

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	80MHz
Non-Volatile Memory	ROM (9kB)
On-Chip RAM	24kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	252-BGA
Supplier Device Package	252-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dsp56301vf80

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DSP56301	PCI Bus	Universal Bus	Port B GPIO	Host Port (HP)
		HA3	PB0	HPO
		НА4	PR1	HP1
		HAS	PB2	HP2
	HAD3	HAG	PB3	HP3
		HA7	PB4	HP4
		НА8	PB5	HP5
	HAD6	HA9	PB6	HP6
	HAD7	HA10	PB7	HP7
	HAD8	HDO	PB8	HP8
	HAD9	HD1	PB9	HP9
		HD2	PB10	HP10
	HAD11	HD3	PB11	HP11
	HAD12	HD4	PB12	HP12
	HAD13	HD5	PB13	HP13
	HAD14	HD6	PB14	HP14
	HAD15	HD7	PB15	HP15
	HC0/HBE0	HAO	PB16	HP16
	HC1/HBE1	HA1	PB17	HP17
	HC2/HBE2	HA2	PB18	HP18
	HC3/HBE3	Tie to null-up or Voo	PB19	HP19
Host Interface (HI32)/		HDBEN	PB20	HP20
		HDBDR	PB21	HP21
Port B Signals	HDEVSEL	HSAK	PB22	HP22
I OIT D OIghais		HBS	PB23	HP23
	HPAR	HDAK	Internal disconnect	HP24
	HPERR	HDRQ	Internal disconnect	HP25
	HGNT	HAEN	Internal disconnect	HP26
	HREQ	HTA	Internal disconnect	HP27
	HSERR	HIRQ	Internal disconnect	HP28
	HSTOP	HWR/HRW	Internal disconnect	HP29
	HIDSEL	HRD/HDS	Internal disconnect	HP30
	HFRAME	Tie to pull-up or V _{CC}	Internal disconnect	HP31
	HCLK	Tie to pull-up or V _{CC}	Internal disconnect	HP32
	HAD16	HD8	Internal disconnect	HP33
	HAD17	HD9	Internal disconnect	HP34
	HAD18	HD10	Internal disconnect	HP35
	HAD19	HD11	Internal disconnect	HP36
	HAD20	HD12	Internal disconnect	HP37
	HAD21	HD13	Internal disconnect	HP38
	HAD22	HD14	Internal disconnect	HP39
	HAD23	HD15	Internal disconnect	HP40
	HAD24	HD16	Internal disconnect	HP41
	HAD25	HD17	Internal disconnect	HP42
	HAD26	HD18	Internal disconnect	HP43
	HAD27	HD19	Internal disconnect	HP44
	HAD28	HD20	Internal disconnect	HP45
	HAD29	HD21	Internal disconnect	HP46
	HAD30	HD22	Internal disconnect	HP47
	HAD31	HD23	Internal disconnect	HP48
	HRST	HRST	Internal disconnect	HP49
	HINTA	HINTA	Internal disconnect	HP50
	PVCL	Leave unconnected	Leave unconnected	PVCL

Note: HPxx is a reference only and is not a signal name. GPIO references formerly designated as HIOxx have been renamed PBxx for consistency with other Freescale DSPs.

Figure 1-2. Host Interface/Port B Detail Signal Diagram

als/Connections

Signal Name	Туре	State During Reset	Signal Description
PINIT/NMI	Input	Input	PLL Initial/Non-Maskable Interrupt During assertion of RESET, the value of PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register, determining whether the PLL is enabled or disabled. After RESET deassertion and during normal instruction processing, the PINIT/NMI Schmitt-trigger input is a negative-edge-triggered Non-Maskable Interrupt (NMI) request internally synchronized to CLKOUT. PINIT/NMI can tolerate 5 V.

 Table 1-5.
 Phase Lock Loop Signals (Continued)

1.5 External Memory Expansion Port (Port A)

Note: When the DSP56301 enters a low-power stand-by mode (Stop or Wait), it releases bus mastership and tristates the relevant Port A signals: A[0–23], D[0–23], AA0/RAS0–AA3/RAS3, RD, WR, BB, CAS, BCLK, and BCLK. If hardware refresh of external DRAM is enabled, Port A exits the Wait mode to allow the refresh to occur and then returns to the Wait mode.

1.5.1 External Address Bus

Table 1-6. External	Address Bus	Signals
---------------------	-------------	---------

Signal Name	Туре	State During Reset	Signal Description
A[0-23]	Output	Tri-stated	Address Bus When the DSP is the bus master, A[0–23] specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A[0–23] do not change state when external memory spaces are not being accessed.

1.5.2 External Data Bus

Table 1-7.	External Data Bus Signals
------------	---------------------------

Signal Name	Туре	State During Reset	Signal Description
D[0-23]	Input/Output	Tri-stated	Data Bus When the DSP is the bus master, D[0–23] provide the bidirectional data bus for external program and data memory accesses. Otherwise, D[0–23] are tri- stated.

Interrupt and Mode Control

1.6 Interrupt and Mode Control

The interrupt and mode control signals select the chip's operating mode as it comes out of hardware reset. After **RESET** is deasserted, these inputs are hardware interrupt request lines.

Table 1-9.	Interrupt and	Mode Control
------------	---------------	--------------

Signal Name	Туре	State During Reset	Signal Description
MODA	Input	Input	Mode Select A Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQA during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
ĪRQĀ	Input		External Interrupt Request A Internally synchronized to CLKOUT. If IRQA is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQA to exit the Wait state. If the processor is in the Stop stand-by state and IRQA is asserted, the processor exits the Stop state. These inputs are 5 V tolerant.
MODB	Input	Input	Mode Select B Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQB during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
ĪRQB	Input		External Interrupt Request B Internally synchronized to CLKOUT. If IRQB is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQB to exit the Wait state. If the processor is in the Stop stand-by state and IRQC is asserted, the processor will exit the Stop state.
			These inputs are 5 V tolerant.
MODC	Input	Input	Mode Select C Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQC during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
IRQC	Input		External Interrupt Request C Internally synchronized to CLKOUT. If IRQC is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQC to exit the Wait state. If the processor is in the Stop stand-by state and IRQC is asserted, the processor exits the Stop state. These inputs are 5 V tolerant.

als/Connections

Signal Name	Туре	State During Reset	Signal Description
HSERR	Output, open drain	Tri-stated	Host System Error When the HI32 is programmed to interface with a PCI bus and the HI function is selected, this is the Host System Error signal.
HIRQ	Output, open drain		Host Interrupt Request When HI32 is programmed to interface with a universal, non-PCI bus and the HI function is selected, this is the Host Interrupt Request signal.
			Port B When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
HSTOP	Input/ Output	Tri-stated	Host Stop When the HI32 is programmed to interface with a PCI bus and the HI function is selected, this is the Host Stop signal.
HWR/HRW	Input		Host Write/Host Read-Write When HI32 is programmed to interface with a universal, non-PCI bus and the HI function is selected, this is the Host Write/Host Read-Write Schmitt-trigger signal.
			Port B When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
HIDSEL	Input	Input	Host Initialization Device Select When the HI32 is programmed to interface with a PCI bus and the HI function is selected, this is the Host Initialization Device Select signal.
HRD/HDS	Input		Host Read/Host Data Strobe When HI32 is programmed to interface with a universal, non-PCI bus and the HI function is selected, this is the Host Data Read/Host Data Strobe Schmitt- trigger signal.
			Port B When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
HFRAME	Input/ Output	Tri-stated	Host Frame When the HI32 is programmed to interface with a PCI bus and the HI function is selected, this is the Host cycle Frame signal.
			Non-PCI bus When HI32 is programmed to interface with a universal, non-PCI bus and the HI function is selected, this signal must be connected to a pull-up resistor or directly to V_{CC} .
			Port B When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.

 Table 1-11.
 Host Interface (Continued)

Table 1-11.	Host Interface	(Continued)
-------------	----------------	-------------

Signal Name	Туре	State During Reset	Signal Description
HCLK	Input	Input	Host Clock When the HI32 is programmed to interface with a PCI bus and the HI function is selected, this is the Host Bus Clock input.
			Non-PCI bus When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal must be connected to a pull-up resistor or directly to V_{CC} .
			Port B When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
HAD[16-31]	Input/Output	Tri-stated	Host Address/Data 16–31 When the HI32 is programmed to interface with a PCI bus and the HI function is selected, these signals are lines 16–31 of the Address/Data bus.
HD[8–23]	Input/Output		Host Data 8–23 When HI32 is programmed to interface with a universal, non-PCI bus and the HI function is selected, these signals are lines 8–23 of the Data bus.
			Port B When the HI32 is configured as GPIO through the DCTR, these signals are internally disconnected.
			These inputs are 5 V tolerant.
HRST	Input	Tri-stated	Hardware Reset When the HI32 is programmed to interface with a PCI bus and the HI function is selected, this is the Hardware Reset input.
HRST	Input		Hardware Reset When HI32 is programmed to interface with a universal, non-PCI bus and the HI function is selected, this is the Hardware Reset Schmitt-trigger signal.
			Port B When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
HINTA	Output, open drain	Tri-stated	Host Interrupt A When the HI function is selected, this signal is the Interrupt A open-drain output.
			Port B When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
PVCL	Input	Input	PCI Voltage Clamp When the HI32 is programmed to interface with a PCI bus and the HI function is selected and the PCI bus uses a 3 V signal environment, connect this pin to V_{CC} (3.3 V) to enable the high voltage clamping required by the PCI specifications. In all other cases, including a 5 V PCI signal environment, leave the input unconnected.

80 MHz 100 MHz No. Characteristics Symbol Min Max Min Max Frequency of EXTAL (EXTAL Pin Frequency) Ef 1 0 80.0 MHz 100.0 MHz 0 The rise and fall time of this external clock should be 3 ns maximum. EXTAL input high^{1, 2} 2 With PLL disabled (46.7%–53.3% duty cycle⁶) 4.67 ns 5.84 ns ET_H ∞ ∞ With PLL enabled (42.5%-57.5% duty cycle⁶) 5.31 ns 4.25 ns 157.0 μs 157.0 μs EXTAL input low^{1, 2} 3 With PLL disabled (46.7%-53.3% duty cycle⁶) ET 5.84 ns 4.67 ns ∞ ∞ With PLL enabled (42.5%-57.5% duty cycle⁶) 5.31 ns 157.0 μs 4.25 ns 157.0 μs EXTAL cycle time² 4 With PLL disabled ET_C 12.50 ns 10.00 ns ∞ ∞ With PLL enabled 12.50 ns 273.1 µs 10.00 ns 273.1 µs 5 CLKOUT change from EXTAL fall with PLL disabled 4.3 ns 11.0 ns 4.3 ns 11.0 ns 6 a. CLKOUT rising edge from EXTAL rising edge with PLL enabled (MF 0.0 ns 1.8 ns 0.0 ns 1.8 ns = 1 or 2 or 4, PDF = 1, Ef > 15 MHz)^{3,5} b. CLKOUT falling edge from EXTAL falling edge with PLL enabled (MF 0.0 ns 1.8 ns 0.0 ns 1.8 ns \leq 4, PDF \neq 1, Ef / PDF > 15 MHz)^{3,5} 7 Instruction cycle time = $I_{CYC} = T_C^4$ (see Table 2-4) (46.7%-53.3% duty cycle) With PLL disabled 25.0 ns 20.0 ns ICYC With PLL enabled 12.50 ns 8.53 µs 10.00 ns 8.53 μs Notes: 1. Measured at 50 percent of the input transition The maximum value for PLL enabled is given for minimum VCO frequency (see Table 2-6) and maximum MF. 2. 3. Periodically sampled and not 100 percent tested 4. The maximum value for PLL enabled is given for minimum VCO frequency and maximum DF. 5. The skew is not guaranteed for any other MF value.

Table 2-5.Clock Operation

6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met.

2.5.3 Phase Lock Loop (PLL) Characteristics

Characteristics	80	MHz	100 MHz				
Characteristics	Min	Min Max Min Max		Max			
Voltage Controlled Oscillator (VCO) frequency when PLL enabled (MF \times E $_f \times$ 2/PDF)	30	160	30	200	MHz		
PLL external capacitor (PCAP pin to V_{CCP}) (C_{PCAP}) • @ MF ≤ 4	(MF × 580) – 100	(MF × 780) – 140	(MF × 580) – 100	(MF × 780) – 140	pF		
• @ MF > 4	MF imes 830	MF imes 1470	MF imes 830	MF imes 1470	pF		
Note: C _{PCAP} is the value of the PLL capacitor (connected between the PCAP pin and V _{CCP}). The recommended value in pF for C _{PCAP} can be computed from one of the following equations:							

 $(680 \times MF) - 120$, for MF \leq 4, or

 $1100 \times MF$, for MF > 4.

A[0-23]

Figure 2-9. Recovery from Stop State Using IRQA

Figure 2-10. Recovery from Stop State Using IRQA Interrupt Service

Figure 2-11. External Memory Access (DMA Source) Timing

2.5.5 External Memory Expansion Port (Port A)

state after a read or write operation.

2.5.5.2 DRAM Timing

The selection guides in **Figure 2-14** and **Figure 2-17** are for primary selection only. Final selection should be based on the timing in the following tables. For example, the selection guide suggests that four wait states must be used for 100 MHz operation in Page Mode DRAM. However, using the information in the appropriate table, a designer could choose to evaluate whether fewer wait states might be used by determining which timing prevents operation at 100 MHz, by running the chip at a slightly lower frequency (for example, 95 MHz), by using faster DRAM (if it becomes available), and by manipulating control factors such as capacitive and resistive load to improve overall system performance.

Figure 2-14. DRAM Page Mode Wait States Selection Guide

			-	80	1.1			
NO.	Characteristics	Symbol	Expression	Min	Max	Unit		
131	Page mode cycle time for two consecutive accesses of the same direction		$3 \times T_{C}$	37.5	_	ns		
	Page mode cycle time for mixed (read and write) accesses	t _{PC}	$2.75 imes T_{C}$	34.4	_	ns		
132	CAS assertion to data valid (read)	t _{CAC}	$1.5 imes T_{C} - 6.5$	_	12.3	ns		
133	Column address valid to data valid (read)	t _{AA}	$2.5 imes T_{C} - 6.5$	_	24.8	ns		
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	_	ns		
135	Last CAS assertion to RAS deassertion	t _{RSH}	$1.75 imes T_{C} - 4.0$	17.9	_	ns		
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$3.25 imes T_{C} - 4.0$	36.6	_	ns		
137	CAS assertion pulse width	t _{CAS}	$1.5 imes T_C - 4.0$	14.8	_	ns		
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁵ BRW[1–0] = 00 BRW[1–0] = 01 BRW[1–0] = 10 BRW[1–0] = 11	^t CRP	Not supported $3.5 \times T_C - 6.0$ $4.5 \times T_C - 6.0$ $6.5 \times T_C - 6.0$	 37.8 50.3 75.3		ns ns ns ns		
139	CAS deassertion pulse width	t _{CP}	$1.25 imes T_C - 4.0$	11.6	_	ns		
140	Column address valid to CAS assertion	t _{ASC}	T _C – 4.0	8.5	_	ns		
141	CAS assertion to column address not valid	t _{CAH}	$1.75 imes T_{C} - 4.0$	17.9		ns		
142	Last column address valid to RAS deassertion	t _{RAL}	$3 imes T_C - 4.0$	33.5	_	ns		
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 imes T_C - 4$	11.6	_	ns		
144	CAS deassertion to WR assertion	t _{RCH}	$0.5 imes T_C - 3.7$	2.6	_	ns		
145	CAS assertion to WR deassertion	t _{WCH}	$1.5 imes T_C - 4.2$	14.6	_	ns		
146	WR assertion pulse width	t _{WP}	$2.5 imes T_C - 4.5$	26.8	_	ns		
147	Last WR assertion to RAS deassertion	t _{RWL}	$2.75 imes T_{C} - 4.3$	30.1	_	ns		
148	WR assertion to CAS deassertion	t _{CWL}	$2.5 imes T_C - 4.3$	27.0	_	ns		
149	Data valid to CAS assertion (write)	t _{DS}	$0.25\times T_C-3.0$	0.1	—	ns		
150	CAS assertion to data not valid (write)	t _{DH}	$1.75 imes T_{C} - 4.0$	17.9	—	ns		
151	WR assertion to CAS assertion	t _{WCS}	T _C – 4.3	8.2	—	ns		
152	Last RD assertion to RAS deassertion	t _{ROH}	$2.5 imes T_C - 4.0$	27.3	—	ns		
153	RD assertion to data valid	t _{GA}	$1.75 imes T_{C} - 6.5$	_	15.4	ns		
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	—	ns		
155	WR assertion to data active		$0.75 \times T_{C} - 1.5$	7.9	_	ns		
156	WR deassertion to data high impedance		$0.25 \times T_{C}$	_	3.1	ns		
Notes	Notes: 1. The number of wait states for Page mode access is specified in the DCR.							

DRAM Page Mode Timings, Two Wait States^{1, 2, 3, 7} Table 2-9.

1. The number of wait states for Page mode access is specified in the DCR.

2. The refresh period is specified in the DCR.

3. The asynchronous delays specified in the expressions are valid for the DSP56301.

All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals 3 × 4. T_C for read-after-read or write-after-write sequences).

5. BRW[1-0] (DRAM Control Register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.

 \overline{RD} deassertion always occurs after \overline{CAS} deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}. 6.

7. At this time, there are no DRAMs fast enough to fit with two wait states Page mode @ 100MHz (see Table 2-14). However, DRAM speeds are approaching two-wait-state compatibility.

ifications

Na	Observatoriation	0 miliot	Funnancian	80 MHz		100 MHz		
NO.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
131	Page mode cycle time for two consecutive accesses of the same direction		$4 \times T_{C}$	50.0	_	40.0	_	ns
	Page mode cycle time for mixed (read and write) accesses	t _{PC}	$3.5 imes T_C$	43.7	_	35.0		ns
132	CAS assertion to data valid (read)	t _{CAC}	$2 imes T_C - 5.7$	—	19.3	—	14.3	ns
133	Column address valid to data valid (read)	t _{AA}	$3 imes T_C - 5.7$	_	31.8	_	24.3	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	_	0.0	_	ns
135	Last CAS assertion to RAS deassertion	t _{RSH}	$2.5\times T_C-4.0$	27.3	_	21.0	_	ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$4.5\times T_C-4.0$	52.3	_	41.0	_	ns
137	CAS assertion pulse width	t _{CAS}	$2 \times T_C - 4.0$	21.0	_	16.0	_	ns
138	Last CAS deassertion to RAS assertion ⁵ • BRW[1-0] = 00 • BRW[1-0] = 01 • BRW[1-0] = 10 • BRW[1-0] = 11	t _{CRP}	Not supported $3.75 \times T_C - 6.0$ $4.75 \times T_C - 6.0$ $6.75 \times T_C - 6.0$	 40.9 53.4 78.4		 31.5 41.5 61.5		ns ns ns ns
139	CAS deassertion pulse width	t _{CP}	$1.5 \times T_{C} - 4.0$	14.8	_	11.0	_	ns
140	Column address valid to CAS assertion	t _{ASC}	T _C – 4.0	8.5	_	6.0	_	ns
141	CAS assertion to column address not valid	t _{CAH}	$2.5 imes T_C - 4.0$	27.3	_	21.0	_	ns
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_C - 4.0$	46.0	—	36.0		ns
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 imes T_C - 4.0$	11.6	_	8.5	_	ns
144	CAS deassertion to WR assertion	t _{RCH}	$0.75 \times TC - 4.0$	5.4	—	3.5		ns
145	CAS assertion to WR deassertion	t _{WCH}	$2.25 imes T_C - 4.2$	23.9	_	18.3	_	ns
146	WR assertion pulse width	t _{WP}	$3.5 imes T_C - 4.5$	39.3	_	30.5	_	ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$3.75 imes T_C - 4.3$	42.6	_	33.2	_	ns
148	WR assertion to CAS deassertion	t _{CWL}	$3.25 imes T_C - 4.3$	36.3	_	28.2	_	ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.8$	2.0	_	0.2	_	ns
150	CAS assertion to data not valid (write)	t _{DH}	$2.5\times T_C-4.0$	27.3	_	21.0	_	ns
151	WR assertion to CAS assertion	t _{WCS}	$1.25 imes T_C - 4.3$	11.3	_	8.2	_	ns
152	Last RD assertion to RAS deassertion	t _{ROH}	$3.5\times T_C-4.0$	39.8	_	31.0	_	ns
153	RD assertion to data valid	t _{GA}	$2.5\times T_C-5.7$		25.6	_	19.3	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	_	0.0	_	ns
155	WR assertion to data active		$0.75 \times T_{C} - 1.5$	7.9	_	6.0	_	ns
156	WR deassertion to data high impedance		$0.25 imes T_C$		3.1		2.5	ns
Notes	Notes: 1. The number of wait states for Page mode access is specified in the DCR.							

DRAM Page Mode Timings, Three Wait States^{1, 2, 3} Table 2-10.

1. The number of wait states for Page mode access is specified in the DCR.

2. The refresh period is specified in the DCR.

The asynchronous delays specified in the expressions are valid for DSP56301. 3.

All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals 4 × 4. T_C for read-after-read or write-after-write sequences).

5. BRW[1-0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of pageaccess.

RD deassertion always occurs after \overline{CAS} deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}. 6.

Figure 2-18. DRAM Out-of-Page Read Access

Note: Address lines A[0–23] hold their state after a read or write operation. AA[0–3] do not hold their state after a read or write operation.

Note: Address lines A[0–23] hold their state after a read or write operation. AA[0–3] do not hold their state after a read or write operation.

Figure 2-29. HRW to HDS Timing

Figure 2-30. HIRQ Pulse Width (HIRH = 0)

Figure 2-35. Data Strobe Synchronous Timing

DSP56301 Technical Data, Rev. 10

HRD HWR

3.1 TQFP Package Description

Top and bottom views of the TQFP package are shown in Figure 3-1 and Figure 3-2 with their pin-outs.

Figure 3-1. DSP56301 Thin Quad Flat Pack (TQFP), Top View

3.2 TQFP Package Mechanical Drawing

Figure 3-3. DSP56301 Mechanical Information, 208-pin TQFP Package

Table 3-3.	DSP56301 M/	AP-BGA Signal	Identification b	y Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
A2	NC	B12	HAD25 or HD17	D5	V _{CC}
A3	HAD15, HD7, or PB15	B13	HAD29 or HD21	D6	PVCL
A4	HCLK	B14	HAD31 or HD23	D7	HSTOP or HWR/HRW
A5	HPAR or HDAK	B15	NC	D8	HTRDY, HDBEN, or PB20
A6	HPERR or HDRQ	B16	NC	D9	V _{CC}
A7	HIRDY, HDBDR, or PB21	C1	HAD8, HD0, or PB8	D10	V _{CC}
A8	HAD16 or HD8	C2	HAD11, HD3, or PB11	D11	V _{CC}
A9	HAD17 or HD9	C3	HAD12, HD4, or PB12	D12	HAD28 or HD20
A10	HAD20 or HD12	C4	HAD13, HD5, or PB13	D13	MODC/IRQC
A11	HAD23 or HD15	C5	HC1/HBE1, HA1, or PB17	D14	NC
A12	HAD24 or HD16	C6	HREQ or HTA	D15	MODB/IRQB
A13	HAD27 or HD19	C7	HLOCK, HBS, or PB23	D16	D23
A14	HAD30 or HD22	C8	HFRAME	E1	HAD2, HA5, or PB2
A15	NC	C9	HAD18 or HD10	E2	HAD4, HA7, or PB4
B1	NC	C10	HAD21 or HD13	E3	HAD6, HA9, or PB6
B2	NC	C11	HC3/HBE3 or PB19	E4	HC0/HBE0, HA0, or PB16
B3	HAD14, HD6, or PB14	C12	HAD26 or HD18	E5	V _{CC}
B4	HGNT or HAEN	C13	MODD/IRQD	E6	V _{CC}
B5	HRST/HRST	C14	NC	E7	V _{CC}
B6	HSERR or HIRQ	C15	NC	E8	V _{CC}
B7	HDEVSEL, HSAK, or PB22	C16	NC	E9	V _{CC}
B8	HIDSEL or HRD/HDS	D1	HAD5, HA8, or PB5	E10	V _{CC}
B9	HC2/HBE2, HA2, or PB18	D2	HAD7, HA10, or PB7	E11	V _{CC}
B10	HAD19 or HD11	D3	HAD9, HD1, or PB9	E12	V _{CC}
B11	HAD22 or HD14	D4	HAD10, HD2, or PB10	E13	V _{CC}

MAP-BGA Package Description

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
R4	CAS	R13	A11	T7	BR
R5	V _{CCP}	R14	A14	Т8	WR
R6	BB	R15	NC	Т9	RD
R7	AA2/RAS2	R16	NC	T10	A0
R8	XTAL	T2	NC	T11	A4
R9	BCLK	Т3	BCLK	T12	A7
R10	A3	T4	RESET	T13	A10
R11	A6	T5	PCAP	T14	A13
R12	A9	T6	GND _{P1}	T15	NC

Table 3-3. DSP56301 MAP-BGA Signal Identification by Pin Number (Continued)

Notes: 1. Signal names are based on configured functionality. Most connections supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND_P and GND_{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.

 NC stands for Not Connected. The following pin groups are shorted to each other: — pins A2, B1, and B2

- pins A15, B15, B16, C14, C15, C16, and D14

- pins N3, R1, R2, and T2

- pins N16, P13, P15, R15, R16, and T15

Do not connect any line, component, trace, or via to these pins.

NP

Pr Consumption Benchmark

```
M SCRE EQU 8
                ; SCI Receiver Enable
               ; SCI Transmitter Enable
M SCTE EQU 9
               ; Idle Line Interrupt Enable
M ILIE EOU 10
               ; SCI Receive Interrupt Enable
M SCRIE EOU 11
M SCTIE EQU 12
                ; SCI Transmit Interrupt Enable
M TMIE EQU 13 ; Timer Interrupt Enable
M TIR EQU 14 ; Timer Interrupt Rate
M SCKP EQU 15 ; SCI Clock Polarity
M REIE EQU 16 ; SCI Error Interrupt Enable (REIE)
       SCI Status Register Bit Flags
;
                ; Transmitter Empty
M TRNE EQU 0
               ; Transmit Data Register Empty
M TDRE EQU 1
               ; Receive Data Register Full
M RDRF EOU 2
               ; Idle Line Flag
M IDLE EQU 3
M OR EQU 4
            ; Overrun Error Flag
M PE EOU 5
             ; Parity Error
M FE EQU 6
             ; Framing Error Flag
M R8 EQU 7
              ; Received Bit 8 (R8) Address
       SCI Clock Control Register
;
M CD EQU $FFF
              ; Clock Divider Mask (CD0-CD11)
              ; Clock Out Divider
M COD EQU 12
               ; Clock Prescaler
M SCP EQU 13
              ; Receive Clock Mode Source Bit
M RCM EOU 14
              ; Transmit Clock Source Bit
M TCM EQU 15
;------
;
      EQUATES for Synchronous Serial Interface (SSI)
;
;
;-----
;
       Register Addresses Of SSI0
;
M TX00 EQU $FFFFBC; SSI0 Transmit Data Register 0
M TX01 EQU $FFFFBB; SSIO Transmit Data Register 1
M TX02 EQU $FFFFBA; SSIO Transmit Data Register 2
M TSRO EQU $FFFFB9; SSIO Time Slot Register
M RX0 EQU $FFFFB8; SSI0 Receive Data Register
M SSISRO EQU $FFFFB7; SSIO Status Register
M CRB0 EQU $FFFFB6; SSI0 Control Register B
M CRAO EQU $FFFFB5; SSIO Control Register A
M TSMA0 EQU $FFFFB4; SSI0 Transmit Slot Mask Register A
M TSMB0 EQU $FFFFB3; SSI0 Transmit Slot Mask Register B
M RSMA0 EQU $FFFFB2; SSI0 Receive Slot Mask Register A
M RSMB0 EQU $FFFFB1; SSI0 Receive Slot Mask Register B
       Register Addresses Of SSI1
;
M TX10 EQU $FFFFAC; SSI1 Transmit Data Register 0
M_TX11 EQU $FFFFAB; SSI1 Transmit Data Register 1
M TX12 EQU $FFFFAA; SSI1 Transmit Data Register 2
M TSR1 EQU $FFFFA9; SSI1 Time Slot Register
M RX1 EQU $FFFFA8; SSI1 Receive Data Register
M SSISR1 EOU $FFFFA7; SSI1 Status Register
M CRB1 EQU $FFFFA6; SSI1 Control Register B
M CRA1 EQU $FFFFA5; SSI1 Control Register A
M TSMA1 EQU $FFFFA4; SSI1 Transmit Slot Mask Register A
```