

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 21x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l152k6u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The medium-density STM8L151x4/6 and STM8L152x4/6 devices are members of the STM8L ultra-low-power 8-bit family. The medium-density STM8L15x family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85 °C and -40 to +125 °C temperature ranges.

The medium-density STM8L15x ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-Application debugging and ultra-fast Flash programming.

All medium-density STM8L15x microcontrollers feature embedded data EEPROM and low-power, low-voltage, single-supply program Flash memory.

They incorporate an extensive range of enhanced I/Os and peripherals.

The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

Six different packages are proposed from 28 to 48 pins. Depending on the device chosen, different sets of peripherals are included.

All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

2.1 Device overview

Table 2. Medium-density STM8L151x4/6 and STM8L152x4/6 low-power device features and peripheral counts

Features			L151Gx	STM8L15xKx		STM8L15xCx	
Flash (Kbyte)	16	32	16	32	16	32	
Data EEPROM ((Kbyte)		I		1	I	
RAM (Kbyte)					2		
LCD			No	4x1	7 ⁽¹⁾	4x2	8 ⁽¹⁾
	Basic			3)	1 3-bit)		
Timers	General purpose			(1	2 6-bit)		
	Advanced control			(1	1 6-bit)		
	SPI				1		
Communication interfaces	12C	1					
	USART	1					
GPIOs	·	26 ⁽³⁾		30 ⁽²⁾⁽³⁾ or 29 ⁽¹⁾⁽³⁾		41 ⁽³⁾	
12-bit synchroniz (number of chan		(1 18)		1 or 21 ⁽¹⁾)		1 25)
12-Bit DAC (number of chan	nels)				1 (1)		
Comparators CC	MP1/COMP2	2					
Others		RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator					
CPU frequency		16 MHz					
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power down)					
Operating tempe	erature		-40 to +8	85 °C/ -40 to -	+105 °C / -40	to +125 °C	
Packages		0.6 mm	N28 (4x4; thickness) CSP28	UFQFPN	32(7x7) \32 (5x5; hickness)	UFQFP	P48 V48 (4x4; hickness)

1. STM8L152xx versions only

2. STM8L151xx versions only

3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).

IWDG: Independent watchdog LCD: Liquid crystal display POR/PDR: Power on reset / power down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog

3.1 Low-power modes

The medium-density STM8L151x4/6 and STM8L152x4/6 devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- Wait mode: The CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt, event or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Wait consumption: refer to *Table 21*.
- Low power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset.

All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power run mode consumption: refer to *Table 22*.

- Low power wait mode: This mode is entered when executing a Wait for event in Low power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power wait mode consumption: refer to *Table 23*.
- Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Active-halt consumption: refer to *Table 24* and *Table 25*.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. Halt consumption: refer to *Table 26*.

3.19 Development support

Development tools

Development tools for the STM8 microcontrollers include:

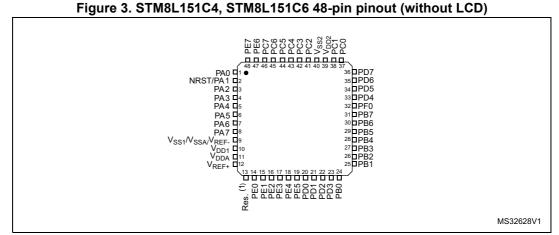
- The STice emulation system offering tracing and code profiling
- The STVD high-level language debugger including C compiler, assembler and integrated development environment
- The STVP Flash programming software

The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

Single wire data interface (SWIM) and debug module

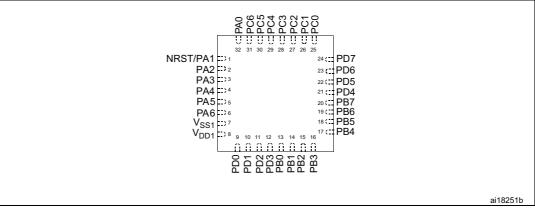
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming.

The single-wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes.

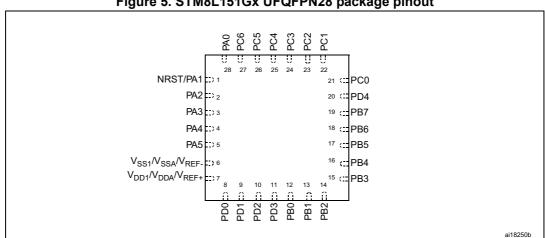

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in real-time by means of shadow registers.

Bootloader

A bootloader is available to reprogram the Flash memory using the USART1 interface. The reference document for the bootloader is *UM0560: STM8 bootloader user manual*.



Pinout and pin description 4



Reserved. Must be tied to V_{DD}. 1.

1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.

Figure 5. STM8L151Gx UFQFPN28 package pinout

DocID15962 Rev 15

Table 9. General hardware register map (continued)						
Address	Block	Register label	Register name	Reset status		
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00		
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00		
0x00 50A2		EXTI_CR3	External interrupt control register 3	0x00		
0x00 50A3	ITC - EXTI	EXTI_SR1	External interrupt status register 1	0x00		
0x00 50A4		EXTI_SR2	External interrupt status register 2	0x00		
0x00 50A5		EXTI_CONF1	External interrupt port select register 1	0x00		
0x00 50A6		WFE_CR1	WFE control register 1	0x00		
0x00 50A7	WFE	WFE_CR2	WFE control register 2	0x00		
0x00 50A8		WFE_CR3	WFE control register 3	0x00		
0x00 50A9 to 0x00 50AF		F	Reserved area (7 bytes)			
0x00 50B0	RST	RST_CR	Reset control register	0x00		
0x00 50B1	- KOT	RST_SR	Reset status register	0x01		
0x00 50B2	PWR	PWR_CSR1	Power control and status register 1	0x00		
0x00 50B3		PWR_CSR2	Power control and status register 2	0x00		
0x00 50B4 to 0x00 50BF		R	Reserved area (12 bytes)			
0x00 50C0		CLK_DIVR	Clock master divider register	0x03		
0x00 50C1		CLK_CRTCR	Clock RTC register	0x00		
0x00 50C2		CLK_ICKR	Internal clock control register	0x11		
0x00 50C3		CLK_PCKENR1	Peripheral clock gating register 1	0x00		
0x00 50C4		CLK_PCKENR2	Peripheral clock gating register 2	0x80		
0x00 50C5		CLK_CCOR	Configurable clock control register	0x00		
0x00 50C6		CLK_ECKR	External clock control register	0x00		
0x00 50C7	CLK	CLK_SCSR	System clock status register	0x01		
0x00 50C8		CLK_SWR	System clock switch register	0x01		
0x00 50C9		CLK_SWCR	Clock switch control register	0bxxxx0000		
0x00 50CA		CLK_CSSR	Clock security system register	0x00		
0x00 50CB	1	CLK_CBEEPR	Clock BEEP register	0x00		
0x00 50CC	1	CLK_HSICALR	HSI calibration register	0xxx		
0.00.5000	1	CLK_HSITRIMR	HSI clock calibration trimming register	0x00		
0x00 50CD						
0x00 50CD 0x00 50CE	-	CLK_HSIUNLCKR	HSI unlock register	0x00		

Table 9. General	hardware	register ma	ap ((continued)

Address	Block	Register label	Register name	Reset	
Audress	BIOCK	Register laber		status	
0x00 5200		SPI1_CR1	SPI1 control register 1	0x00	
0x00 5201]	SPI1_CR2	SPI1 control register 2	0x00	
0x00 5202]	SPI1_ICR	SPI1 interrupt control register	0x00	
0x00 5203	SPI1	SPI1_SR	SPI1 status register	0x02	
0x00 5204	- 3511	SPI1_DR	SPI1 data register	0x00	
0x00 5205		SPI1_CRCPR	SPI1 CRC polynomial register	0x07	
0x00 5206		SPI1_RXCRCR	SPI1 Rx CRC register	0x00	
0x00 5207		SPI1_TXCRCR	SPI1 Tx CRC register	0x00	
0x00 5208 to 0x00 520F		I	Reserved area (8 bytes)		
0x00 5210		I2C1_CR1	I2C1 control register 1	0x00	
0x00 5211		I2C1_CR2	I2C1 control register 2	0x00	
0x00 5212		I2C1_FREQR	I2C1 frequency register	0x00	
0x00 5213		I2C1_OARL	I2C1 own address register low	0x00	
0x00 5214		I2C1_OARH	I2C1 own address register high	0x00	
0x00 5215			Reserved (1 byte)		
0x00 5216		I2C1_DR	I2C1 data register	0x00	
0x00 5217	I2C1	I2C1_SR1	I2C1 status register 1	0x00	
0x00 5218		I2C1_SR2	I2C1 status register 2	0x00	
0x00 5219		I2C1_SR3	I2C1 status register 3	0x0x	
0x00 521A		I2C1_ITR	I2C1 interrupt control register	0x00	
0x00 521B]	I2C1_CCRL	I2C1 clock control register low	0x00	
0x00 521C]	I2C1_CCRH	I2C1 clock control register high	0x00	
0x00 521D	1	I2C1_TRISER	I2C1 TRISE register	0x02	
0x00 521E	1	I2C1_PECR	I2C1 packet error checking register	0x00	
0x00 521F to 0x00 522F		Reserved area (17 bytes)			

	h	
Table 9. General	hardware register m	ap (continued)

Address	Block	Register label	Register name	Reset status
0x00 5230		USART1_SR	USART1 status register	0xC0
0x00 5231		USART1_DR	USART1 data register	undefined
0x00 5232		USART1_BRR1	USART1 baud rate register 1	0x00
0x00 5233		USART1_BRR2	USART1 baud rate register 2	0x00
0x00 5234		USART1_CR1	USART1 control register 1	0x00
0x00 5235	USART1	USART1_CR2	USART1 control register 2	0x00
0x00 5236		USART1_CR3	USART1 control register 3	0x00
0x00 5237		USART1_CR4	USART1 control register 4	0x00
0x00 5238		USART1_CR5	USART1 control register 5	0x00
0x00 5239		USART1_GTR	USART1 guard time register	0x00
0x00 523A		USART1_PSCR	USART1 prescaler register	0x00
0x00 523B to 0x00 524F		Я	Reserved area (21 bytes)	

	-					
Table 9	General	hardware	register	man	(continued)	
	Contortai	indi di titul c	register	map	(continued)	

Address	Block	Register label	Register name	Reset status
0x00 52B0		TIM1_CR1	TIM1 control register 1	0x00
0x00 52B1		TIM1_CR2	TIM1 control register 2	0x00
0x00 52B2		TIM1_SMCR	TIM1 Slave mode control register	0x00
0x00 52B3		TIM1_ETR	TIM1 external trigger register	0x00
0x00 52B4		TIM1_DER	TIM1 DMA1 request enable register	0x00
0x00 52B5		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 52B6		TIM1_SR1	TIM1 status register 1	0x00
0x00 52B7		TIM1_SR2	TIM1 status register 2	0x00
0x00 52B8		TIM1_EGR	TIM1 event generation register	0x00
0x00 52B9		TIM1_CCMR1	TIM1 Capture/Compare mode register 1	0x00
0x00 52BA		TIM1_CCMR2	TIM1 Capture/Compare mode register 2	0x00
0x00 52BB		TIM1_CCMR3	TIM1 Capture/Compare mode register 3	0x00
0x00 52BC		TIM1_CCMR4	TIM1 Capture/Compare mode register 4	0x00
0x00 52BD		TIM1_CCER1	TIM1 Capture/Compare enable register 1	0x00
0x00 52BE		TIM1_CCER2	TIM1 Capture/Compare enable register 2	0x00
0x00 52BF		TIM1_CNTRH	TIM1 counter high	0x00
0x00 52C0		TIM1_CNTRL	TIM1 counter low	0x00
0x00 52C1	TIM1	TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 52C2		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 52C3		TIM1_ARRH	TIM1 Auto-reload register high	0xFF
0x00 52C4		TIM1_ARRL	TIM1 Auto-reload register low	0xFF
0x00 52C5		TIM1_RCR	TIM1 Repetition counter register	0x00
0x00 52C6		TIM1_CCR1H	TIM1 Capture/Compare register 1 high	0x00
0x00 52C7		TIM1_CCR1L	TIM1 Capture/Compare register 1 low	0x00
0x00 52C8		TIM1_CCR2H	TIM1 Capture/Compare register 2 high	0x00
0x00 52C9		TIM1_CCR2L	TIM1 Capture/Compare register 2 low	0x00
0x00 52CA		TIM1_CCR3H	TIM1 Capture/Compare register 3 high	0x00
0x00 52CB	1	TIM1_CCR3L	TIM1 Capture/Compare register 3 low	0x00
0x00 52CC		TIM1_CCR4H	TIM1 Capture/Compare register 4 high	0x00
0x00 52CD		TIM1_CCR4L	TIM1 Capture/Compare register 4 low	0x00
0x00 52CE		TIM1_BKR	TIM1 break register	0x00
0x00 52CF		TIM1_DTR	TIM1 dead-time register	0x00
0x00 52D0		TIM1_OISR	TIM1 output idle state register	0x00
0x00 52D1	1	TIM1_DCR1	DMA1 control register 1	0x00

Table 9, Ge	neral hardware	register map	(continued)
	norur nurumuro	, register map	(continued)

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power line (source)	80	
I _{VSS}	Total current out of V _{SS} ground line (sink)	80	
	Output current sunk by IR_TIM pin (with high sink LED driver capability)	80	mA
Ι _{ΙΟ}	Output current sunk by any other I/O and control pin	25	
	Output current sourced by any I/Os and control pin	- 25	
	Injected current on true open-drain pins (PC0 and PC1) ⁽¹⁾	- 5 / +0	
I	Injected current on five-volt tolerant (FT) pins (PA7 and PE0) $^{(1)}$	- 5 / +0	mA
I _{INJ} (PIN)	Injected current on 3.6 V tolerant (TT) pins ⁽¹⁾	- 5 / +0	ША
	Injected current on any other pin ⁽²⁾	- 5 / +5	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) $^{(3)}$	± 25	

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 15*. for maximum allowed input voltage values.

2. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 15*. for maximum allowed input voltage values.

3. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
ТJ	Maximum junction temperature	150	

Table 17. Thermal characteristics

Symbol	Parameter	Condition	Тур	Unit			
	Oursels summaries days		V _{DD} = 1.8 V	48			
I _{DD(RST)}	Supply current under external reset ⁽¹⁾	All pins are externally tied to V _{DD}	V _{DD} = 3 V	76	μΑ		
	external reset		V _{DD} = 3.6 V	91			

Table 28. Current consumption under external reset

1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	External clock source frequency ⁽¹⁾		1	-	16	MHz
V _{HSEH}	OSC_IN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	0.3 x V _{DD}	v
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	2.6	-	pF
I _{LEAK_HSE}	OSC_IN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-	-	±1	μA

Table 29. HSE external clock characteristics

1. Data guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 30. LSE external clock characteristics	Table	30.	LSE	external	clock	characteristics
--	-------	-----	-----	----------	-------	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSE_ext}	External clock source frequency ⁽¹⁾	-	32.768	-	kHz
V _{LSEH} ⁽²⁾	OSC32_IN input pin high level voltage	0.7 x V _{DD}	-	V _{DD}	V
V _{LSEL} ⁽²⁾	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 x V _{DD}	v
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-	-	±1	μA

1. Data guaranteed by design.

2. Data based on characterization results.

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 R_m : Motional resistance (see crystal specification), L_m : Motional inductance (see crystal specification), C_m : Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), CL_1=C_{L2}=C: Grounded external capacitance $g_m >> g_{mcrit}$

LSE crystal/ceramic resonator oscillator

The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz
R _F	Feedback resistor	∆V = 200 mV	-	1.2	-	MΩ
C ⁽¹⁾	Recommended load capacitance (2)	-	-	8	-	pF
	LSE oscillator power consumption	-	-	-	1.4 ⁽³⁾	μA
1		V _{DD} = 1.8 V	-	450	-	
IDD(LSE)		V _{DD} = 3 V	-	600	-	nA
		V _{DD} = 3.6 V	-	750	-	
9 _m	Oscillator transconductance	-	3 ⁽³⁾	-	-	µA/V
$t_{SU(LSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	1	-	S

Table 32. LSE	oscillator	characteristics
---------------	------------	-----------------

1. C=C_{L1}=C_{L2} is approximately equivalent to 2 x crystal C_{LOAD}.

 The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R_m value. Refer to crystal manufacturer for more details.

3. Data guaranteed by design.

 t_{SU/LSE} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

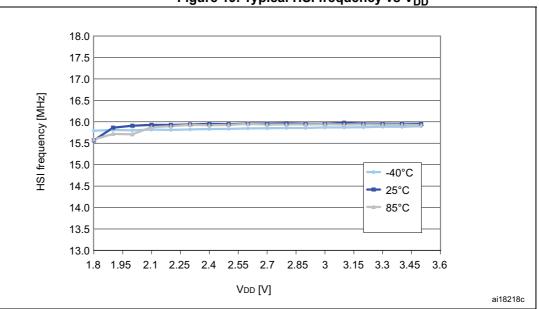


Figure 19. Typical HSI frequency vs V_{DD}

Low speed internal RC oscillator (LSI)

In the following table, data is based on characterization results, not tested in production.

Symbol	Parameter ⁽¹⁾	Conditions ⁽¹⁾	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	26	38	56	kHz
t _{su(LSI)}	LSI oscillator wakeup time	-	-	-	200 ⁽²⁾	μs
I _{DD(LSI)}	LSI oscillator frequency drift ⁽³⁾	0 °C ≤T _A ≤ 85 °C	-12	-	11	%

Table 34. LSI oscillator characteristics

1. V_{DD} = 1.65 V to 3.6 V, T_A = -40 to 125 $^\circ C$ unless otherwise specified.

2. Guaranteed by design.

3. This is a deviation for an individual part, once the initial frequency has been measured.

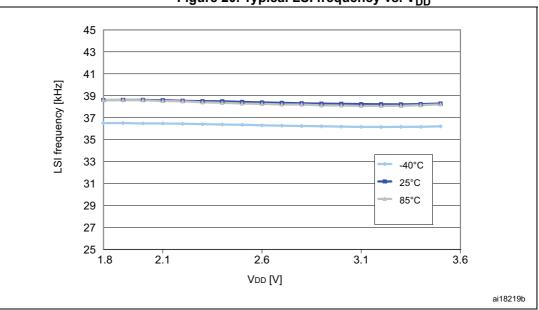


Figure 20. Typical LSI frequency vs. V_{DD}

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾ Yus V _{OL} ⁽²⁾			I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	V
	Output low lovel voltage for an I/O pin	I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	V	
			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	0.7	V
		$V_{OH}^{(2)}$ Output high level voltage for an I/O pin	I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	V
	V _{OH} ⁽²⁾		I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -0.7	-	V

Table 39. Output driving current (high sink por	'ts)
---	------

The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
drain	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V
Open	VOL		I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V

Table 40. Output driving current (true open drain ports)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

I/О Туре	Symbol	Parameter	Conditions	Min	Max	Unit
R	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.45	V

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

9.3.11 Temperature sensor

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Min	Тур	Max.	Unit
V ₉₀ ⁽¹⁾	Sensor reference voltage at 90°C ±5 °C,	0.580	0.597	0.614	V
TL	V _{SENSOR} linearity with temperature	-	±1	±2	°C
Avg_slope (2)	Average slope	1.59	1.62	1.65	mV/°C
I _{DD(TEMP)} ⁽²⁾	Consumption	-	3.4	6	μA
T _{START} ⁽²⁾⁽³⁾	Temperature sensor startup time	-	-	10	μs
T _{S_TEMP} ⁽²⁾	ADC sampling time when reading the temperature sensor	10	-	-	μs

Table 47.	тs	characteristics
10.010 111		

 Tested in production at V_{DD} = 3 V ±10 mV. The 8 LSB of the V₉₀ ADC conversion result are stored in the TS_Factory_CONV_V90 byte.

- 2. Data guaranteed by design.
- 3. Defined for ADC output reaching its final value $\pm 1/2LSB$.

9.3.12 Comparator characteristics

In the following table, data is guaranteed by design, not tested in production, unless otherwise specified.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	1.65	-	3.6	V	
T _A	Temperature range	-40	-	125	°C	
R _{400K}	R _{400K} value	300	400	500	kΩ	
R _{10K}	R _{10K} value	7.5	10	12.5		
V _{IN}	Comparator 1 input voltage range	0.6	-	V _{DDA}	V	
V _{REFINT}	Internal reference voltage ⁽²⁾	1.202	1.224	1.242		
t _{START}	Comparator startup time	-	7	10		
t _d	Propagation delay ⁽³⁾	-	3	10	μs	
V _{offset}	Comparator offset error	-	±3	±10	mV	
I _{COMP1}	Current consumption ⁽⁴⁾	-	160	260	nA	

Table 48. Comparator 1 characteristics

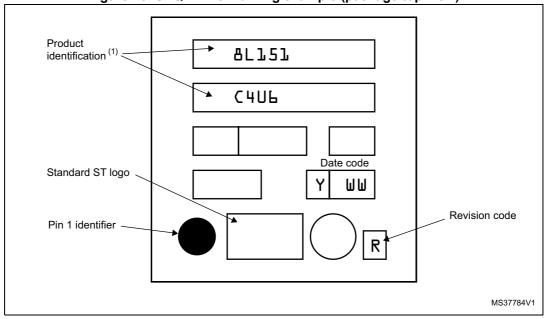
1. Based on characterization.

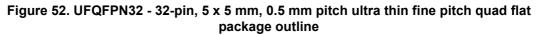
2. Tested in production at V_{DD} = 3 V ±10 mV.

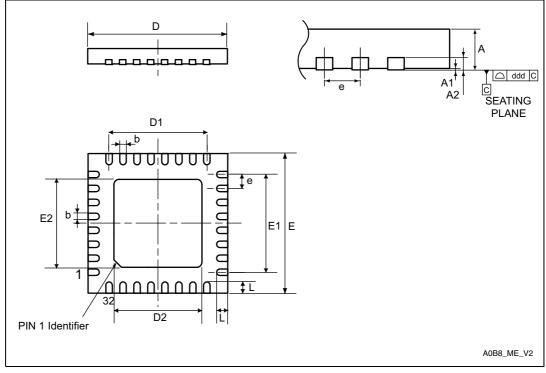
- 3. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
- 4. Comparator consumption only. Internal reference voltage not included.

Device marking

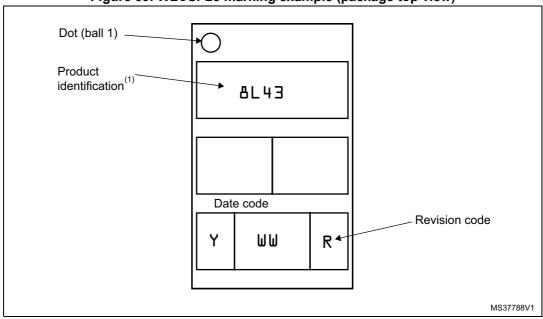
The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.




Figure 48. UFQFPN48 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Samples to run qualification activity.


10.5 UFQFPN32 package information

1. Drawing is not to scale.

Figure 59. WLCSP28 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Date	Revision	Changes		
23-Jul-2010	5	Modified Introduction and Description. Modified Table: Legend/abbreviation for table 5 and Table: Medium density STM8L15x pin description (for PA0, PA1, PB0 and PB4 and for reset states in the floating input column) Modified Figure: Low density STM8L151xx device block diagram, Figure: Low density STM8L151xx device block diagram, Figure: Low power modes and Figure : Low power real-time clock. Modified CLK_PCKENR2 and CLK_HSICALR reset values in Table: General hardware register map. Modified notes below Figure: Memory map. Modified Table: Voltage characteristics and Table: Current characteristics. Modified Table: Voltage characteristics and Table: Current characteristics. Modified Table: Total current consumption in Wait mode. Modified Figure Typical application with I2C bus and timing diagram 1). Modified R _H and R _L in Table: LCD characteristics. Added graphs in Section: Electrical parameters. Modified note 3 below Table: Reference voltage characteristics. Modified note 1 below Table: TS characteristics. Changed V _{ESD(CDM)} value in Table: ESD absolute maximum ratings. Updated notes for UFQFPN32 and UFQFPN48		
11-Mar-2011	6	Modified note on true open drain I/Os and I/O level columns in <i>Table: Medium density STM8L15x pin</i> <i>description.</i> Remapping option removed for USART1_TX, USART1_RX, and USART1_CK on PC2, PC3 and PC4 in <i>Table: Medium density STM8L15x pin description.</i> Modified IDWDG_KR reset value in <i>Table: General</i> <i>hardware register map.</i> Replaced VREF_OUT with VREFINT and TIMx_TRIG with TIMx_ETR. Added <i>Table: Factory conversion registers.</i> Modified reset values for TIM1_DCR1, IWDG_KR, RTC_DR1, RTC_APRER, RTC_WUTRH, and RTC_WUTRL in <i>Table: General hardware register map.</i> Added notes to certain values in <i>Section: Embedded</i> <i>reference voltage</i> and <i>Section: Temperature sensor.</i>		

