E·XFL

NXP USA Inc. - DSP56301AG80 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dsp56301ag80
Supplier Device Package	208-TQFP (28x28)
Package / Case	208-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Voltage - Core	3.30V
Voltage - I/O	3.30V
On-Chip RAM	24kB
Non-Volatile Memory	ROM (9kB)
Clock Rate	80MHz
Interface	Host Interface, SSI, SCI
Туре	Fixed Point
Product Status	Obsolete

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5.3 External Bus Control

Table 1-8.	External	Bus	Control	Signals
------------	----------	-----	---------	---------

Signal Name	Туре	State During Reset	Signal Description			
AA0/ <u>RAS0</u> – AA3/RAS3	Output	Tri-stated	Address Attribute or Row Address Strobe As AA, these signals function as chip selects or additional address lines. Unlike address lines, however, the AA lines do not hold their state after a read or write operation. As RAS, these signals can be used for Dynamic Random Access Memory (DRAM) interface. These signals have programmable polarity.			
RD	Output	Tri-stated	Read Enable When the DSP is the bus master, \overline{RD} is asserted to read external memory on the data bus (D[0–23]). Otherwise, \overline{RD} is tri-stated.			
WR	Output	Tri-stated	Write Enable When the DSP is the bus master, \overline{WR} is asserted to write external memory on the data bus (D[0–23]). Otherwise, \overline{WR} is tri-stated.			
TĀ	Input	Ignored Input	Transfer AcknowledgeIf the DSP56301 is the bus master and there is no external bus activity, or the DSP56301 is not the bus master, the TA input is ignored. The TA input is a Data Transfer Acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2,, infinity) can be added to the wait states inserted by the BCR by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, asserted to enable completion of the bus cycle, and deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the Bus Control Register (BCR), whichever is longer. The BCR can set the minimum number of wait states in external bus cycles.To use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access cannot be extended by TA deassertion; otherwise improper operation may result. TA can operate synchronously or asynchronously, depending on the setting of the TAS bit in the Operating Mode Register (OMR).TA functionality cannot be used during DRAM-type accesses; otherwise improper operation may result.			
BR	Output	Output (deasserted)	Bus Request Asserted when the DSP requests bus mastership and deasserted when the DSP no longer needs the bus. BR can be asserted or deasserted independently of whether the DSP56301 is a bus master or a bus slave. Bus "parking" allows BR to be deasserted even though the DSP56301 is the bus master (see the description of bus "parking" in the BB signal description). The Bus Request Hole (BRH) bit in the BCR allows BR to be asserted under software control, even though the DSP does not need the bus. BR is typically sent to an external bus arbitrator that controls the priority, parking and tenure of each master on the same external bus. BR is affected only by DSP requests for the external bus, never for the internal bus. During hardware reset, BR is deasserted and the arbitration is reset to the bus slave state.			
BG	Input	Ignored Input	Bus Grant Must be asserted/deasserted synchronous to CLKOUT for proper operation. An external bus arbitration circuit asserts BG when the DSP56301 becomes the next bus master. When BG is asserted, the DSP56301 must wait until BB is deasserted before taking bus mastership. When BG is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution.			

Interrupt and Mode Control

1.6 Interrupt and Mode Control

The interrupt and mode control signals select the chip's operating mode as it comes out of hardware reset. After **RESET** is deasserted, these inputs are hardware interrupt request lines.

Table 1-9.	Interrupt and	Mode Control
------------	---------------	--------------

Signal Name	Туре	State During Reset	Signal Description
MODA	Input	Input	Mode Select A Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQA during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
ĪRQĀ	Input		External Interrupt Request A Internally synchronized to CLKOUT. If IRQA is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQA to exit the Wait state. If the processor is in the Stop stand-by state and IRQA is asserted, the processor exits the Stop state. These inputs are 5 V tolerant.
MODB	Input	Input	Mode Select B Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQB during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
IRQB	Input		External Interrupt Request B Internally synchronized to CLKOUT. If IRQB is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQB to exit the Wait state. If the processor is in the Stop stand-by state and IRQC is asserted, the processor will exit the Stop state.
			These inputs are 5 V tolerant.
MODC	Input	Input	Mode Select C Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQC during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
IRQC	Input		External Interrupt Request C Internally synchronized to CLKOUT. If IRQC is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQC to exit the Wait state. If the processor is in the Stop stand-by state and IRQC is asserted, the processor exits the Stop state. These inputs are 5 V tolerant.

Signal Name	Туре	State During Reset	Signal Description
SCK0	Input/Output	Input	Serial Clock Provides the serial bit rate clock for the ESSI interface for both the transmitter and receiver in Synchronous modes, or the transmitter only in Asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6 T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output		Port C 3 The default configuration following reset is GPIO. For PC3, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SCK0 through PCR0.
			This input is 5 V tolerant.
SRD0	Input/Output	Input	Serial Receive Data Receives serial data and transfers the data to the ESSI receive shift register. SRD0 is an input when data is being received.
PC4	Input or Output		Port C 4 The default configuration following reset is GPIO. For PC4, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SRD0 through PCR0.
			This input is 5 V tolerant.
STD0	Input/Output	Input	Serial Transmit Data Transmits data from the serial transmit shift register. STD0 is an output when data is being transmitted.
PC5	Input or Output		Port C 5 The default configuration following reset is GPIO. For PC5, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal STD0 through PCR0.
			This input is 5 V tolerant.

nued)
i

Signal Name	Туре	State During Reset	Signal Description
SRD1	Input/Output	Input	Serial Receive Data Receives serial data and transfers it to the ESSI receive shift register. SRD1 is an input when data is being received.
PD4	Input or Output		Port D 4 The default configuration following reset is GPIO. For PD4, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SRD1 through PCR1. This input is 5 V tolerant.
STD1	Input/Output	Input	Serial Transmit Data Transmits data from the serial transmit shift register. STD1 is an output when data is being transmitted.
PD5	Input or Output		Port D 5 The default configuration following reset is GPIO. For PD5, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal STD1 through PCR1. This input is 5 V tolerant.

Table 1-13. Enhanced Synchronous Serial Interface 1 (ESSI1) (Continued)

1.10 Serial Communication Interface (SCI)

The Serial Communication interface (SCI) provides a full duplex port for serial communication with other DSPs, microprocessors, or peripherals such as modems.

Signal Name	Туре	State During Reset	Signal Description
RXD	Input	Input	Serial Receive Data Receives byte-oriented serial data and transfers it to the SCI receive shift register.
PE0	Input or Output		 Port E 0 The default configuration following reset is GPIO. When configured as PE0, signal direction is controlled through the SCI Port Directions Register (PRR). The signal can be configured as an SCI signal RXD through the SCI Port Control Register (PCR). This input is 5 V tolerant.
TXD	Output	Input	Serial Transmit Data Transmits data from SCI transmit data register.
PE1	Input or Output		Port E 1 The default configuration following reset is GPIO. When configured as PE1, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal TXD through the SCI PCR.
			This input is 5 V tolerant.

 Table 1-14.
 Serial Communication Interface (SCI)

			80 1	MHz	100 MHz		11
NO.	Characteristics	Expression	Min	Max	Min	Max	Unit
21	Delay from WR assertion to interrupt request deassertion for level sensitive fast interrupts ¹ • DRAM for all WS ⁷	80 MHz : (WS + 3.5) × T _C – 12.4	_	Note 8		Noto 8	ns
	• SRAM WS = 1	$(WS + 3.5) \times T_{C} - 10.94$ 80 MHz: $(WS + 3.5) \times T_{C} - 12.4$ 100 MHz:	_	Note 8	_	Note 8	ns
	• SRAM WS = 2, 3	$(WS + 3.5) \times 1_{C} - 10.94$ 80 MHz: $(WS + 3) \times T_{C} - 12.4$ 100 MHz: $(WS + 2) \times T_{C} - 10.04$	_	Note 8	_	Note 8	ns ns
	• SRAM WS ≥ 4	$\begin{array}{c} \text{(WS + 3)} \times T_{\text{C}} = 10.94 \\ \text{80 MHz:} \\ \text{(WS + 2.5)} \times T_{\text{C}} = 12.4 \\ \text{100 MHz:} \\ \text{(WS + 2.5)} \times T_{\text{C}} = 10.94 \end{array}$	_	Note 8	_	Note 8	ns ns
22	Synchronous interrupt setup time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT Transition 2		7.4	т _с	5.9	т _с	ns
23	Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state • Minimum • Maximum	8.25 × T _C + 1.0 24.75 × T _C + 5.0	116.6 —	 314.4	83.5 —	 252.5	ns ns
24	Duration for IRQA assertion to recover from Stop state		7.4		5.9	_	ns
25	 Delay from IRQA assertion to fetch of first instruction (when exiting Stop)^{2, 3} PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (Operating Mode Register Bit 6 = 0) 	$\begin{array}{l} PLC \times ET_{C} \times PDF + (128 \ K - \\ PLC/2) \times T_{C} \end{array}$	1.6	17.0	1.3	13.6	ms
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) 	$\label{eq:plc_state} \begin{array}{c} PLC \times ET_{C} \times PDF + (23.75 \pm \\ 0.5) \times T_{C} \end{array}$ $(9.25 \pm 0.5) \times TC$	290.6 ns 109.4	15.4 ms 121.9	232.5 ns 87.5	12.3 ms 97.5	ns
	 PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop Delay) 						
26	 Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)^{2, 3} PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (Operating Mode Register Bit 6 = 0) 	$\begin{array}{l} PLC \times ET_C \times PDF + (128K - \\ PLC/2) \ \times T_C \end{array}$	17.0	_	13.6	_	ms
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) 	$\begin{array}{c} PLC\timesET_{C}\timesPDF +\\ (20.5\pm0.5)\timesT_{C}\\ \\ 5.5\timesT_{C}\end{array}$	15.4 68.8	_	12.3 55.0	_	ms ns
	 PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay) 						
27	Interrupt Request Rate HI32, ESSI, SCI, Timer DMA IRQ, NMI (edge trigger) IRQ, NMI (level trigger) 	$12 \times T_{C}$ $8 \times T_{C}$ $8 \times T_{C}$ $12 \times T_{C}$	 	150.0 100.0 100.0 150.0		120.0 80.0 80.0 120.0	ns ns ns ns

 Table 2-7.
 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

b) General-Purpose I/O

Figure 2-5. External Fast Interrupt Timing

A[0-23]

Figure 2-9. Recovery from Stop State Using IRQA

Figure 2-10. Recovery from Stop State Using IRQA Interrupt Service

Figure 2-11. External Memory Access (DMA Source) Timing

2.5.5 External Memory Expansion Port (Port A)

Table 2-8.	SRAM Read and Write Accesses ^{3,6}	(Continued)
Table 2-8.	SRAM Read and Write Accesses ^{9,9}	(Continued	I,

No	Characteristics	Symbol	Expression ¹	80	80 MHz		100 MHz	
NO.	Characteristics			Min	Max	Min	Max	
115	Address valid to RD assertion		$0.5 imes T_{C} - 4.0$	2.3	-	1.0		ns
116	RD assertion pulse width		$(WS + 0.25) \times T_{C} - 4.0$	11.6	_	8.5	_	ns
117	RD deassertion to address not valid		$\begin{array}{c} 0.25 \times T_C - 2.0 \; [1 \leq WS \leq 3] \\ 1.25 \times T_C - 2.0 \; [4 \leq WS \leq 7] \\ 2.25 \times T_C - 2.0 \; [WS \geq 8] \end{array}$	1.1 13.6 26.1		0.5 10.5 20.5	 	ns ns ns
118	\overline{TA} setup before \overline{RD} or \overline{WR} deassertion ⁴		0.25 × T _C + 2.0	5.1	-	4.5	_	ns
119	\overline{TA} hold after \overline{RD} or \overline{WR} deassertion			0	_	0	_	ns
Notes:	 WS is the number of Timings 100, 107 are All timings for 100 M 	wait states sp e guaranteed b Hz are measu	ecified in the BCR. by design, not tested. red from $0.5 \cdot Vcc$ to $0.5 \cdot Vcc$					

4. Timing 118 is relative to the deassertion edge of RD or WR even if TA remains active.

5. Timings 110, 111, and 112, are not helpful and are not specified for 100 MHz.

6. $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to +100°C, $C_L = 50 \text{ pF}$

AC Electrical Characteristics

			-	80 MHz		100 MHz		11
NO.	Characteristics			Min	Мах	Min	Max	Unit
170	CAS deassertion pulse width	t _{CP}	$6.25 imes T_C - 6.0$	74.1		56.5	_	ns
171	Row address valid to RAS assertion	t _{ASR}	$6.25\times T_C-4.0$	74.1		58.5	_	ns
172	RAS assertion to row address not valid	t _{RAH}	$2.75\times T_C-4.0$	30.4		23.5		ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 imes T_C - 4.0$	5.4		3.5	_	ns
174	CAS assertion to column address not valid	t _{CAH}	$6.25 imes T_C - 4.0$	74.1		58.5	_	ns
175	RAS assertion to column address not valid	t _{AR}	$9.75 imes T_C - 4.0$	117.9	_	93.5	_	ns
176	Column address valid to RAS deassertion	t _{RAL}	$7 imes T_C - 4.0$	83.5		66.0	_	ns
177	WR deassertion to CAS assertion	t _{RCS}	$5 imes T_C - 3.8$	58.7		46.2	_	ns
178	\overline{CAS} deassertion to \overline{WR}^4 assertion	t _{RCH}	$1.75 imes T_{C} - 3.7$	18.2	_	13.8	_	ns
179	\overline{RAS} deassertion to \overline{WR}^4 assertion	t _{RRH}	80 MHz: 0.25 × T _C − 2.6 100 MHz:	0.5	_	_	_	ns
			$0.25 \times 1_{\rm C} - 2.0$	_	_	0.5		ns
180	CAS assertion to WR deassertion	t _{WCH}	$6 \times T_{C} - 4.2$	70.8	_	55.8		ns
181	RAS assertion to WR deassertion	t _{WCR}	9.5 × T _C – 4.2	114.6		90.8		ns
182	WR assertion pulse width	t _{WP}	15.5 × T _C – 4.5	189.3		150.5	_	ns
183	WR assertion to RAS deassertion	t _{RWL}	$15.75 \times T_{C} - 4.3$	192.6		153.2		ns
184	WR assertion to CAS deassertion	t _{CWL}	$14.25 \times T_{C} - 4.3$	173.8	_	138.2	—	ns
185	Data valid to CAS assertion (write)	t _{DS}	$8.75 imes T_C - 4.0$	105.4		83.5	—	ns
186	CAS assertion to data not valid (write)	t _{DH}	$6.25 imes T_C - 4.0$	74.1		58.5	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$9.75 imes T_{C} - 4.0$	117.9		93.5	—	ns
188	WR assertion to CAS assertion	t _{WCS}	$9.5 imes T_C - 4.3$	114.5	—	90.7	—	ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5 imes T_C - 4.0$	14.8	_	11.0	_	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$4.75\times T_C-4.0$	55.4	_	43.5		ns
191	RD assertion to RAS deassertion	t _{ROH}	$15.5\times T_C-4.0$	189.8		151.0	_	ns
192	RD assertion to data valid	t _{GA}	80 MHz: 14 × T _C − 6.5 100 MHz:	_	168.5	_	—	ns
102	PD descration to data not valid ³	+	14×1 _C -5./				134.3	ns
193		^I GZ		0.0		0.0	<u> </u>	115
194			$0.73 \times 1_{\rm C} = 1.5$	9.1	-	0.0	-	ns
Note:	The number of wait states for an out of page access	e is specifics	$0.25 \times 1_{C}$		3.1		2.5	ns

Table 2-14.	DRAM Out-of-Page and Refresh Timings, Fifteen Wait States ^{1, 2} (Continued)

2.

The refresh period is specified in the DCR. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ} . Either t_{RCH} or t_{RRH} must be satisfied for read cycles. 3.

4.

2.5.5.3 Synchronous Timings (SRAM)

Table 2-15.	External Bus Synchronous	Timings (SRAM Access) ³
-------------	--------------------------	------------------------------------

No	Characteristics	F 12	80	MHz	100 MHz		11-14			
NO.		Expression "-	Min	Max	Min	Max	Unit			
196	CLKOUT high to BS assertion	$0.25 imes T_{C}$ +5.2/–0.5	2.6	8.3	2.0	7.7	ns			
197	CLKOUT high to BS deassertion	$0.75 \times T_{C}$ +4.2/-1.0	8.4	13.6	6.5	11.7	ns			
198	CLKOUT high to address, and AA valid ⁴	0.25 × T _C + 2.5	_	5.6	_	5.0	ns			
199	CLKOUT high to address, and AA invalid ⁴	$0.25 imes T_{C} - 0.7$	2.4	_	1.8	_	ns			
200	TA valid to CLKOUT high (setup time)		5.8	_	4.0	_	ns			
201	CLKOUT high to \overline{TA} invalid (hold time)		0.0	_	0.0	_	ns			
202	CLKOUT high to data out active	$0.25 imes T_{C}$	3.1	_	2.5	_	ns			
203	CLKOUT high to data out valid	80 MHz: 0.25 × T _C + 4.5 100 MHz:	_	7.6	_	_	ns			
		$0.25 \times T_{C} + 4.0$		—	—	6.5	ns			
204	CLKOUT high to data out invalid	$0.25 \times T_{C}$	3.1	—	2.5	—	ns			
205	CLKOUT high to data out high impedance	80 MHz: 0.25 × T _C + 0.5 100 MHz:	-	3.6	—	_	ns			
		$0.25 \times T_{C}$		—	_	2.5	ns			
206	Data in valid to CLKOUT high (setup)		5.0	—	4.0	—	ns			
207	CLKOUT high to data in invalid (hold)		0.0	_	0.0	_	ns			
208	CLKOUT high to RD assertion	maximum: 0.75 × T _C + 2.5	10.4	11.9	6.7	10.0	ns ns			
209	CLKOUT high to RD deassertion		0.0	4.5	0.0	4.0	ns			
210	CLKOUT high to WR assertion ²	$0.5 \times T_{C} + 4.3$ [WS = 1 or WS ≥ 4]	7.6	10.6	4.5	9.3	ns			
		$[2 \le WS \le 3]$	1.3	4.8	0.0	4.3	ns			
211	CLKOUT high to WR deassertion		0.0	4.3	0.0	3.8	ns			
Notes:	 WS is the number of wait states specified in the BCR. If WS > 1, WR assertion refers to the next rising edge of CLKOUT. External bus synchronous timings should be used only for reference to the clock and <i>not</i> for relative timings. 									

4. T198 and T199 are valid for Address Trace mode if the ATE bit in the Operating Mode Register is set. Use the status of BR (See T212) to determine whether the access referenced by A[0–23] is internal or external in this mode.

2.5.5.4 Arbitration Timings

No	Characteristics	Expression ²	80 MHz		100 MHz		Unit			
NO.		Expression	Min	Max	Min	Max	Unit			
212	CLKOUT high to BR assertion/deassertion ³		1.0	4.5	0.0	4.0	ns			
213	BG asserted/deasserted to CLKOUT high (setup)		5.0	—	4.0	_	ns			
214	CLKOUT high to $\overline{\text{BG}}$ deasserted/asserted (hold)		0.0	_	0.0	_	ns			
215	BB deassertion to CLKOUT high (input setup)		5.0	-	4.0	_	ns			
216	CLKOUT high to $\overline{\text{BB}}$ assertion (input hold)		0.0	—	0.0	_	ns			
217	CLKOUT high to BB assertion (output)		1.0	4.5	0.0	4.0	ns			
218	CLKOUT high to $\overline{\text{BB}}$ deassertion (output)		1.0	4.5	0.0	4.0	ns			
219	BB high to BB high impedance (output)		_	5.6	—	4.5	ns			
220	CLKOUT high to address and controls active	$0.25 \times T_{C}$	3.1	—	2.5	—	ns			
221	CLKOUT high to address and controls high impedance	$0.75 \times T_{C}$	_	9.4	_	7.5	ns			
222	CLKOUT high to AA active	$0.25 \times T_{C}$	3.1	—	2.5	_	ns			
223	CLKOUT high to AA deassertion	maximum: $0.25 \times T_{C}$ + 4.0	4.1	7.1	2.0	6.5	ns			
224	CLKOUT high to AA high impedance	$0.75 \times T_{C}$	_	9.4	—	7.5	ns			
Notes	Notes: 1 Synchronous Bus Arbitration is not recommended. Use Asynchronous mode whenever possible									

Table 2-16.Arbitration Bus Timings¹.

An expression is used to compute the maximum or minimum value listed, as appropriate. For timing 223, the minimum is an 2. absolute value.

T212 is valid for Address Trace mode when the ATE bit in the Operating Mode Register is set. BR is deasserted for internal 3. accesses and asserted for external accesses.

	Characteristic	Furnacian	80 MHz		100 MHz		11
NO.	Characteristic	Expression	Min	Max	Min	Max	Unit
330	HIRQ High Impedance from Data Strobe Assertion $(HIRH = 1, HIRD = 0)^{1.6}$	80 MHz: $2.5 \times T_{C} + 24.7$ 100 MHz: $2.5 \times T_{C} + 21.5$		55.9	_	46.5	ns ns
331	HIRQ Active from Data Strobe Deassertion (HIRH = 1, HIRD = 0) ¹	$2.5 \times T_{C}$	31.3	—	25.0	—	ns
332	HIRQ Deasserted Hold from Data Strobe Deassertion ¹	$2.5 imes T_{C}$	31.3	_	25.0	_	ns
346	HRST Assertion to Host Port Pins High Impedance ²		_	22.2	_	19.6	ns
347	HBS Assertion to CLKOUT Rising Edge		4.3	_	3.4	_	ns
348	Data Strobe Deassertion to CLKOUT Rising Edge ¹		7.4		5.9	_	ns
Notes	1 . The Data Strobe is HRD or HWR in the Dual Data Strobe	mode and HDS in the Single	- Data S	trobe mo	de		

Table 2-19. Universal Bus Mode, Synchronous Port A Type Host Timing (Continued)

The Data Strobe is HRD or HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode. 1.

2. HTA, HDRQ, and HRST may be programmed as active-high or active-low. In the example timing diagrams, HDRQ and HRST are shown as active-high and $\overline{\text{HTA}}$ is shown as active low.

The Read Data Strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode. 3.

The Write Data Strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode. 4

HTA requires an external pull-down resistor if programmed as active high (HTAP = 0); or an external pull-up resistor if 5. programmed as active low (HTAP = 1). The resistor value should be consistent with the DC specifications.

6. HIRQ requires an external pull-up resistor if programmed as open drain (HIRD = 0). The resistor value should be consistent with the DC specifications.

7. "LT" is the value of the latency timer register (CLAT) as programmed by the user during self configuration.

Values are valid for V_{CC} = 3.3 \pm 0.3V 8.

Figure 2-27. Universal Bus Mode I/O Access Timing

Figure 2-32. Read Timing

2.5.8 ESSI0/ESSI1 Timing

Table 2-22.	ESSI	Timings
-------------	------	---------

	A	Ormetal Emeran		80	80 MHz		100 MHz		
NO.	Characteristics ^{4, 5, 7}	Symbol	Expression	Min	Max	Min	Max	ition ⁶	Unit
430	Clock cycle ¹	t _{SSICC}	$3 \times T_C$ $4 \times T_C$	50.0 37.5		30.0 40.0		x ck i ck	ns
431	Clock high period For internal clock For external clock		2 × T _C – 10.0 1.5 × T _C	15.0 18.8		10.0 15.0			ns ns
432	Clock low period For internal clock For external clock		2 × T _C – 10.0 1.5 × T _C	15.0 18.8	_	10.0 15.0			ns ns
433	RXC rising edge to FSR out (bl) high			-	37.0 22.0	-	37.0 22.0	x ck i ck a	ns
434	RXC rising edge to FSR out (bl) low			-	37.0 22.0		37.0 22.0	x ck i ck a	ns
435	RXC rising edge to FSR out (wr) high ²			-	39.0 24.0	_	39.0 24.0	x ck i ck a	ns
436	RXC rising edge to FSR out (wr) low ²			-	39.0 24.0	_	39.0 24.0	x ck i ck a	ns
437	RXC rising edge to FSR out (wl) high			-	36.0 21.0		36.0 21.0	x ck i ck a	ns
438	RXC rising edge to FSR out (wl) low			-	37.0 22.0	-	37.0 22.0	x ck i ck a	ns
439	Data in setup time before RXC (SCK in Synchronous mode) falling edge			10.0 19.0	—	10.0 19.0		x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0		5.0 3.0		x ck i ck	ns
441	FSR input (bl, wr) high before RXC falling edge ²			1.0 23.0		1.0 23.0		x ck i ck a	ns
442	FSR input (wl) high before RXC falling edge			3.5 23.0		3.5 23.0		x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.0 0.0	—	3.0 0.0		x ck i ck a	ns
444	Flags input setup before RXC falling edge			5.5 19.0		5.5 19.0	_	x ck i ck s	ns

aging

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	AA0/RAS0	26	EXTAL	51	A14
2	AA1/RAS1	27	GND _Q	52	A15
3	V _{CCN}	28	BCLK	53	NC
4	GND _N	29	A0	54	NC
5	CLKOUT	30	A1	55	A16
6	BCLK	31	GND _A	56	A17
7	CAS	32	V _{CCA}	57	GND _A
8	TA	33	A2	58	V _{CCA}
9	PINIT/NMI	34	A3	59	A18
10	RESET	35	A4	60	A19
11	V _{CCP}	36	A5	61	A20
12	PCAP	37	GND _A	62	A21
13	GND _P	38	V _{CCA}	63	GND _A
14	GND _{P1}	39	A6	64	V _{CCA}
15	BB	40	A7	65	A22
16	BG	41	A8	66	A23
17	BR	42	A9	67	D0
18	V _{CCN}	43	GND _A	68	D1
19	GND _N	44	V _{CCA}	69	D2
20	AA2/RAS2	45	A10	70	GND _D
21	AA3/RAS3	46	A11	71	V _{CCD}
22	WR	47	A12	72	D3
23	RD	48	A13	73	D4
24	XTAL	49	GND _A	74	D5
25	V _{CCQ}	50	V _{CCA}	75	D6

3.2 TQFP Package Mechanical Drawing

Figure 3-3. DSP56301 Mechanical Information, 208-pin TQFP Package

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
K9	GND	M2	DE	N11	V _{CC}
K10	GND	М3	TDO	N12	V _{CC}
K11	GND	M4	TMS	N13	A16
K12	V _{CC}	M5	V _{CC}	N14	A17
K13	V _{CC}	M6	V _{CC}	N15	A20
K14	D3	M7	V _{CC}	N16	NC
K15	D6	M8	V _{CC}	P1	TRST
K16	D4	M9	V _{CC}	P2	BS
L1	SRD1 or PD4	M10	V _{CC}	P3	AA0/RAS0
L2	STD0 or PC5	M11	V _{CC}	P4	CLKOUT
L3	SC02 or PC2	M12	V _{CC}	P5	PINIT/NMI
L4	SC01 or PC1	M13	A19	P6	GND _P
L5	V _{CC}	M14	A21	P7	BG
L6	GND	M15	A22	P8	AA3/RAS3
L7	GND	M16	A23	P9	EXTAL
L8	GND	N1	ТСК	P10	A5
L9	GND	N2	TDI	P11	A8
L10	GND	N3	NC	P12	A12
L11	GND	N4	BL	P13	NC
L12	V _{CC}	N5	TA	P14	A15
L13	V _{CC}	N6	V _{CC}	P15	NC
L14	D0	N7	V _{CC}	P16	A18
L15	D2	N8	V _{CC}	R1	NC
L16	D1	N9	A1	R2	NC
M1	SC00 or PC0	N10	A2	R3	AA1/RAS1

Table 3-3.	DSP56301 MAP-BGA	Signal Identification	by Pin Number	(Continued)

Design Considerations

4.1 Thermal Design Considerations

An estimate of the chip junction temperature, T_J , in °C can be obtained from this equation:

Equation 1: $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

T _A	=	ambient temperature °C
$R_{\theta JA}$	=	package junction-to-ambient thermal resistance $^\circ C/W$
P _D	=	power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance, as in this equation:

Equation 2: $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

Where:

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB) or otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This model is most useful for ceramic packages with heat sinks; some 90 percent of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system-level thermal simulation tool.

The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimates obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system-level model may be appropriate.

A complicating factor is the existence of three common ways to determine the junction-to-case thermal resistance in plastic packages.

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to the point at which the leads attach to the case.

r Consumption Benchmark

;

```
M WRP EQU 19
            ; Extended WRaP flag in OMR.
M SEN EOU 20
           ; Stack Extension Enable bit in OMR.
;
    EQUATES for DSP56301 interrupts
;
    Reference: DSP56301 Specifications Revision 3.00
;
;
    Last update: November 15 1993 (Debug request & HI32 interrupts)
;
            December 19 1993 (cosmetic - page and opt directives)
;
          August 16 1994 (change interrupt addresses to be
;
              relative to I VEC)
;
132,55,0,0,0
    page
    opt
         mex
intequ ident 1,0
    if
        @DEF(I VEC)
     ;leave user definition as is.
    else
I VEC equ
          $0
    endif
;------
; Non-Maskable interrupts
;------
I RESET EQU I VEC+$00 ; Hardware RESET
I STACK EQU I_VEC+$02 ; Stack Error
I ILL EQU I VEC+$04 ; Illegal Instruction
I DBG EQU I VEC+$06 ; Debug Request
I TRAP EQU I VEC+$08 ; Trap
I NMI EQU I VEC+$0A ; Non Maskable Interrupt
;------
; Interrupt Request Pins
;------
I_IRQA EQU I_VEC+$10 ; IRQA
I_IRQB EQU I_VEC+$12 ; IRQB
I_IRQC EQU I_VEC+$14 ; IRQC
I IRQD EQU I VEC+$16 ; IRQD
;------
; DMA Interrupts
;------
I DMA0 EQU I VEC+$18 ; DMA Channel 0
I_DMA1 EQU I_VEC+$1A ; DMA Channel 1
I_DMA2 EQU I_VEC+$1C ; DMA Channel 2
I_DMA3 EQU I_VEC+$1C ; DMA Channel 2
I_DMA3 EQU I_VEC+$1E ; DMA Channel 3
I DMA4
     EQU I_VEC+$20 ; DMA Channel 4
I DMA5
     EQU I VEC+$22 ; DMA Channel 5
;------
; Timer Interrupts
;------
I TIMOC EQU I VEC+$24 ; TIMER 0 compare
I TIMOOF EQU I VEC+$26 ; TIMER 0 overflow
```