

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f058r8h7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 Power supply schemes

- V_{DD} = V_{DDIO1} = 1.8 V ± 8%: external power supply for I/Os (V_{DDIO1}) and digital logic. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 10: Power supply scheme*.

3.5.2 Power-on reset

To guarantee a proper power-on reset, the NPOR pin must be held low until V_{DD} is stable. When V_{DD} is stable, the reset state can be exited either by:

- putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by
- forcing the pin to high level by connecting it to V_{DDA}

3.5.3 Low-power modes

The STM32F058C8/R8/T8 microcontrollers support two low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, RTC, I2C1 USART1, COMPx or the CEC.

The CEC, USART1 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data.

3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F058C8/R8/T8 devices (see *Table 6* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F058C8/R8/T8 devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.14.3 Basic timer TIM6

This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit time base.

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop mode. It can be used

The RTC clock sources can be:

- a 32.768 kHz external crystal
- a resonator or oscillator
- the internal low-power RC oscillator (typical frequency of 40 kHz)
- the high-speed external clock divided by 32

3.16 Inter-integrated circuit interface (I²C)

Up to two I²C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) and Fast mode (up to 400 kbit/s) and, I2C1 also supports Fast Mode Plus (up to 1 Mbit/s) with extra output drive.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.

Aspect	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 7. Comparison of I²C analog and digital filters

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to Table 8 for the differences between I2C1 and I2C2.

Table 8. STM32F058C8/R8/T8 I ²	C implementation
---	------------------

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os	Х	-
Independent clock	Х	-

I ² C features ⁽¹⁾	I2C1	I2C2
SMBus	Х	-
Wakeup from STOP	Х	-

Table 8. STM32F058C8/R8/T8 I²C implementation (continued)

1. X = supported.

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds up to two universal synchronous/asynchronous receivers/transmitters (USART1, USART2) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 supports also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1	USART2
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	Х
Synchronous mode	Х	Х
Smartcard mode	Х	-
Single-wire half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	-
LIN mode	Х	-
Dual clock domain and wakeup from Stop mode	Х	-
Receiver timeout interrupt	Х	-
Modbus communication	Х	-
Auto baud rate detection	Х	-
Driver Enable	Х	Х

Table 9. STM32F058C8/R8/T8 USART implementation

1. X = supported.

3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

One standard I²S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
Rx/Tx FIFO	Х	Х
NSS pulse mode	Х	Х
I ² S mode	Х	-
TI mode	Х	Х

Table 10. ST	M32F058C8/R8/T8	SPI/I ² S implementation	on
--------------	-----------------	-------------------------------------	----

1. X = supported.

3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.20 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

Figure 6. WLCSP36 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

Na	me	Abbreviation	Definition		
Pin name		Unless otherwise safter reset is the safter	specified in brackets below the pin name, the pin function during and ame as the actual pin name		
		S	Supply pin		
Pin	type	I	Input-only pin		
		I/O	Input / output pin		
		FT	5 V-tolerant I/O		
I/O structure		FTf	5 V-tolerant I/O, FM+ capable		
		TTa	TTa 3.3 V-tolerant I/O directly connected to ADC		
		POR External power on reset pin with embedded weak pull-up resistor, powered from V _{DDA}			
		тс	Standard 3.3 V I/O		
		В	Dedicated BOOT0 pin		
RST Bidirectional reset pin with embedded weak pull-up resistor		Bidirectional reset pin with embedded weak pull-up resistor			
No	tes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and reset.			
Pin	Alternate functions	Functions selected through GPIOx_AFR registers			
functions	Additional functions	Functions directly	Functions directly selected/enabled through peripheral registers		

Table 11.	Legend/abbreviations	used in	the	ninout ta	able
	Ecgena/abbieviations	usea m	unc.	philoata	

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 1.8$ V and $V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 8*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 9.

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 16: Voltage characteristics*, *Table 17: Current characteristics* and *Table 18: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD}-V_{SS}$	External main supply voltage	-0.3	1.95	V
$V_{DDA} - V_{SS}$	External analog supply voltage	- 0.3	4.0	V
V _{DD} –V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
V _{BAT} –V _{SS}	External backup supply voltage	- 0.3	4.0	V
	Input voltage on FT and FTf pins	V _{SS} -0.3	V _{DDIOx} + 4.0 ⁽³⁾	V
	Input voltage on POR pins	V _{SS} -0.3	4.0	V
$V_{IN}^{(2)}$	Input voltage on TTa pins	V _{SS} -0.3	4.0	V
	BOOT0	0	9.0	V
	Input voltage on any other pin	V _{SS} –0.3	4.0	V
ΔV _{DDx}	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3 sensitivity chara	8.11: Electrical acteristics	-

Table 16. Voltage characteristics ⁽¹⁾
--

 All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 17: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

				AI	periph	erals en	abled	All peripherals disabled				
Symbol	Parameter	Conditions	f _{HCLK}	Turn	N	lax @ T,	A ⁽¹⁾	Turn	N	lax @ T	A ⁽¹⁾	Unit
				тур	25 °C	85 °C	105 °C	тур	25 °C	85 °C	105 °C	
		HSE	48 MHz	12.5	13.7	14.4	14.9	2.7	2.9	3.0	3.2	
	Supply current in	bypass, PLL on	32 MHz	8.8	9.3	9.7	10.1	1.8	2.0	2.2	2.3	
			24 MHz	6.8	7.3	7.7	8.1	1.5	1.5	1.6	1.7	
		HSE Supply bypass, current in PLL off	8 MHz	2.2	2.6	2.8	3.0	0.5	0.6	0.6	0.6	
I _{DD}			1 MHz	0.3	0.4	0.4	0.5	0.1	0.2	0.2	0.2	mA
	mode		48 MHz	12.6	13.8	14.5	15.1	2.8	2.9	3.1	3.3	
		HSI clock, PLL on	32 MHz	8.8	9.5	9.8	10.2	1.9	2.1	2.2	2.4	
			24 MHz	6.9	7.4	7.8	8.1	1.5	1.6	1.7	1.8	
			HSI clock, PLL off	8 MHz	2.3	2.7	2.9	3.1	0.5	0.6	0.7	0.8

Table 22. Typical and maximum current consumption from V_{DD} at 1.8 V (continued)

1. Data based on characterization results, not tested in production unless otherwise specified.

Table 23	Typical	and maximum	current	consumption	from the	V _{DDA} supply
----------	---------	-------------	---------	-------------	----------	-------------------------

		Conditions (1)			VDDA	= 2.4 V		VDDA = 3.6 V				
Symbol	Parameter		f _{HCLK}	Turn	M	ax @ TA	(2)	Turn	Max @ TA ⁽²⁾			Unit
				тур	25 °C	85 °C	105 °C	тур	25 °C	85 °C	105 °C	
			48 MHz	148	169	179	183	162	183	195	198	
	Supply current in Run or Sleep	External	32 MHz	103	121	126	128	111	129	135	138	
		clock (HSE bypass)	24 MHz	81	96	100	103	87	102	106	108	
			8 MHz	1.0	3.0	3.0	3.0	2.0	3.0	3.0	4.0	
I _{DDA}	mode, code		1 MHz	1.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	μA
	executing		48 MHz	218	240	251	255	242	263	275	278	
	memory or	Internal	32 MHz	172	191	199	202	191	209	215	218	
	RAM	V clock (HSI)	24 MHz	150	168	173	175	166	183	190	192	
			8 MHz	70	80	82	83	82	91	94	95	

1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

				Typ. @ V _{DD} = 1.8 V						Мах			
Symbol	Parameter	Conditions	V _{DDA} = 1.8 V	V _{DDA} = 2.0 V	V _{DDA} = 2.4 V	V _{DDA} = 2.7 V	V _{DDA} = 3.0 V	V _{DDA} = 3.3 V	V _{DDA} = 3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD}	Supply					0.5				2.3	15	36	
I _{DDA}	Stop mode	All oscillators OFF	0.8	0.8	0.8	0.9	0.9	1.0	1.1	1.6	3.6	3.4	μA

Table 24. Typical and maximum consumption in Stop mode

Table 25. Typical and maximum current consumption from the $\rm V_{BAT}$ supply

						Тур @	V _{BAT}	Max ⁽¹⁾					
Symbol Para	Parameter	Conditions	1.65 V	1.8 V	2.4 V	2.7 V	3.3 V	3.6 V	T _A = 25 °C	Т _А = 85 °С	T _A = 105 °C	Unit	
	I _{DD_VBAT}	RTC domain supply current	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.5	0.6	0.7	0.8	0.9	1.0	1.3	1.7	
			LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.8	0.9	1.0	1.1	1.2	1.3	1.6	2.1	μΑ

1. Data based on characterization results, not tested in production.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 1.8 V
- All I/O pins are in analog input configuration
- The Flash memory access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

Electrical characteristics

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit				
			2 MHz	0.09					
			4 MHz	0.17					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$V_{DDIOx} = 1.8 V$	8 MHz	0.34					
	0.79								
	ol Parameter Conditions ⁽¹⁾ VO toggling frequency (f_{SW}) Typ VDDIOX = 1.8 V CEXT = 0 pF C = C_{INT} + C_{EXT} + C_S 2 MHz 0.09 4 MHz 0.17 8 MHz 0.34 CEXT = 0 pF C = C_{INT} + C_{EXT} + C_S 36 MHz 1.50 48 MHz 0.13 4 MHz 0.13 4 MHz 0.26 VDDIOX = 1.8 V CEXT = 10 pF C = C_{INT} + CEXT + C_S 18 MHz 0.13 4 MHz 0.26 WDDIOX = 1.8 V CEXT = 10 pF C = C_{INT} + CEXT + C_S 18 MHz 0.18 VDDIOX = 1.8 V CEXT = 22 pF C = C_{INT} + CEXT + C_S 18 MHz 0.18 VDDIOX = 1.8 V CEXT = 22 pF C = C_{INT} + CEXT + C_S 18 MHz 0.69 C = C_{INT} + CEXT + C_S 18 MHz 0.69 C = C_{INT} + CEXT + C_S 18 MHz 0.45 VDDIOX = 1.8 V CEXT = 33 pF C = C_{INT} + CEXT + C_S 18 MHz 0.45 VDDIOX = 1.8 V CEXT = 47 pF C = C_{INT} + CEXT + C_S 18 MHz 0.29 VDDIOX = 1.8 V CEXT = 47 pF C = C_{INT} + CEXT + C_S 4 MHz 0.55 8 MHz 0.55 8 MHz<								
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
			2 MHz	toggling lency (f _{SW}) Typ Unit 2 MHz 0.09 4 4 MHz 0.17 3 3 MHz 0.34 8 8 MHz 0.79 6 6 MHz 1.50 7 8 MHz 2.06 2 2 MHz 0.13 4 4 MHz 0.26 8 8 MHz 1.18 6 6 MHz 2.27 7 8 MHz 0.18 1 96 MHz 3.03 2 2 MHz 0.18 9 8 MHz 1.60 3 6 MHz 3.27 2 2 MHz 0.45 3 8 MHz 0.45 3 8 MHz 0.45 3 8 MHz 0.29 4 4 MHz 0.55 3 8 MHz 0.55 8 8 MHz 1.09 3 8 MHz 1.09 3 8 MHz					
			4 MHz	Typ Unit 0.09 0.17 0.34 0.79 1.50 2.06 0.13 0.26 0.50 1.18 2.27 3.03 0.18 0.18 0.36 0.69 1.60 3.27 0.23 0.45 0.87 2.0 3.7 0.29 0.55 1.09 2.43 0.45					
		$V_{\text{DDIOx}} = 1.8 \text{ V}$	8 MHz	Typ Unit 0.09 0.17 0.34 0.79 1.50 0.13 0.26 0.50 1.18 2.27 3.03 0.18 0.36 0.69 1.60 3.27 0.23 0.45 0.87 2.0 3.7 0.29 0.55 1.09 2.43					
		$C_{EXT} = 10 \text{ pr}$ C = C _{INIT} + C _{EXT} + C _S	18 MHz	1.18	Typ Unit 0.09 0.17 0.34 0.79 1.50 2.06 0.13 0.26 0.50 1.18 2.27 3.03 0.18 mA 0.36 0.69 1.60 3.27 0.23 0.45 0.87 2.0 3.7 0.29 0.55 1.09 2.43 1.01				
	$W = \begin{bmatrix} V_{DDIOX} = 1.8 \ V \\ C_{EXT} = 10 \ pF \\ C = C_{INT} + C_{EXT} + C_{S} \end{bmatrix} \begin{bmatrix} 2 \ MHz & 0.1 \\ 4 \ MHz & 0.1 \\ 8 \ MHz & 0.1 \\ 18 \ MHz & 1.1 \\ 36 \ MHz & 1.1 \\ 36 \ MHz & 3.1 \\ 18 \ MHz & 3.1 \\ 2 \ MHz & 0.1 \\ 18 \ MHz & 3.1 \\ 18 \ MHz & 3.1 \\ 18 \ MHz & 3.1 \\ 18 \ MHz & 0.1 \\ 18 \ MHz & $		36 MHz	Providegend Typ Unit 2 MHz 0.09 4 2 MHz 0.17 8 8 MHz 0.34 1 18 MHz 0.79 36 36 MHz 1.50 4 4 MHz 0.13 4 4 MHz 0.26 8 2 MHz 0.13 4 4 MHz 0.26 8 8 MHz 0.50 1 18 MHz 1.18 3 36 MHz 2.27 4 4 MHz 0.36 8 4 MHz 0.36 8 4 MHz 0.36 8 36 MHz 1.60 36 36 MHz 3.27 2 2 MHz 0.23 4 4 MHz 0.45 8 8 MHz 0.87 1 18 MHz 2.0 3.7 2 MHz 0.29 4 4 MHz 0.55 8 MHz 1.09					
I _{SW}			48 MHz	3.03					
				2 MHz	0.18	m۸			
ISW		0.36	ШA						
		$C_{EXT} = 22 \text{ pF}$	8 MHz	requency (f _{SW}) ryp omm 2 MHz 0.09 4 MHz 0.17 8 MHz 0.34 18 MHz 0.79 36 MHz 1.50 4 MHz 0.13 4 MHz 0.26 2 MHz 0.13 4 MHz 0.26 8 MHz 0.50 18 MHz 1.18 36 MHz 2.27 48 MHz 0.36 36 MHz 0.18 mA 4 MHz 0.36 18 MHz 1.60 36 MHz 0.69 18 MHz 0.23 4 MHz 0.45 8 MHz 0.87 18 MHz 2.0 36 MHz 0.29 4 MHz 0.55 8 MHz 0.55 <td></td>					
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz						
			36 MHz						
			2 MHz						
		V _{DDIOx} = 1.8 V	4 MHz	0.45					
		C _{EXT} = 33 pF	8 MHz	0.87					
		$C = C_{INT} + C_{EXT} + C_S$	$C = C_{INT} + C_{EXT} + C_S$	$C = C_{INT} + C_{EXT} + C_S$	$C = C_{INT} + C_{EXT} + C_S$	$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	2.0	
			36 MHz	3.7					
	$C = C_{INT} + C_{EXT} + C_S$	2 MHz	0.29						
		$V_{\text{DDIOx}} = 1.8 \text{ V}$	4 MHz	0.55					
		$C_{EXT} = 47 \text{ pr}$ $C = C_{INT} + C_{FXT} + C_{S}$	8 MHz	1.09					
			JUC togging frequency (f_{SW}) Typ Unitial Unitial Structure 1.8 V pF + C _{EXT} + C _S 2 MHz 0.09 4 MHz 0.17 1.8 V pF + C _{EXT} + C _S 8 MHz 0.34 1.8 V 8 MHz 0.79 36 MHz 1.50 48 MHz 2.06 2 MHz 0.13 4 MHz 0.26 1.8 V 2 MHz 0.13 4 MHz 0.26 1.8 V 36 MHz 1.18 36 MHz 2.27 48 MHz 0.36 2.27 48 MHz 3.03 1.8 V 3 MHz 0.36 1.8 1.8 V 2 MHz 0.18 1.60 36 MHz 3.03 2 MHz 0.69 + C _{EXT} + C _S 18 MHz 1.60 36 MHz 3.27 1.8 V 3 MHz 0.45 3.7 36 MHz 0.87 + C _{EXT} + C _S 18 MHz 0.29 3.7 36 MHz 3.7 1.8 V 4 MHz 0.55 3 MHz 1.09 3.7 </td <td></td>						

Table 27. Switching output I/O current consumption

1. $C_S = 5 \text{ pF}$ (estimated value).

	Peripheral	Typical consumption at 25 °C	Unit
	APB-Bridge ⁽²⁾	3	
	SYSCFG	3	
	ADC ⁽³⁾	5	
	TIM1	17	
	SPI1	10	
	USART1	19	
	TIM15	11	
	TIM16	8	
	TIM17	8	
	DBG (MCU Debug Support)	0.5	
	TIM2	17	
APB	TIM3	13	µA/MHz
	TIM6	3	
	TIM14	6	
	WWDG	1	
	SPI2	7	
	USART2	7	
	I2C1	4	
	I2C2	5	
	DAC	2	
	PWR	1	
	CEC	2	
	All APB peripherals	149	

 Table 28. Peripheral current consumption (continued)

1. The BusMatrix automatically is active when at least one master is ON (CPU or DMA1)

2. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.

 The power consumption of the analog part (I_{DDA}) of peripherals such as ADC is not included. Refer to the tables of characteristics in the subsequent sections.

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

				1		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI14}	Frequency	-	-	14	-	MHz
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		T _A = -40 to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%
100	Accuracy of the HSI14	T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%
ACC _{HSI14}	oscillator (factory calibrated)	T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	-	100	150 ⁽²⁾	μA

Table 35. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 17. HSI14 oscillator accuracy characterization results

6.3.14 NRST and NPOR pin characteristics

NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 19: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V _{NF(NRST)}	NRST input not filtered pulse	_	700 ⁽¹⁾	-	_	ns

Table 48. NRST pin characteristics

1. Data based on design simulation only. Not tested in production.

 The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

Figure 21. Recommended NRST pin protection

- 1. The external capacitor protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 48: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

NPOR pin characteristics

The NPOR pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor to the V_{DDA} , R_{PU} .

Unless otherwise specified, the parameters given in *Table 49* below are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19: General operating conditions*.

6.3.16 DAC electrical specifications

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
V _{DDA}	Analog supply voltage for DAC ON	2.4	-	3.6	V	-
р. (1)	Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}
►LOAD` ´	ON	25	-	-	kΩ	Load connected to V _{DDA}
R ₀ ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{DDA} = 3.6 V and (0x155) and (0xEAB) at V_{DDA} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{DDA} – 1LSB	V	excursion of the DAC.
lpp (¹)	DAC DC current	-	-	600	μA	With no load, middle code (0x800) on the input
UDA	mode ⁽²⁾	-	-	700	μA	With no load, worst code (0xF1C) on the input
DNL ⁽³⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾	and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{DDA} = 3.6 V
	(0x800) and the ideal value = V _{DDA} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at $V_{DDA} = 3.6 V$

Table	53.	DAC	charact	eristics
TUDIC	UU .	DAO	onulation	51151105

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{su(SD_MR)}	Data input actus timo	Master receiver	6	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	2	-	
t _{h(SD_MR)} ⁽²⁾	Data input hold time	Master receiver	4	-	
t _{h(SD_SR)} ⁽²⁾		Slave receiver	0.5	-	
t _{v(SD_MT)} ⁽²⁾	Data output valid time	Master transmitter	-	4	115
t _{v(SD_ST)} ⁽²⁾		Slave transmitter	-	31	
t _{h(SD_MT)}	Data output hold time	Master transmitter	0	-	
t _{h(SD_ST)}		Slave transmitter	13	-	

Table 62. I²S characteristics⁽¹⁾ (continued)

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{PCLK} . For example, if f_{PCLK} = 8 MHz, then T_{PCLK} = 1/ f_{PLCLK} = 125 ns.

Figure 29. I²S slave timing diagram (Philips protocol)

1. Measurement points are done at CMOS levels: 0.3 × V_{DDIOx} and 0.7 × V_{DDIOx}

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
b	0.170	0.280	0.330	0.0067	0.0110	0.0130
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398
е	-	0.500	-	-	0.0197	-
F	0.700	0.750	0.800	0.0276	0.0295	0.0315
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

Table 63. UFBGA64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 32. Recommended footprint for UFBGA64 package

Table 64. UFBGA64 recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

7.4 WLCSP36 package information

WLCSP36 is a 36-ball, 2.605 x 2.703 mm, 0.4 mm pitch wafer-level chip-scale package.

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	2.570	2.605	2.640	0.1012	0.1026	0.1039
E	2.668	2.703	2.738	0.1050	0.1064	0.1078
е	-	0.400	-	-	0.0157	-
e1	-	2.000	-	-	0.0787	-
e2	-	2.000	-	-	0.0787	-

Table 67. WLCSP36 package mechanical data

9 Revision history

Date	Revision	Changes	
06-June-2014	1	Initial release	
29-Sep-2015	2	 Updated the following: DAC and power management feature descriptions in <i>Features</i> Table 1: STM32F058C8/R8/T8 family device features and peripheral counts the position of PC3 in UFBGA64 package in Table 12: Pin definitions,. Section 3.5.1: Power supply scheme Table 17: Voltage characteristics Table 20: General operating conditions: updated the footnote for V_{IN} parameter Table 28: Typical and maximum current consumption from the VBAT supply Table 52: ADC characteristics Table 33: High-speed external user clock characteristics: replaced V_{DD} with V_{DDIOX} Replaced TBD occurrences with values in Table 23: Typical and maximum current consumption from the VDDA supply, Table 34: Low-speed external user clock characteristics: replaced V_{DD} with V_{DDIOX} Replaced TBD occurrences with values in Table 23: Typical and maximum current consumption from the VDDA supply, Table 34: Low-speed external user clock characteristics: replaced V_{DD} with V_{DDIOX} Table 37: HSI oscillator characteristics and Figure 19: HSI oscillator characteristics: changed the min value for ACC_{HSI14} Table 38: HSI14 oscillator characteristics: changed the values for t_{ME} and I_{DD} in write mode Table 43: EMS characteristics: changed the values for t_{ME} and I_{DD} in write mode Table 43: EMS characteristics changed the values for t_{ME} and Ta¹/_O input characteristics Figure 21: TC and TTa I/O input characteristics Figure 23: I/O AC characteristics definition t_{START} definition in Table 24: Embedded internal reference voltage t_{STAB} characteristics in Table 52: ADC characteristics Figure 23: I/O AC characteristics: changed the description and values for V_{SC}, V_{DDA} and V_{REFINT} scaler startup time from power down 	

Table 71. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

