hardware register map. Modified notes below Figure: Memory map. Modified Table: Voltage characteristics and Table: Current characteristics. Modified Table: Voltage characteristics and Table: Current characteristics. Modified Table: Total current consumption in Wait mode. Modified Figure Typical application with I2C bus and timing diagram 1). Modified R _H and R _L in Table: LCD characteristics. Added graphs in Section: Electrical parameters. Modified note 3 below Table: Reference voltage characteristics. Modified note 1 below Table: TS characteristics. Changed V _{ESD(CDM)} value in Table: ESD absolute maximum ratings. Updated notes for UFQFPN32 and UFQFPN48			
11-Mar-2011	6	Modified note on true open drain I/Os and I/O level columns in <i>Table: Medium density STM8L15x pin</i> <i>description.</i> Remapping option removed for USART1_TX, USART1_RX, and USART1_CK on PC2, PC3 and PC4 in <i>Table: Medium density STM8L15x pin description.</i> Modified IDWDG_KR reset value in <i>Table: General</i> <i>hardware register map.</i> Replaced VREF_OUT with VREFINT and TIMx_TRIG with TIMx_ETR. Added <i>Table: Factory conversion registers.</i> Modified reset values for TIM1_DCR1, IWDG_KR, RTC_DR1, RTC_APRER, RTC_WUTRH, and RTC_WUTRL in <i>Table: General hardware register map.</i> Added notes to certain values in <i>Section: Embedded</i> <i>reference voltage</i> and <i>Section: Temperature sensor.</i>			

