

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betalls	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f058r8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	duction						
2	Desci	ription .						
3	Funct	tional o	verview					
	3.1	ARM [®] -0	Cortex [®] -M0 core					
	3.2	Memories						
	3.3	Boot mo	odes					
	3.4	Cyclic re	edundancy check calculation unit (CRC)					
	3.5		nanagement					
		3.5.1	Power supply schemes					
		3.5.2	Power-on reset					
		3.5.3	Low-power modes					
	3.6	Clocks	and startup					
	3.7	Genera	I-purpose inputs/outputs (GPIOs)					
	3.8	Direct memory access controller (DMA)						
	3.9	Interrup	ts and events					
		3.9.1	Nested vectored interrupt controller (NVIC)					
		3.9.2	Extended interrupt/event controller (EXTI)					
	3.10	Analog-	to-digital converter (ADC) 16					
		3.10.1	Temperature sensor					
		3.10.2	Internal voltage reference (V _{REFINT})					
		3.10.3	V _{BAT} battery voltage monitoring					
	3.11	Digital-t	o-analog converter (DAC) 18					
	3.12	Compar	rators (COMP) 18					
	3.13	Touch s	ensing controller (TSC) 18					
	3.14	Timers a	and watchdogs					
		3.14.1	Advanced-control timer (TIM1)					
		3.14.2	General-purpose timers (TIM2, 3, 14, 15, 16, 17)					
		3.14.3	Basic timer TIM6					
		3.14.4	Independent watchdog (IWDG) 21					
		3.14.5	System window watchdog (WWDG)22					
		3.14.6	SysTick timer					

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 Power supply schemes

- V_{DD} = V_{DDIO1} = 1.8 V ± 8%: external power supply for I/Os (V_{DDIO1}) and digital logic. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 10: Power supply scheme*.

3.5.2 Power-on reset

To guarantee a proper power-on reset, the NPOR pin must be held low until V_{DD} is stable. When V_{DD} is stable, the reset state can be exited either by:

- putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by
- forcing the pin to high level by connecting it to V_{DDA}

3.5.3 Low-power modes

The STM32F058C8/R8/T8 microcontrollers support two low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, RTC, I2C1 USART1, COMPx or the CEC.

The CEC, USART1 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 54 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature

3.14 Timers and watchdogs

The STM32F058C8/R8/T8 devices include up to six general-purpose timers, one basic timer and an advanced control timer.

Table 6 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs				
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3				
	TIM2 32-		2-bit Up, down, integer from up/down 1 to 65536		Yes	4	-				
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-				
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-				
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1				
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1				
Basic	TIM6	16-bit	Up	integer from 1 to 65536	Yes	-	-				

Table 6.	Timer	feature	comparison	
----------	-------	---------	------------	--

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

The RTC clock sources can be:

- a 32.768 kHz external crystal
- a resonator or oscillator
- the internal low-power RC oscillator (typical frequency of 40 kHz)
- the high-speed external clock divided by 32

3.16 Inter-integrated circuit interface (I²C)

Up to two I²C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) and Fast mode (up to 400 kbit/s) and, I2C1 also supports Fast Mode Plus (up to 1 Mbit/s) with extra output drive.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.

Aspect	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 7. Comparison of I²C analog and digital filters

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to Table 8 for the differences between I2C1 and I2C2.

Table 8. STM32F058C8/R8/T8 I ² C	implementation
---	----------------

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	X	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os	Х	-
Independent clock	X	-

4 Pinouts and pin descriptions

						1.0.0	9 ° P			
Top vie	ew	1	2	3	4	5	6	7	8	
	0									
А		PC14- OSC32	(PC13)	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	
В		,PC15- OSC32) OSC32)	VBAT	(PB8)	воото	(PD2)	(PC11)	(PC10)	(PA12)	
С		(OSC_)	(PF4)	РВ7	(PB5)	(PC12)	(PA10)	PA9	(PA11)	
D		(PF1- (OSC_) QUT	(PF5)	(PB6)	(vss)	vss	(PF6)	PA8	(PC9)	
E			(PC1)	PC0		VDD	(PF7)	PC7	PC8	
F		(VSSA)	PC2	(PA2)	(PA5)	(PB0)	PC6	(PB15)	(PB14)	
G		(PC3)	(PA0)	(PA3)	(PA6)	(PB1)		(PB10)	(PB13)	
н			(PA1)	(PA4)	(PA7)	PC4	PC5	(PB11)	(PB12)	
					UFB	GA64				

Figure 3. UFBGA64 package pinout

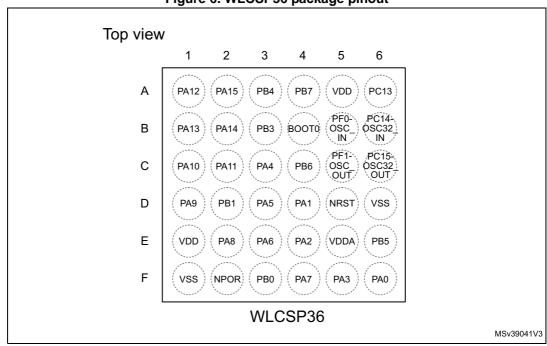
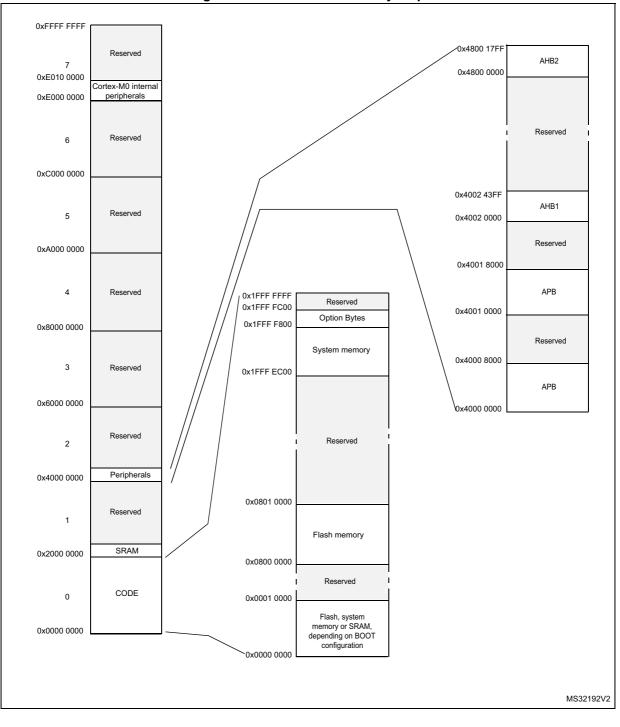


Figure 6. WLCSP36 package pinout


1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

Na	me	Abbreviation	tion Definition				
Pin r	name		specified in brackets below the pin name, the pin function during and ame as the actual pin name				
		S	Supply pin				
Pin	type	I	Input-only pin				
		I/O	Input / output pin				
		FT	5 V-tolerant I/O				
		FTf	5 V-tolerant I/O, FM+ capable				
		TTa 3.3 V-tolerant I/O directly connected to ADC					
I/O str	ucture	POR External power on reset pin with embedded weak pull-up resisted powered from V _{DDA}					
		TC	Standard 3.3 V I/O				
		В	Dedicated BOOT0 pin				
		RST	Bidirectional reset pin with embedded weak pull-up resistor				
Notes		Unless otherwise specified by a note, all I/Os are set as floating inputs during and afte reset.					
Pin	Alternate functions	Functions selected	Functions selected through GPIOx_AFR registers				
functions	Additional functions	Functions directly	Functions directly selected/enabled through peripheral registers				

Table 11. Legend/abbreviations used in	tho	ninout table
Table 11. Legenu/abbieviations used in	uie	pinoul lable

5 Memory mapping

Bus	Boundary address	Size	Peripheral
	0x4000 7C00 - 0x4000 7FFF	1 KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 5C00 - 0x4000 6FFF	5 KB	Reserved
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 4800 - 0x4000 53FF	3 KB	Reserved
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
APB	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
AFD	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1400 - 0x4000 1FFF	3 KB	Reserved
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table	15. STM32F058C8/R8/T8 p	peripheral	register	boundary	addresses	(continued)

6.1.6 Power supply scheme

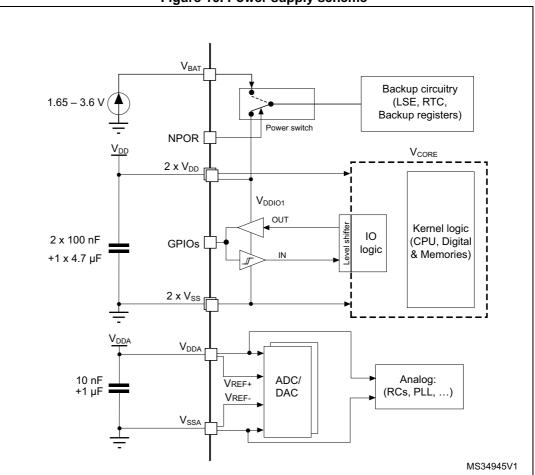
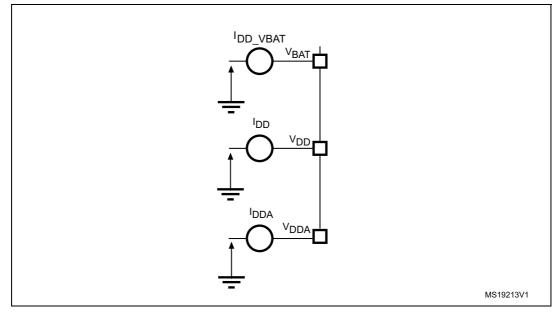



Figure 10. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.1.7 Current consumption measurement

Figure 11. Current consumption measurement scheme

Electrical characteristics

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit		
			2 MHz	0.09			
			4 MHz	0.17			
		V _{DDIOx} = 1.8 V 8 MHz C _{EXT} = 0 pF		8 MHz	0.34		
		$C_{EXT} = 0 \text{ pr}$ $C = C_{INT} + C_{EXT} + C_S$	18 MHz	0.79			
			36 MHz	1.50			
			48 MHz	2.06			
			2 MHz	0.13			
			4 MHz	0.26			
		$V_{\text{DDIOx}} = 1.8 \text{ V}$	8 MHz	0.50			
		$C_{EXT} = 10 \text{ pF}$ $C = C_{INT} + C_{EXT} + C_S$	18 MHz	1.18			
			36 MHz	2.27			
			48 MHz	3.03			
L	I/O current	$V_{DDIOx} = 1.8 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_S$	2 MHz	0.18	mA		
I _{SW}	consumption		V _{DDIOx} = 1.8 V	V _{DDIOx} = 1.8 V	4 MHz	0.36	ША
			8 MHz	0.69			
			18 MHz	1.60			
			36 MHz	3.27			
			2 MHz	0.23			
		V _{DDIOx} = 1.8 V	4 MHz	0.45	1		
		C _{EXT} = 33 pF	8 MHz	0.87			
		$C = C_{INT} + C_{EXT} + C_S$	18 MHz	2.0			
			36 MHz	3.7			
			2 MHz	0.29			
		V _{DDIOx} = 1.8 V C _{EXT} = 47 pF	4 MHz	0.55			
		$C_{EXT} = 47 \text{ pr}$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	1.09			
			18 MHz	2.43			

Table 27. Switching output I/O current consumption

1. $C_S = 5 \text{ pF}$ (estimated value).

Low-speed internal (LSI) RC oscillator

Table 36. LSI osc	illator characteristics ⁽¹⁾
-------------------	--

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μΑ

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

6.3.8 PLL characteristics

The parameters given in *Table 37* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19: General operating conditions*.

Symbol	Parameter		Unit			
Symbol	Farameter	Min	Тур	Max		
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	8.0	24 ⁽²⁾	MHz	
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%	
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz	
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs	
Jitter _{PLL}	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps	

Table 37. PLL characteristics

1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design, not tested in production.

6.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Table 38. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = - 40 to +105 °C	40	53.5	60	μs
t _{ERASE}	Page (1 KB) erase time	T _A = - 40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = - 40 to +105 °C	20	-	40	ms
I	Supply current	Write mode	-	-	10	mA
IDD		Erase mode	-	-	12	mA

1. Guaranteed by design, not tested in production.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to JESD22-A114	All	2	2000	V	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	All	C3	250	V	

 Table 42. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 43. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 44.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

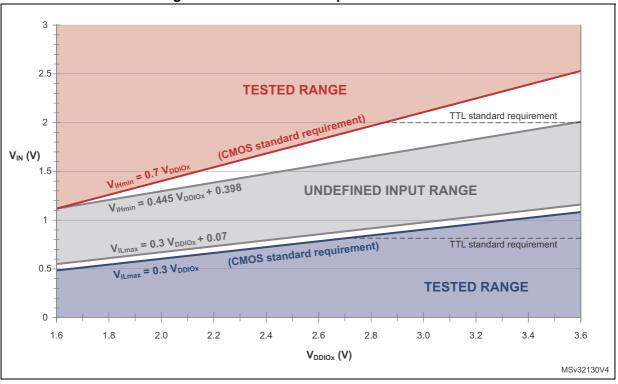
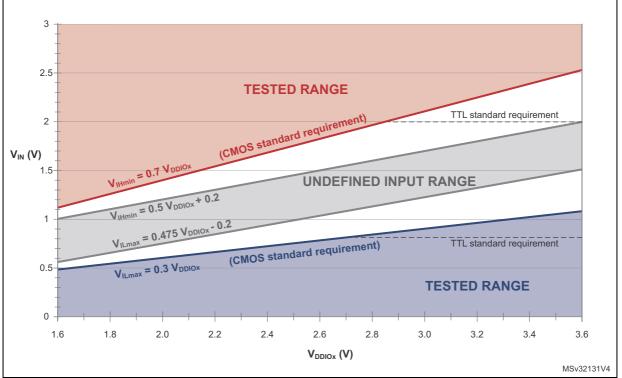
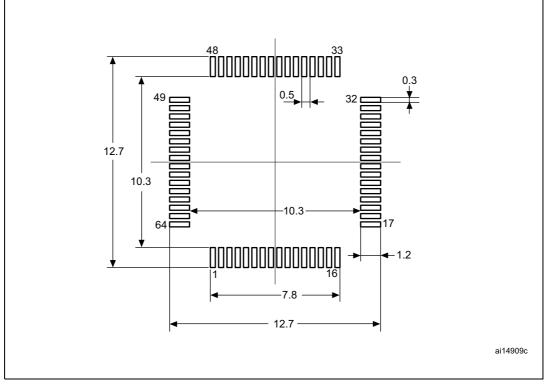



Figure 18. TC and TTa I/O input characteristics

Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics



Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ссс	-	-	0.080	-	-	0.0031

Table 65. LQFP64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

7.3 UFQFPN48 package information

UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.

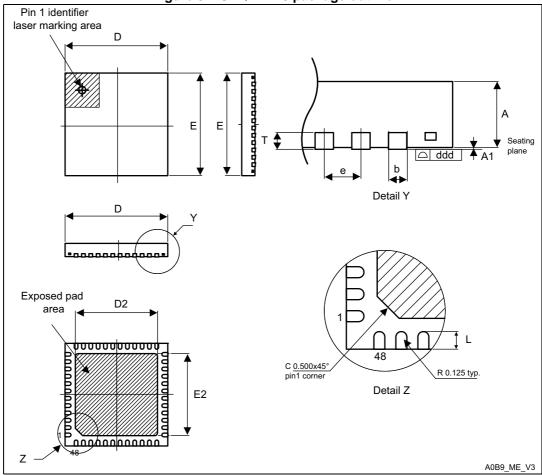
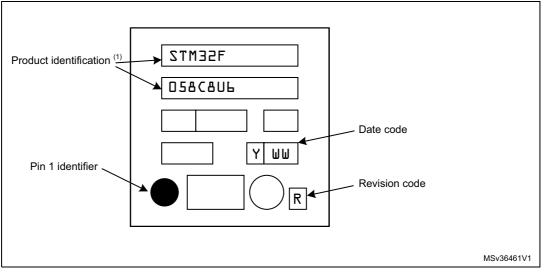


Figure 37. UFQFPN48 package outline

1. Drawing is not to scale.


- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 39. UFQFPN48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

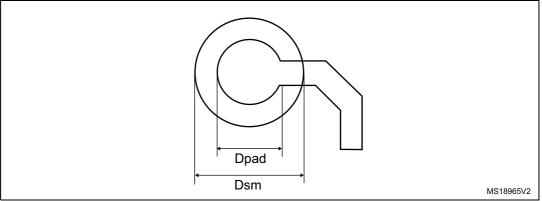

0h.e.l	Sumbol						inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах		
F	-	0.3025	-	-	0.0119	-		
G	-	0.3515	-	-	0.0138	-		
aaa	-	-	0.100	-	-	0.0039		
bbb	-	-	0.100	-	-	0.0039		
CCC	-	-	0.100	-	-	0.0039		
ddd	-	-	0.050	-	-	0.0020		
eee	-	-	0.050	-	-	0.0020		

Table 67. WLCSP36 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 41. Recommended pad footprint for WLCSP36 package

Table 68. WLCSP36 recommended PCB design rules

Dimension	Recommended values
Pitch	0.4 mm
Dpad	260 μm max. (circular) 220 μm recommended
Dsm	300 μm min. (for 260 μm diameter pad)
PCB pad design	Non-solder mask defined via underbump allowed

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

```
P<sub>Dmax</sub> = 175 + 272 = 447 mW
```

Using the values obtained in *Table* 69 T_{Jmax} is calculated as follows:

For LQFP64, 45 °C/W

T_{.lmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$) see *Table 19: General operating conditions*.

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885 ^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885 ^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 100 °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OI} = 8 mA, V_{OI} = 0.4 V

P_{INTmax} = 20 mA × 3.5 V= 70 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Using the values obtained in *Table* 69 T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

