E·XFL

NXP USA Inc. - DSP56301AG80B1 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	80MHz
Non-Volatile Memory	ROM (9kB)
On-Chip RAM	24kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-TQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dsp56301ag80b1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

		DSP56301 Features	iii
		Target Applications	iv
		Product Documentation	iv
Chapter 1	Signa	als/Connections	
-	1.1	Power	
	1.2	Ground	
	1.3	Clock	
	1.4	Phase Lock Loop (PLL)	
	1.5	External Memory Expansion Port (Port A)	
	1.6	Interrupt and Mode Control	
	1.7	Host Interface (HI32)	1-10
	1.8	Enhanced Synchronous Serial Interface 0 (ESSI0)	1-16
	1.9	Enhanced Synchronous Serial Interface 1 (ESSI1)	1-18
	1.10	Serial Communication Interface (SCI)	1-19
	1.11	Timers	
	1.12	JTAG/OnCE Interface	
Chapter 2	Spec	cifications	
-	2.1	Maximum Ratings	
	2.2	Absolute Maximum Ratings	
	2.3	Thermal Characteristics	
	2.4	DC Electrical Characteristics	
	2.5	AC Electrical Characteristics	
Chapter 3	Pack	aging	
•	3.1	TQFP Package Description	
	3.2	TQFP Package Mechanical Drawing	
	3.3	MAP-BGA Package Description	
	3.4	MAP-BGA Package Mechanical Drawing	
Chapter 4	Desid	an Considerations	
	4.1	Thermal Design Considerations	
	4.2	Electrical Design Considerations	
	4.3	Power Consumption Considerations	4-3
	4.4	PLL Performance Issues	
	4.5	Input (EXTAL) Jitter Requirements	
Chapter A	Powe	er Consumption Benchmark	
-			

Index

Data Sheet Conventions

OVERBAR	Indicates a signal that is active when pulled low (For example, the \overline{RESET} pin is active when low.)				
"asserted"	Means that a high true	Means that a high true (active high) signal is high or that a low true (active low) signal is low			
"deasserted"	Means that a high true	Means that a high true (active high) signal is low or that a low true (active low) signal is high			
Examples:	Signal/Symbol	Logic State	Signal State	Voltage	
	PIN	True	Asserted	V _{IL} /V _{OL}	
	PIN	False	Deasserted	V _{IH} /V _{OH}	
	PIN	True	Asserted	V _{IH} /V _{OH}	
	PIN	False	Deasserted	V _{IL} /V _{OL}	

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

DSP56301	PCI Bus	Universal Bus	Port B GPIO	Host Port (HP)
		HA3	PB0	HPO
		НА4	PB1	HP1
		HAS	PB2	HP2
	HAD3	HAG	PB3	HP3
		HA7	PB4	HP4
		НА8	PB5	HP5
	HAD6	HA9	PB6	HP6
	HAD7	HA10	PB7	HP7
	HAD8	HDO	PB8	HP8
	HAD9	HD1	PB9	HP9
		HD2	PB10	HP10
	HAD11	HD3	PB11	HP11
	HAD12	HD4	PB12	HP12
	HAD13	HD5	PB13	HP13
	HAD14	HD6	PB14	HP14
	HAD15	HD7	PB15	HP15
	HC0/HBE0	HAO	PB16	HP16
	HC1/HBE1	HA1	PB17	HP17
	HC2/HBE2	HA2	PB18	HP18
	HC3/HBE3	Tie to null-up or Voo	PB19	HP19
Host Interface (HI32)/		HDBEN	PB20	HP20
		HDBDR	PB21	HP21
Port B Signals	HDEVSEL	HSAK	PB22	HP22
I OIT D OIghais		HBS	PB23	HP23
	HPAR	HDAK	Internal disconnect	HP24
	HPERR	HDRQ	Internal disconnect	HP25
	HGNT	HAEN	Internal disconnect	HP26
	HREQ	HTA	Internal disconnect	HP27
	HSERR	HIRQ	Internal disconnect	HP28
	HSTOP	HWR/HRW	Internal disconnect	HP29
	HIDSEL	HRD/HDS	Internal disconnect	HP30
	HFRAME	Tie to pull-up or V _{CC}	Internal disconnect	HP31
	HCLK	Tie to pull-up or V _{CC}	Internal disconnect	HP32
	HAD16	HD8	Internal disconnect	HP33
	HAD17	HD9	Internal disconnect	HP34
	HAD18	HD10	Internal disconnect	HP35
	HAD19	HD11	Internal disconnect	HP36
	HAD20	HD12	Internal disconnect	HP37
	HAD21	HD13	Internal disconnect	HP38
	HAD22	HD14	Internal disconnect	HP39
	HAD23	HD15	Internal disconnect	HP40
	HAD24	HD16	Internal disconnect	HP41
	HAD25	HD17	Internal disconnect	HP42
	HAD26	HD18	Internal disconnect	HP43
	HAD27	HD19	Internal disconnect	HP44
	HAD28	HD20	Internal disconnect	HP45
	HAD29	HD21	Internal disconnect	HP46
	HAD30	HD22	Internal disconnect	HP47
	HAD31	HD23	Internal disconnect	HP48
	HRST	HRST	Internal disconnect	HP49
	HINTA	HINTA	Internal disconnect	HP50
	PVCL	Leave unconnected	Leave unconnected	PVCL

Note: HPxx is a reference only and is not a signal name. GPIO references formerly designated as HIOxx have been renamed PBxx for consistency with other Freescale DSPs.

Figure 1-2. Host Interface/Port B Detail Signal Diagram

1.1 Power

Table	1-2.	Power	Inputs
abic	-4-	1 0 0 0 1	inputo

Power Name	Description	
V _{CCP}	PLL Power Isolated power for the Phase Lock Loop (PLL). The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V _{CC} power rail.	
V _{CCQ}	Quiet Power Isolated power for the internal processing logic. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.	
V _{CCA}	Address Bus Power Isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.	
V _{CCD}	Data Bus Power Isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.	
V _{CCN}	Bus Control Power Isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.	
V _{CCH}	Host Power Isolated power for the HI32 I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.	
V _{CCS}	ESSI, SCI, and Timer Power Isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.	
Note: These designations are package-dependent. Some packages connect all V_{CC} inputs except V_{CCP} to each other internally. On those packages, all power input except V_{CCP} are labeled V_{CC} .		

1.2 Ground

Table 1-3. Grounds

Ground Name	Description		
GND _P	PLL Ground Ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. V_{CCP} should be bypassed to GND _P by a 0.47 μ F capacitor located as close as possible to the chip package.		
GND _{P1}	PLL Ground 1 Ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground.		
GND _Q	Quiet Ground Isolated ground for the internal processing logic. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.		
GND _A	Address Bus Ground Isolated ground for sections of the address bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.		
GND _D	Data Bus Ground Isolated ground for sections of the data bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.		

als/Connections

Signal Name	Туре	State During Reset	Signal Description
MODD	Input	Input	Mode Select D Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQD during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
ĪRQD	Input		External Interrupt Request D Internally synchronized to CLKOUT. If IRQD is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQD to exit the Wait state. If the processor is in the Stop stand-by state and IRQD is asserted, the processor exits the Stop state. These inputs are 5 V tolerant.
RESET	Input	Input	Reset Deassertion of RESET is internally synchronized to the clock out (CLKOUT). When asserted, the chip is placed in the Reset state and the internal phase generator is reset. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. If RESET is deasserted synchronous to CLKOUT, exact start-up timing is guaranteed, allowing multiple processors to start synchronously and operate together in "lock-step." When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after power-up. This input is 5 V tolerant.

Table 1-9. Interrupt and Mode Control (Continued)

1.7 Host Interface (HI32)

The Host Interface (HI32) provides fast parallel data to a 32-bit port directly connected to the host bus. The HI32 supports a variety of standard buses and directly connects to a PCI bus and a number of industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.

1.7.1 Host Port Usage Considerations

Careful synchronization is required when the system reads multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in **Table 1-10**.

Action	Description
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), use interrupts or poll the Receive register Data Full (RXDF) flag that indicates data is available. This assures that the data in the receive byte registers is valid.
Asynchronous write to transmit byte registers	Do not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set, indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers transfer valid data to the Host Receive (HRX) register.

Table 1-10.	Host Port Usad	e Considerations
	110001 010 0000	90 001101001010110

1.9 Enhanced Synchronous Serial Interface 1 (ESSI1)

Table 1-13.	Enhanced Synchronous Serial Interface 1 (ES	SI1)
-------------	---	------

Signal Name	Туре	State During Reset	Signal Description
SC10	Input or Output	Input	Serial Control 0 Selection of Synchronous or Asynchronous mode determines function. For Asynchronous mode, this signal is the receive clock I/O (Schmitt-trigger input). For Synchronous mode, this signal is either Transmitter 1 output or Serial I/O Flag 0.
PD0			Port D 0 The default configuration following reset is GPIO. For PD0, signal direction is controlled through the Port Directions Register (PRR1). The signal can be configured as an ESSI signal SC10 through the Port Control Register (PCR1).
			This input is 5 V tolerant.
SC11	Input/Output	Input	Serial Control 1 Selection of Synchronous or Asynchronous mode determines function. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is either Transmitter 2 output or Serial I/O Flag 1.
PD1	Input or Output		Port D 1 The default configuration following reset is GPIO. For PD1, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC11 through PCR1.
			This input is 5 V tolerant.
SC12	Input/Output	Input	Serial Control Signal 2 Frame sync for both the transmitter and receiver in Synchronous mode, for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in Synchronous operation).
PD2	Input or Output		Port D 2 The default configuration following reset is GPIO. For PD2, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC12 through PCR1.
			This input is 5 V tolerant.
SCK1	Input/Output	Input	Serial Clock Provides the serial bit rate clock for the ESSI interface. Clock input or output can be used by the transmitter and receiver in Synchronous modes, by the transmitter only in Asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output		Port D 3 The default configuration following reset is GPIO. For PD3, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SCK1 through PCR1.
			This input is 5 V tolerant.

2.2 Absolute Maximum Ratings

Table 2-1. Maximum Ratings

Rating ¹	Symbol	Value ^{1, 2}	Unit
Supply Voltage	V _{CC}	-0.3 to +4.0	V
All input voltages excluding "5 V tolerant" inputs ³	V _{IN}	GND – 0.3 to V _{CC} + 0.3	V
All "5 V tolerant" input voltages ³	V _{IN5}	GND – 0.3 to V _{CC} + 3.95	V
Current drain per pin excluding V_{CC} and GND	I	10	mA
Operating temperature range	TJ	-40 to +100	°C
Storage temperature	T _{STG}	–55 to +150	°C

Notes: 1. GND = 0 V, V_{CC} = 3.3 V ± 0.3 V, T_{J} = -40°C to +100°C, CL = 50 pF

2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.

3. CAUTION: All "5 V Tolerant" input voltages cannot be more than 3.95 V greater than the supply voltage; this restriction applies to "power on," as well as during normal operation. In any case, the input voltages must not be higher than 5.75 V. "5 V Tolerant" inputs are inputs that tolerate 5 V.

2.3 Thermal Characteristics

Characteristic	Symbol	TQFP Value	PBGA ³ Value	PBGA ⁴ Value	Unit		
Junction-to-ambient thermal resistance ¹	$R_{\theta J A}$ or $\theta_{J A}$	49.5	48.4	25.2	°C/W		
Junction-to-case thermal resistance ²	$R_{\theta JC}$ or θ_{JC}	7.2	9	_	°C/W		
Thermal characterization parameter	Ψ_{JT}	4.7	5	_	°C/W		
Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per							

tes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per JEDEC Specification JESD51-3.

2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature.

3. These are simulated values. See note 1 for test board conditions.

4. These are simulated values. The test board has two 2-ounce signal layers and two 1-ounce solid ground planes internal to the test board.

2.4 DC Electrical Characteristics

Table 2-3.	DC Electrical	Characteristics ⁶

Characteristics	Symbol	Min	Тур	Мах	Unit
Supply voltage	V _{CC}	3.0	3.3	3.6	V

Na	Characteristics	Furnession		80 MHz 100 MH		MHz	11
NO.	Characteristics	Expression	Min	Max	Min	Max	Unit
28	DMA Request Rate Data read from HI32, ESSI, SCI Data write to HI32, ESSI, SCI Timer IRQ, NMI (edge trigger) 	$6 \times T_{C}$ $7 \times T_{C}$ $2 \times T_{C}$ $3 \times T_{C}$		75.0 87.5 25.0 37.5	 	60.0 70.0 20.0 30.0	ns ns ns ns
29	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid	$4.25 \times 1_{\rm C} + 2.0$	55.1	—	44.5	_	ns
Notes	 When using fast interrupts and IRQA, IRQB, IRQ prevent multiple interrupt service. To avoid these when using fast interrupts. Long interrupts are red This timing depends on several settings: For PLL disable, using internal oscillator (PLL C Bit 17 = 0), a stabilization delay is required to ass Stop delay (Operating Mode Register Bit 6 = 0) pr it is not recommended, and these specifications of For PLL disable, using internal oscillator (PCTL stabilization delay is required and recovery is min For PLL disable, using external clock (PCTL Bit PCTL Bit 17 and Operating Mode Register Bit 6 s For PLL enable, if PCTL Bit 17 is 0, the PLL is s The PLL lock procedure duration, PLL Lock Cycle parallel with the stop delay counter, and stop reco completes count or PLL lock procedure completio • PLC value for PLL disable is 0. The maximum value for ET_C is 4096 (maximum 4096/66 MHz = 62 µs). During the stabilization pervary as well. Periodically sampled and not 100 percent tested. Value depends on clock source: For an external clock generator, RESET duration active and valid. For an internal oscillator stabilization time afte and other components connected to the oscillator When the V_{CC} is valid, but the other "required R device circuitry is in an uninitialized state that can minimize this state to the shortest possible duration states and the state to the shortest possible duration active and lose lock. V_{CC} = 3.3 V ± 0.3 V; T_J = -40°C to +100°C, C_L = 	\overline{C} , and \overline{IRQD} are defined as lew timing restrictions, the deasser commended when using Level- ontrol Register (PCTL) Bit 16 = ure that the oscillator is stable be ovides the proper delay. While 0 to not guarantee timings for tha Bit 16 = 0) and oscillator enable imal (Operating Mode Register 16 = 1), no stabilization delay is settings. whutdown during Stop. Recoveri- es (PLC), may be in the range of overy ends when the last of the proof the range of overy ends when the last of the erriod, T _C , T _H , and T _L is not conse in is measured while RESET is a setting the result in significant power cons- ton. 50 pF. ycles, number of T _C).	el-sensitiv ted Edge-t sensitive n 0) and os pefore proy Operating t case. ed during S Bit 6 settin s required ang from St of 0 to 1000 se two ever anal freque tant, and t asserted, N d and V _{CC} ected both ons. specified a sumption a	e, timings riggered n node. cillator disa grams are Mode Reg Stop (PCT ng is ignor and recove top require 0 cycles. T ents occurs ency (that their width / _{CC} is valid. T by the spe above) hav and heat-up	19 throug node is re abled dur executed ister Bit 6 L Bit 17= ed). ery time i es the PLI his proces. The sto is, for 66 may vary d, and the becification e not bee p. Design	gh 21 appl comment ing Stop (1. Resettin 5 = 1 can b 1), no s defined to get loo edure occu p delay co MHz it is y, so timin EXTAL ir fied timing as of the c	ly to ded PCTL og the be set, by the cked. urs in bunter g may nput is rystal

Table 2-7.	Reset, Stop,	Mode Select,	and Interrupt	Timing ⁶	(Continued)	
------------	--------------	--------------	---------------	---------------------	-------------	--

DSP56301 Technical Data, Rev. 10

state after a read or write operation.

ifications

Na	Characteristics	Cumbal	Funnancian	80 MHz		100 MHz		110:4	
NO.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit	
131	Page mode cycle time for two consecutive accesses of the same direction		$4 \times T_{C}$	50.0	_	40.0		ns	
	Page mode cycle time for mixed (read and write) accesses	t _{PC}	$3.5 imes T_C$	43.7	_	35.0		ns	
132	CAS assertion to data valid (read)	t _{CAC}	$2 \times T_C - 5.7$	_	19.3	_	14.3	ns	
133	Column address valid to data valid (read)	t _{AA}	$3 imes T_C - 5.7$	_	31.8	_	24.3	ns	
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	_	0.0	_	ns	
135	Last CAS assertion to RAS deassertion	t _{RSH}	$2.5\times T_C-4.0$	27.3		21.0	_	ns	
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$4.5\times T_C-4.0$	52.3	_	41.0	_	ns	
137	CAS assertion pulse width	t _{CAS}	$2 \times T_C - 4.0$	21.0		16.0	_	ns	
138	Last CAS deassertion to RAS assertion ⁵ • BRW[1-0] = 00 • BRW[1-0] = 01 • BRW[1-0] = 10 • BRW[1-0] = 11	^t CRP	Not supported $3.75 \times T_C - 6.0$ $4.75 \times T_C - 6.0$ $6.75 \times T_C - 6.0$	 40.9 53.4 78.4	 			ns ns ns ns	
139	CAS deassertion pulse width	t _{CP}	$1.5 imes T_{C} - 4.0$	14.8	_	11.0	_	ns	
140	Column address valid to CAS assertion	t _{ASC}	T _C – 4.0	8.5	_	6.0	_	ns	
141	CAS assertion to column address not valid	t _{CAH}	$2.5 imes T_C - 4.0$	27.3	_	21.0	_	ns	
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_C - 4.0$	46.0	_	36.0	_	ns	
143	WR deassertion to CAS assertion	t _{RCS}	$1.25\times T_C-4.0$	11.6	_	8.5	_	ns	
144	CAS deassertion to WR assertion	t _{RCH}	$0.75 \times TC - 4.0$	5.4	_	3.5	_	ns	
145	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$2.25 imes T_C - 4.2$	23.9		18.3	_	ns	
146	WR assertion pulse width	t _{WP}	$3.5 imes T_C - 4.5$	39.3	_	30.5	_	ns	
147	Last WR assertion to RAS deassertion	t _{RWL}	$3.75 imes T_C - 4.3$	42.6		33.2	_	ns	
148	WR assertion to CAS deassertion	t _{CWL}	$3.25 imes T_C - 4.3$	36.3		28.2	_	ns	
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.8$	2.0		0.2	_	ns	
150	CAS assertion to data not valid (write)	t _{DH}	$2.5\times T_C-4.0$	27.3		21.0	_	ns	
151	WR assertion to CAS assertion	t _{WCS}	$1.25 imes T_C - 4.3$	11.3		8.2	_	ns	
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$3.5\times T_C-4.0$	39.8		31.0	_	ns	
153	RD assertion to data valid	t _{GA}	$2.5 imes T_C - 5.7$	_	25.6	_	19.3	ns	
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	_	0.0		ns	
155	WR assertion to data active		$0.75 imes T_{C} - 1.5$	7.9	_	6.0		ns	
156	WR deassertion to data high impedance		$0.25 \times T_{C}$	_	3.1	_	2.5	ns	
Notes	Notes: 1. The number of wait states for Page mode access is specified in the DCR.								

DRAM Page Mode Timings, Three Wait States^{1, 2, 3} Table 2-10.

1. The number of wait states for Page mode access is specified in the DCR.

2. The refresh period is specified in the DCR.

The asynchronous delays specified in the expressions are valid for DSP56301. 3.

All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals 4 × 4. T_C for read-after-read or write-after-write sequences).

5. BRW[1-0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of pageaccess.

RD deassertion always occurs after \overline{CAS} deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}. 6.

AC Electrical Characteristics

	2 1 1 1 1 1 1 1 1 1 1		-	80 MHz		100 MHz		
NO.	Characteristics	Symbol	Expression	Min	Мах	Min	Max	Unit
170	CAS deassertion pulse width	t _{CP}	$6.25 imes T_C - 6.0$	74.1		56.5	_	ns
171	Row address valid to RAS assertion	t _{ASR}	$6.25\times T_C-4.0$	74.1		58.5	_	ns
172	RAS assertion to row address not valid	t _{RAH}	$2.75\times T_C-4.0$	30.4		23.5		ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 imes T_C - 4.0$	5.4		3.5	_	ns
174	CAS assertion to column address not valid	t _{CAH}	$6.25 imes T_C - 4.0$	74.1		58.5	_	ns
175	RAS assertion to column address not valid	t _{AR}	$9.75 imes T_C - 4.0$	117.9	_	93.5	_	ns
176	Column address valid to RAS deassertion	t _{RAL}	$7 imes T_C - 4.0$	83.5		66.0	_	ns
177	WR deassertion to CAS assertion	t _{RCS}	$5 imes T_C - 3.8$	58.7		46.2	_	ns
178	\overline{CAS} deassertion to \overline{WR}^4 assertion	t _{RCH}	$1.75 imes T_{C} - 3.7$	18.2	_	13.8	_	ns
179	\overline{RAS} deassertion to \overline{WR}^4 assertion	t _{RRH}	80 MHz: 0.25 × T _C − 2.6 100 MHz:	0.5	_	_	_	ns
			$0.25 \times 1_{\rm C} - 2.0$	_	_	0.5		ns
180	CAS assertion to WR deassertion	t _{WCH}	$6 \times T_{C} - 4.2$	70.8	_	55.8		ns
181	RAS assertion to WR deassertion	t _{WCR}	9.5 × T _C – 4.2	114.6		90.8		ns
182	WR assertion pulse width	t _{WP}	15.5 × T _C – 4.5	189.3		150.5	_	ns
183	WR assertion to RAS deassertion	t _{RWL}	$15.75 imes T_{C} - 4.3$	192.6		153.2		ns
184	WR assertion to CAS deassertion	t _{CWL}	$14.25 \times T_{C} - 4.3$	173.8	_	138.2	—	ns
185	Data valid to CAS assertion (write)	t _{DS}	$8.75 imes T_C - 4.0$	105.4		83.5	—	ns
186	CAS assertion to data not valid (write)	t _{DH}	$6.25 imes T_C - 4.0$	74.1		58.5	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$9.75 imes T_{C} - 4.0$	117.9		93.5	—	ns
188	WR assertion to CAS assertion	t _{WCS}	$9.5 imes T_C - 4.3$	114.5	—	90.7	—	ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5 imes T_C - 4.0$	14.8	_	11.0	—	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$4.75\times T_C-4.0$	55.4	_	43.5		ns
191	RD assertion to RAS deassertion	t _{ROH}	$15.5\times T_C-4.0$	189.8		151.0	_	ns
192	RD assertion to data valid	t _{GA}	80 MHz: 14 × T _C − 6.5 100 MHz:	_	168.5	_	—	ns
102	PD descration to data not valid ³	+	14×1 _C -5./				134.3	ns
193		^I GZ		0.0		0.0	<u> </u>	115
194			$0.73 \times 1_{\rm C} = 1.5$	9.1	-	0.0	-	ns
Note:	The number of wait states for an out of page access	e is specifics	$0.25 \times 1_{C}$		3.1		2.5	ns

Table 2-14.	DRAM Out-of-Page and Refresh Timings, Fifteen Wait States ^{1, 2} (Continued)

2.

The refresh period is specified in the DCR. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ} . Either t_{RCH} or t_{RRH} must be satisfied for read cycles. 3.

4.

ifications

2.5.5.3 Synchronous Timings (SRAM)

Table 2-15.	External Bus Synchronous	Timings (SRAM Access) ³
-------------	--------------------------	------------------------------------

N	Observatoriation	F 12	80 MHz		100 MHz			
NO.	Characteristics	Expression "-	Min	Max	Min	Max	Unit	
196	CLKOUT high to BS assertion	$0.25 imes T_{C}$ +5.2/–0.5	2.6	8.3	2.0	7.7	ns	
197	CLKOUT high to \overline{BS} deassertion	$0.75 \times T_{C}$ +4.2/-1.0	8.4	13.6	6.5	11.7	ns	
198	CLKOUT high to address, and AA valid ⁴	0.25 × T _C + 2.5	_	5.6	_	5.0	ns	
199	CLKOUT high to address, and AA invalid ⁴	$0.25 imes T_{C} - 0.7$	2.4	_	1.8	_	ns	
200	TA valid to CLKOUT high (setup time)		5.8	_	4.0	_	ns	
201	CLKOUT high to \overline{TA} invalid (hold time)		0.0	_	0.0	_	ns	
202	CLKOUT high to data out active	$0.25 imes T_{C}$	3.1	_	2.5	_	ns	
203	CLKOUT high to data out valid	80 MHz: 0.25 × T _C + 4.5 100 MHz:	_	7.6	_	_	ns	
		$0.25 \times T_{C} + 4.0$		—	—	6.5	ns	
204	CLKOUT high to data out invalid	$0.25 \times T_{C}$	3.1	—	2.5	—	ns	
205	CLKOUT high to data out high impedance	80 MHz: 0.25 × T _C + 0.5 100 MHz:	_	3.6	—	_	ns	
		$0.25 \times T_{C}$		—	_	2.5	ns	
206	Data in valid to CLKOUT high (setup)		5.0	—	4.0	—	ns	
207	CLKOUT high to data in invalid (hold)		0.0	_	0.0	_	ns	
208	CLKOUT high to RD assertion	maximum: 0.75 × T _C + 2.5	10.4	11.9	6.7	10.0	ns ns	
209	CLKOUT high to RD deassertion		0.0	4.5	0.0	4.0	ns	
210	CLKOUT high to WR assertion ²	$0.5 \times T_{C} + 4.3$ [WS = 1 or WS ≥ 4]	7.6	10.6	4.5	9.3	ns	
		[2 ≤ WS ≤ 3]	1.3	4.8	0.0	4.3	ns	
211	CLKOUT high to WR deassertion		0.0	4.3	0.0	3.8	ns	
Notes:	 WS is the number of wait states specified in the BCR. If WS > 1, WR assertion refers to the next rising edge of CLKOUT. External bus synchronous timings should be used only for reference to the clock and <i>not</i> for relative timings. 							

4. T198 and T199 are valid for Address Trace mode if the ATE bit in the Operating Mode Register is set. Use the status of BR (See T212) to determine whether the access referenced by A[0–23] is internal or external in this mode.

Figure 2-35. Data Strobe Synchronous Timing

DSP56301 Technical Data, Rev. 10

HRD HWR ifications

No.	Characteristic ¹⁰	Symbol	80 MHz		100 MHz		l lm it
	Characteristic		Min	Max	Min	Max	Unit
349	HCLK to Signal Valid Delay—Bussed Signals	t _{VAL}	2.0	11.0	2.0	11.0	ns
350	HCLK to Signal Valid Delay—Point to Point	t _{VAL(ptp)}	2.0	12.0	2.0	12.0	ns
351	Float to Active Delay	t _{ON}	2.0		2.0	—	ns
352	Active to Float Delay	t _{OFF}	_	28.0	_	28.0	ns
353	Input Set Up Time to HCLK—Bussed Signals	t _{SU}	7.0	_	7.0	—	ns
354	Input Set Up Time to HCLK—Point to Point	t _{SU(ptp)}	10.0, 12.0		10.0, 12.0	—	ns
355	Input Hold Time from HCLK	t _H	0.0		0.0	_	ns
356	Reset Active Time After Power Stable	t _{RST}	1.0	_	1.0	—	ms
357	Reset Active Time After HCLK Stable	t _{RST-CLK}	100.0		100.0	—	μs
358	Reset Active to Output Float Delay	t _{RST-OFF}	_	40.0	—	40.0	ns
359	HCLK Cycle Time	t _{CYC}	30.0	_	30.0	—	ns
360	HCLK High Time	t _{HIGH}	11.0	_	11.0	—	ns
361	HCLK Low Time	t _{LOW}	11.0	_	11.0	_	ns

 Table 2-20.
 PCI Mode Timing Parameters¹

Notes: 1. For standard PCI timing, see the PCI Local Bus Specification, Rev. 2.0, especially Chapters 3 and 4.

The HI32 supports these timings for a PCI bus operating at 33 MHz for a DSP clock frequency of 56 MHz and above. The DSP core operating frequency should be greater than 5/3 of the PCI bus frequency to maintain proper PCI operation.
 HGNT has a setup time of 10 ns. HREQ has a setup time of 12 ns.

359 361 HCLK 360 349 (350 OUTPUT DELAY 351 High Impedance OUTPUT 352 INPUT (353 355 (354)

Figure 2-36. PCI Timing

Packaging

This section provides information on the available packages for the DSP56301, including diagrams of the package pinouts and tables showing how the signals discussed in **Section 1** are allocated for each package. The DSP56301 is available in two package types:

- 208-pin Thin Quad Flat Pack (TQFP)
- 252-pin Molded Array Process-Ball Grid Array (MAP-BGA)
- **Note:** Both packages are available in lead-bearing and lead-free versions. Switching a design from a lead-bearing package device to a lead-free package device may require a change in the board manufacturing process. The lead-free package requires a higher solder flow temperature than the lead-bearing device. Refer to *Lead-Free BGA Solder Joint Assembly Evaluation* (EB635) for manufacturing considerations when incorporating lead-free package devices into a design.

aging

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	AA0/RAS0	26	EXTAL	51	A14
2	AA1/RAS1	27	GND _Q	52	A15
3	V _{CCN}	28	BCLK	53	NC
4	GND _N	29	A0	54	NC
5	CLKOUT	30	A1	55	A16
6	BCLK	31	GND _A	56	A17
7	CAS	32	V _{CCA}	57	GND _A
8	TA	33	A2	58	V _{CCA}
9	PINIT/NMI	34	A3	59	A18
10	RESET	35	A4	60	A19
11	V _{CCP}	36	A5	61	A20
12	PCAP	37	GND _A	62	A21
13	GND _P	38	V _{CCA}	63	GND _A
14	GND _{P1}	39	A6	64	V _{CCA}
15	BB	40	A7	65	A22
16	BG	41	A8	66	A23
17	BR	42	A9	67	D0
18	V _{CCN}	43	GND _A	68	D1
19	GND _N	44	V _{CCA}	69	D2
20	AA2/RAS2	45	A10	70	GND _D
21	AA3/RAS3	46	A11	71	V _{CCD}
22	WR	47	A12	72	D3
23	RD	48	A13	73	D4
24	XTAL	49	GND _A	74	D5
25	V _{CCQ}	50	V _{CCA}	75	D6

aging

 Table 3-2.
 DSP56301 TQFP Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
GND _N	19	HAD14	152	HAEN	149
GND _P	13	HAD15	151	HBE0	163
GND _Q	27	HAD16	127	HBE1	150
GND _Q	78	HAD17	126	HBE2	128
GND _Q	132	HAD18	125	HBE3	117
GND _Q	183	HAD19	124	HBS	140
GND _Q	183	HAD2	171	HC0	163
GND _S	180	HAD20	121	HC1	150
GND _S	194	HAD21	120	HC2	128
HA0	163	HAD22	119	HC3	117
HA1	150	HAD23	118	HCLK	148
HA10	164	HAD24	116	HD0	162
HA2	128	HAD25	115	HD1	161
НАЗ	173	HAD26	114	HD10	125
HA4	172	HAD27	113	HD11	124
HA5	171	HAD28	110	HD12	121
HA6	170	HAD29	109	HD13	120
HA7	167	HAD3	170	HD14	119
HA8	166	HAD30	108	HD15	118
HA9	165	HAD31	107	HD16	116
HAD0	173	HAD4	167	HD17	115
HAD1	172	HAD5	166	HD18	114
HAD10	160	HAD6	165	HD19	113
HAD11	159	HAD7	164	HD2	160
HAD12	154	HAD8	162	HD20	110
HAD13	153	HAD9	161	HD21	109

Figure 3-5. DSP56301 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
NC	R15	PB6	E3	RAS3	P8
NC	R16	PB7	D2	RD	Т9
NC	T2	PB8	C1	RESET	T4
NC	T15	PB9	D3	RXD	G2
NMI	P5	PC0	M1	SC00	M1
PB0	F2	PC1	L4	SC01	L4
PB1	F1	PC2	L3	SC02	L3
PB10	D4	PC3	K3	SC10	J4
PB11	C2	PC4	K4	SC11	J1
PB12	C3	PC5	L2	SC12	J2
PB13	C4	PCAP	T5	SCK0	К3
PB14	B3	PD0	J4	SCK1	K2
PB15	A3	PD1	J1	SCLK	H1
PB16	E4	PD2	J2	SRD0	K4
PB17	C5	PD3	K2	SRD1	L1
PB18	B9	PD4	L1	STD0	L2
PB19	C11	PD5	K1	STD1	K1
PB2	E1	PE0	G2	TA	N5
PB20	D8	PE1	J3	ТСК	N1
PB21	A7	PE2	H1	TDI	N2
PB22	B7	PINIT	P5	TDO	М3
PB23	C7	PVCL	D6	TIO0	H3
PB3	F3	RASO	P3	TIO1	G1
PB4	E2	RAS1	R3	TIO2	G3

 Table 3-4.
 DSP56301 MAP-BGA Signal Identification by Name (Continued)

RAS2

R7

TMS

D1

PB5

M4


```
M STRQ EQU 1 ; Slave Transmit Data Request
M SRRQ EQU 2 ; Slave Receive Data Request
M HF02 EOU $38; Host Flag 0-2 Mask
M HFO EOU 3
            ; Host Flag 0
             ; Host Flag 1
M HF1 EQU 4
            ; Host Flag 2
M HF2 EQU 5
       DSP PCI Status Register Bit Flags
;
M MWS EQU 0
             ; PCI Master Wait States
M MTRQ EQU 1 ; PCI Master Transmit Data Request
M MRRQ EQU 2
            ; PCI Master Receive Data Request
M MARQ EQU 4 ; PCI Master Address Request
             ; PCI Address Parity Error
M APER EQU 5
               ; PCI Data Parity Error
M DPER EOU 6
M MAB EQU 7
              ; PCI Master Abort
              ; PCI Target Abort
M TAB EQU 8
M_TDIS EQU 9 ; PCI Target Disconnect
M_TRTY EQU 10 ; PCI Target Retry
M TO EQU 11
             ; PCI Time Out Termination
M RDC EQU $3F0000; Remaining Data Count Mask (RDC5-RDC0)
M RDC0 EQU 16
              ; Remaining Data Count 0
               ; Remaining Data Count 1
M RDC1 EQU 17
               ; Remaining Data Count 2
M RDC2 EQU 18
               ; Remaining Data Count 3
M RDC3 EQU 19
               ; Remaining Data Count 4
M RDC4 EQU 20
              ; Remaining Data Count 5
M RDC5 EOU 21
M HACT EQU 23
               ; Hi32 Active
      _____
;
       EQUATES for Serial Communications Interface (SCI)
;
;
;-----
       Register Addresses
;
M STXH EQU $FFFF97; SCI Transmit Data Register (high)
M STXM EQU $FFFF96; SCI Transmit Data Register (middle)
M STXL EQU $FFFF95; SCI Transmit Data Register (low)
M SRXH EQU $FFFF9A; SCI Receive Data Register (high)
M SRXM EQU $FFFF99; SCI Receive Data Register (middle)
M SRXL EQU $FFFF98; SCI Receive Data Register (low)
M STXA EQU $FFFF94; SCI Transmit Address Register
M SCR EQU $FFFF9C; SCI Control Register
M SSR EQU $FFFF93; SCI Status Register
M SCCR EQU $FFFF9B; SCI Clock Control Register
       SCI Control Register Bit Flags
;
              ; Word Select Mask (WDS0-WDS3)
M WDS EQU $7
              ; Word Select 0
M WDS0 EQU 0
M WDS1 EQU 1
               ; Word Select 1
               ; Word Select 2
M WDS2 EQU 2
M SSFTD EQU 3
                ; SCI Shift Direction
               ; Send Break
M SBK EOU 4
M WAKE EQU 5
               ; Wakeup Mode Select
M RWU EQU 6
               ; Receiver Wakeup Enable
M WOMS EQU 7
               ; Wired-OR Mode Select
```


M D5L EQU \$C00000; DMA5 Interrupt priority Level Mask M D5L0 EQU 22 ; DMA5 Interrupt Priority Level (low) M D5L1 EOU 23 ; DMA5 Interrupt Priority Level (high) Interrupt Priority Register Peripheral (IPRP) ; M HPL EQU \$3 ; Host Interrupt Priority Level Mask ; Host Interrupt Priority Level (low) M HPLO EOU O M HPL1 EQU 1 ; Host Interrupt Priority Level (high) ; SSI0 Interrupt Priority Level Mask M SOL EQU \$C ; SSIO Interrupt Priority Level (low) M SOLO EQU 2 M SOL1 EQU 3 ; SSI0 Interrupt Priority Level (high) ; SSI1 Interrupt Priority Level Mask M S1L EQU \$30 ; SSI1 Interrupt Priority Level (low) M S1L0 EOU 4 ; SSI1 Interrupt Priority Level (high) M S1L1 EQU 5 M SCL EQU \$C0 ; SCI Interrupt Priority Level Mask ; SCI Interrupt Priority Level (low) ; SCI Interrupt Priority Level (high) M SCLO EQU 6 M SCL1 EQU 7 M TOL EQU \$300 ; TIMER Interrupt Priority Level Mask ; TIMER Interrupt Priority Level (low) M TOLO EOU 8 M TOL1 EQU 9 ; TIMER Interrupt Priority Level (high) ;-----; ; EOUATES for TIMER ; ;-----Register Addresses Of TIMER0 ; M TCSR0 EQU \$FFFF8F; TIMER0 Control/Status Register M TLRO EQU \$FFFF8E; TIMERO Load Reg M_TCPR0 EQU \$FFFF8D; TIMER0 Compare Register M TCR0 EQU \$FFFF8C ; TIMER0 Count Register Register Addresses Of TIMER1 ; M TCSR1 EQU \$FFFF8B; TIMER1 Control/Status Register M TLR1 EQU \$FFFF8A; TIMER1 Load Reg M TCPR1 EQU \$FFFF89; TIMER1 Compare Register M TCR1 EQU \$FFFF88; TIMER1 Count Register Register Addresses Of TIMER2 ; M TCSR2 EQU \$FFFF87; TIMER2 Control/Status Register M TLR2 EQU \$FFFF8; TIMER2 Load Reg M TCPR2 EQU \$FFFF85; TIMER2 Compare Register M TCR2 EQU \$FFFF84 ; TIMER2 Count Register M TPLR EQU \$FFFF83 ; TIMER Prescaler Load Register M TPCR EQU \$FFFF82 ; TIMER Prescalar Count Register Timer Control/Status Register Bit Flags ; ; Timer Enable M TE EQU 0 ; Timer Overflow Interrupt Enable M TOIE EQU 1 ; Timer Compare Interrupt Enable M TCIE EQU 2