

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12dg128mpvr2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Freescale Semiconductor, Inc. MC9S12D1128B Device User Guide — V01.09

2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]63
2.4 Power Supply Pins
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulato 64
2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
2.4.7 VREGEN — On Chip Voltage Regulator Enable
Section 3 System Clock Description
3.1 Overview
Section 4 Modes of Operation
4.1 Overview
4.2 Chip Configuration Summary
4.3 Security
4.3.1 Securing the Microcontroller
4.3.2 Operation of the Secured Microcontroller
4.3.3 Unsecuring the Microcontroller71
4.4 Low Power Modes
4.4.1 Stop
4.4.2 Pseudo Stop
4.4.3 Wait
4.4.4 Run
Section 5 Resets and Interrupts73
5.1 Overview
5.2 Vectors
5.2.1 Vector Table
5.3 Effects of Reset
5.3.1 I/O pins
5.3.2 Memory
Section 6 HCS12 Core Block Description

Freescale Semiconductor, Inc. MC9S12D1128B Device User Guide — V01.09

A.1.3	Pins
A.1.4	Current Injection
A.1.5	Absolute Maximum Ratings
A.1.6	ESD Protection and Latch-up Immunity
A.1.7	Operating Conditions
A.1.8	Power Dissipation and Thermal Characteristics
A.1.9	I/O Characteristics
A.1.10	Supply Currents
A.2 AT	D Characteristics
A.2.1	ATD Operating Characteristics95
A.2.2	Factors influencing accuracy95
A.2.3	ATD accuracy
A.3 N∖	/M, Flash and EEPROM
A.3.1	NVM timing
A.3.2	NVM Reliability
A.4 Vo	Itage Regulator
A.5 Re	eset, Oscillator and PLL
A.5.1	Startup
A.5.2	Oscillator
A.5.3	Phase Locked Loop
A.6 MS	SCAN
A.7 SF	ข
A.7.1	Master Mode
A.7.2	Slave Mode
A.8 Ex	ternal Bus Timing
A.8.1	General Muxed Bus Timing

Appendix B Package Information

B.1	General	.121
B.2	112-pin LQFP package	122
B.3	80-pin QFP package	123

MC9S12DT128B Device User Guide _____ VOT.09

- Do not write or read BDLC registers (after reset: address range \$00E8 \$00EF), if using a derivative without BDLC (see **Table 0-1**).
- Do not write or read IIC registers (after reset: address range \$00E0 \$00E7), if using a derivative without IIC (see Table 0-1).
- Do not write or read Byteflight registers (after reset: address range \$0300 \$035F), if using a derivative without Byteflight registers (see Table 0-1).

• Interrupts

- Fill the four CAN1 interrupt vectors (\$FFA8 \$FFAF) according to your coding policies for unused interrupts, if using a derivative without CAN1 (see **Table 0-1**).
- Fill the BDLC interrupt vector (\$FFC2, \$FFC3) according to your coding policies for unused interrupts, if using a derivative without BDLC (see **Table 0-1**).
- Fill the IIC interrupt vector (\$FFC0, \$FFC1) according to your coding policies for unused interrupts, if using a derivative without IIC (see **Table 0-1**).
- Fill the four Byteflight interrupt vectors (\$FFA0 \$FFA7) according to your coding policies for unused interrupts, if using a derivative without Byteflight (see **Table 0-1**).

Ports

- The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if using a derivative without CAN1 (see **Table 0-1**).
- The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC (see Table 0-1).
- The IIC pin functionality (SCL, SCA) is not available on port PJ7 and PJ6, if using a derivative without IIC (see **Table 0-1**).
- The Byteflight pin functionality (BF_PSLM, BF_PERR, BF_PROK, BF_PSYN, TX_BF, RX_BF) is not available on port PM7, PM6, PM5, PM4, PM3 and PM2, if using a derivative without Byteflight (see Table 0-1).

Pins not available in 80 pin QFP package

– Port H

In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+\$0262) to \$FF, or enabling the pull resistors by writing a \$FF to the pull enable register (PERH at Base+\$0264).

– Port J[1:0]

Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+\$026C.

– Port K

Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+\$000C. Therefore care must be taken not to clear this bit.

MC9S12DT128B Device User Guide V01.09 Semiconductor, Inc.

- Digital filtering
- Programmable rising or falling edge trigger
- Memory
 - 128K Flash EEPROM
 - 2K byte EEPROM
 - 8K byte RAM
- Two 8-channel Analog-to-Digital Converters
 - 10-bit resolution
 - External conversion trigger capability
- Three 1M bit per second, CAN 2.0 A, B software compatible modules
 - Five receive and three transmit buffers
 - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
 - Four separate interrupt channels for Rx, Tx, error and wake-up
 - Low-pass filter wake-up function
 - Loop-back for self test operation
- Enhanced Capture Timer
 - 16-bit main counter with 7-bit prescaler
 - 8 programmable input capture or output compare channels
 - Two 8-bit or one 16-bit pulse accumulators
- 8 PWM channels
 - Programmable period and duty cycle
 - 8-bit 8-channel or 16-bit 4-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
 - Usable as interrupt inputs
- Serial interfaces
 - Two asynchronous Serial Communications Interfaces (SCI)
 - Two Synchronous Serial Peripheral Interface (SPI)
 - Byteflight
- Byte Data Link Controller (BDLC)

MC9S12DT128B Device User Guide - V01.09

1.4 Block Diagram

Figure 1-1 shows a block diagram of the MC9S12DT128B device.

MC9S12DT128B Device User Guide _____ VOT.09

\$00A0 - \$00C7

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00A9	PWMSCLB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00AA	PWMSCNTA	Read:	0	0	0	0	0	0	0	0
	Test Only	Write:		0		0	0			0
\$00AB	PWMSCN1B	Read:	0	0	0	0	0	0	0	0
	Test Only	VVrite:	Dit 7	6	F	4	2	2	1	Dit O
\$00AC	PWMCNT0	Keau.		0	5	4	3	2		
		Pood	Bit 7	6	5	0	3	2	1	Bit 0
\$00AD	PWMCNT1	Write	0	0	0		0	0	0	0
		Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$00AE	PWMCNT2	Write:	0	0	0	0	0	0	0	0
		Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$00AF	PWMCN13	Write:	0	0	0	0	0	0	0	0
¢0000		Read:	Bit 7	6	5	4	3	2	1	Bit 0
200B0	PWIMEN14	Write:	0	0	0	0	0	0	0	0
¢00₽1		Read:	Bit 7	6	5	4	3	2	1	Bit 0
φ00B1	F WIVICINTS	Write:	0	0	0	0	0	0	0	0
\$00B2	PW/MCNT6	Read:	Bit 7	6	5	4	3	2	1	Bit 0
ΨUUDZ		Write:	0	0	0	0	0	0	0	0
\$00B3	PWMCNT7	Read:	Bit 7	6	5	4	3	2	1	Bit 0
+		Write:	0	0	0	0	0	0	0	0
\$00B4	PWMPER0	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B5	PWMPER1	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B6	PWMPER2	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B7	PWMPER3	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B8	PWMPER4	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B9	PWMPER5	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BA	PWMPER6	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BB	PWMPER7	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BC	PWMDTY0	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BD	PWMDTY1	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BE	PWMDTY2	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BF	PWMDTY3	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C0	PWMDTY4	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C1	PWMDTY5	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

MC9S12DT128B Device User Guide - VOT.09

\$0240 - \$027F

PIM (Port Integration Module)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0240	PTT	Read: Write:	PTT7	PTT6	PTT5	PTT4	PTT3	PTT2	PTT1	PTT0
\$0241	PTIT	Read:	PTIT7	PTIT6	PTIT5	PTIT4	PTIT3	PTIT2	PTIT1	PTIT0
• -		Write:								
\$0242	DDRT	Write:	DDRT7	DDRT7	DDRT5	DDRT4	DDRT3	DDRT2	DDRT1	DDRT0
\$0243	RDRT	Read: Write:	RDRT7	RDRT6	RDRT5	RDRT4	RDRT3	RDRT2	RDRT1	RDRT0
\$0244	PERT	Read: Write:	PERT7	PERT6	PERT5	PERT4	PERT3	PERT2	PERT1	PERT0
\$0245	PPST	Read: Write:	PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0
\$0246	Reserved	Read:	0	0	0	0	0	0	0	0
••		Write:					-			_
\$0247	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0248	PTS	Read: Write:	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0
* • • • •		Read:	PTIS7	PTIS6	PTIS5	PTIS4	PTIS3	PTIS2	PTIS1	PTIS0
\$0249	PHS	Write:								
\$024A	DDRS	Read: Write:	DDRS7	DDRS7	DDRS5	DDRS4	DDRS3	DDRS2	DDRS1	DDRS0
\$024B	RDRS	Read: Write:	RDRS7	RDRS6	RDRS5	RDRS4	RDRS3	RDRS2	RDRS1	RDRS0
\$024C	PERS	Read: Write:	PERS7	PERS6	PERS5	PERS4	PERS3	PERS2	PERS1	PERS0
\$024D	PPSS	Read: Write:	PPSS7	PPSS6	PPSS5	PPSS4	PPSS3	PPSS2	PPSS1	PPSS0
\$024E	WOMS	Read: Write:	WOMS7	WOMS6	WOMS5	WOMS4	WOMS3	WOMS2	WOMS1	WOMS0
\$024F	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:								
\$0250	PTM	Read: Write:	PTM7	PTM6	PTM5	PTM4	PTM3	PTM2	PTM1	PTM0
\$0251	PTIM	Read:	PTIM7	PTIM6	PTIM5	PTIM4	PTIM3	PTIM2	PTIM1	PTIM0
φ 0 201		Write:								
\$0252	DDRM	Read: Write:	DDRM7	DDRM7	DDRM5	DDRM4	DDRM3	DDRM2	DDRM1	DDRM0
\$0253	RDRM	Read: Write:	RDRM7	RDRM6	RDRM5	RDRM4	RDRM3	RDRM2	RDRM1	RDRM0
\$0254	PERM	Read: Write:	PERM7	PERM6	PERM5	PERM4	PERM3	PERM2	PERM1	PERM0
\$0255	PPSM	Read: Write:	PPSM7	PPSM6	PPSM5	PPSM4	PPSM3	PPSM2	PPSM1	PPSM0
\$0256	WOMM	Read: Write:	WOMM7	WOMM6	WOMM5	WOMM4	WOMM3	WOMM2	WOMM1	WOMM0
\$0257	MODRR	Read: Write:	0	0	MODRR5	MODRR4	MODRR3	MODRR2	MODRR1	MODRR0
\$0258	PTP	Read: Write:	PTP7	PTP6	PTP5	PTP4	PTP3	PTP2	PTP1	PTP0

Freescale Semiconductor, Inc. MC9S12D1128B Device User Guide - V01.09

• • • • •	•									
Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0360 -	Pasaryad	Read:	0	0	0	0	0	0	0	0
\$03FF	Reserveu	Write:								

1.6 Part ID Assignments

\$0360 - \$03FF

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset). The read-only value is a unique part ID for each revision of the chip. **Table 1-3** shows the assigned part ID number.

Table 1-3 Assigned Part ID Numbers

Device	Mask Set Number	Part ID ¹
MC9S12DT128B	0L85D	\$0100
MC9S12DT128B	1L85D	\$0101

NOTES:

1. The coding is as follows:

Bit 15-12: Major family identifier

Bit 11-8: Minor family identifier

Bit 7-4: Major mask set revision number including FAB transfers

Reserved

Bit 3-0: Minor - non full - mask set revision

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-4** shows the read-only values of these registers. Refer to section Module Mapping and Control (MMC) of HCS12 Core User Guide for further details.

Table 1-4 Memory size registers

Register name	Value
MEMSIZ0	\$13
MEMSIZ1	\$80

MC9S12DT128B Device User Guide _____ VOT.09 Semiconductor, Inc.

2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15]

PAD15 is a general purpose input pin and analog input of the analog to digital converter ATD1. It can act as an external trigger input for the ATD1.

2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]

PAD14 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD1.

2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7]

PAD7 is a general purpose input pin and analog input of the analog to digital converter ATD0. It can act as an external trigger input for the ATD0.

2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]

PAD6 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD0.

2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] - Port A I/O Pins

PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] - Port B I/O Pins

PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or "free" cycle. This signal will assert when the CPU is not using the bus.

The $\overline{\text{XCLKS}}$ is an input signal which controls whether a crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of $\overline{\text{RESET}}$. If the input is a logic low the EXTAL pin is configured for an external clock drive. If input is a logic high an oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is an oscillator circuit on EXTAL and XTAL.

* Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is applied to the crystal

Please contact the crystal manufacturer for crystal DC bias conditions and recommended capacitor value C_{DC}.

Figure 2-4 Colpitts Oscillator Connections (PE7=1)

* Rs can be zero (shorted) when used with higher frequency crystals. Refer to manufacturer's data.

Figure 2-5 Pierce Oscillator Connections (PE7=0)

Figure 2-6 External Clock Connections (PE7=0)

MC9S12DT128B Device User Guide - V01.09 Semiconductor, Inc.

2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of $\overline{\text{RESET}}$. This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when $\overline{\text{RESET}}$ is low.

2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of $\overline{\text{RESET}}$. This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when $\overline{\text{RESET}}$ is low.

2.3.15 PE4 / ECLK — Port E I/O Pin 4

PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK. ECLK can be used as a timing reference.

2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3

PE3 is a general purpose input or output pin. In MCU expanded modes of operation, $\overline{\text{LSTRB}}$ can be used for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on, $\overline{\text{TAGLO}}$ is used to tag the low half of the instruction word being read into the instruction queue.

2.3.17 PE2 / R/W - Port E I/O Pin 2

PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the read/write output signal for the external bus. It indicates the direction of data on the external bus.

2.3.18 PE1 / IRQ — Port E Input Pin 1

PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.

2.3.19 PE0 / XIRQ — Port E Input Pin 0

PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.

2.3.20 PH7 / KWH7 - Port H I/O Pin 7

PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

MC9S12DT128B Device User Guide _____ VOT.09

Maamania	Pin Number	Nominal	Description	
winemonic	112-pin QFP	Voltage	Description	
VDDR	41	5.0V	External power and ground, supply to pin drivers and internal	
VSSR	40	0V	voltage regulator.	
VDDX	107	5.0V	External power and ground, supply to pip drivers	
VSSX	106	0V		
VDDA	83	5.0V	Operating voltage and ground for the analog-to-digital	
VSSA	86	0V	converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.	
VRL	85	0V	Reference voltages for the appleg to digital convertor	
VRH	84	5.0V		
VDDPLL	43	2.5V	Provides operating voltage and ground for the Phased-Locked	
VSSPLL	45	0V	Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.	
VREGEN	97	5V	Internal Voltage Regulator enable/disable	

NOTE: All VSS pins must be connected together in the application.

2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins

Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground.

NOTE: No load allowed except for bypass capacitors.

VREGEN Description					
1	Internal Voltage Regulator enabled				
0	Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V				

Table 4-5 Vollage Regulator VREGEN	Table 4-3	Voltage	Regulator	VREGEN
------------------------------------	-----------	---------	-----------	--------

4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

- Protection of the contents of FLASH,
- Protection of the contents of EEPROM,
- Operation in single-chip mode, No BDM possible
- Operation from external memory with internal FLASH and EEPROM disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

4.3.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM operations will be blocked.

4.3.3 Unsecuring the Microcontroller

In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be done through an external program in expanded mode.

Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again.

4.4 Low Power Modes

The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG).

4.4.1 Stop

Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts.

4.4.2 Pseudo Stop

This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter.

4.4.3 Wait

This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks.

4.4.4 Run

Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power.

Consult the EETS2K Block User Guide for information about the EEPROM module.

Section 18 RAM Block Description

This module supports single-cycle misaligned word accesses without wait states.

Section 19 MSCAN Block Description

There are three MSCAN modules (CAN4, CAN1 and CAN0) implemented on the MC9S12DT128B. Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.

Section 20 Port Integration Module (PIM) Block Description

Consult the PIM_9DTB128 Block User Guide for information about the Port Integration Module.

Section 21 Voltage Regulator (VREG) Block Description

Consult the VREG Block User Guide for information about the dual output linear voltage regulator.

MC9S12DT128B Device User Guide - V01.09 Semiconductor, Inc.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ohm
	Storage Capacitance	С	100	pF
Human Body	Number of Pulse per pin positive negative	-	- 3 3	
	Series Resistance	R1	0	Ohm
	Storage Capacitance	С	200	pF
Machine	Number of Pulse per pin positive negative	_	- 3 3	
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table A-2 ESD and Latch-up Test Conditions

Table A-3 ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	2000	-	V
2	С	Machine Model (MM)	V _{MM}	200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	500	-	V
4	с	Latch-up Current at 125°C positive negative	I _{LAT}	+100 -100	_	mA
5	с	Latch-up Current at 27°C positive negative	I _{LAT}	+200 -200	-	mA

A.1.7 Operating Conditions

This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.

NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature T_A and the junction temperature T_J . For power dissipation

A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for the measurements.

A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.

A.1.10.2 Additional Remarks

In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be

MC9S12DT128B Device User Guide _____ VOT.09 Semiconductor, Inc.

specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed.

A.2.2.2 Source capacitance

When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage $\leq 1LSB$, then the external filter capacitor, $C_f \geq 1024 * (C_{INS} - C_{INN})$.

A.2.2.3 Current injection

There are two cases to consider.

- 1. A current is injected into the channel being converted. The channel being stressed has conversion values of 3FF (FF in 8-bit mode) for analog inputs greater than V_{RH} and 000 for values less than V_{RL} unless the current is higher than specified as disruptive conditions.
- 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance.

The additional input voltage error on the converted channel can be calculated as $V_{ERR} = K * R_S * I_{INJ}$, with I_{INJ} being the sum of the currents injected into the two pins adjacent to the converted channe

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	С	Max input Source Resistance	R _S	-	-	1	KΩ
2	т	Total Input Capacitance Non Sampling Sampling	C _{INN} C _{INS}			10 22	pF
3	С	Disruptive Analog Input Current	I _{NA}	-2.5		2.5	mA
4	С	Coupling Ratio positive current injection	K _p			10 ⁻⁴	A/A
5	С	Coupling Ratio negative current injection	K _n			10 ⁻²	A/A

Table A-9 ATD Electrical Characteristics

A.8 External Bus Timing

A timing diagram of the external multiplexed-bus is illustrated in **Figure A-9** with the actual timing values shown on table **Table A-20**. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

A.8.1 General Muxed Bus Timing

The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.

MC9S12DT128B Device User Guide _____ VOT.09