

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
oltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp304-e-ml

4.8.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

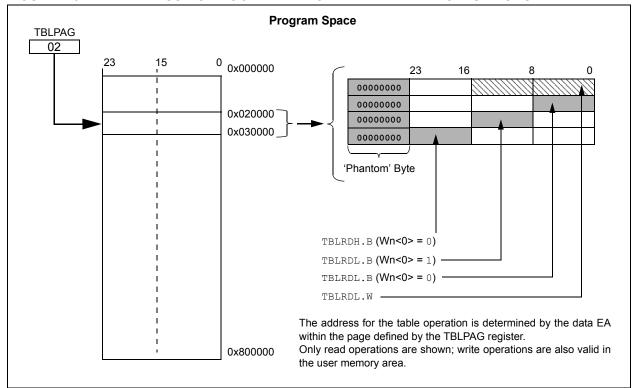
The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, this
instruction maps the lower word of the program
space location (P<15:0>) to a data address
(D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.


TBLRDH (Table Read High): In Word mode, this
instruction maps the entire upper word of a program
address (P<23:16>) to a data address. Note that
D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, as in the TBLRDL instruction. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-8: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

<u>usi 10331 (</u>	JJZGFZU	12/204 an	u usrics	373 100	7304
NOTES:					

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
NVMKEY<7:0>								
bit 7							bit 0	

Legend: SO = Settable Only bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (Write Only) bits

REGISTER 7-11: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T1IP<2:0>			_	OC1IP<2:0>		
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC1IP<2:0>			_	INT0IP<2:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

_

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

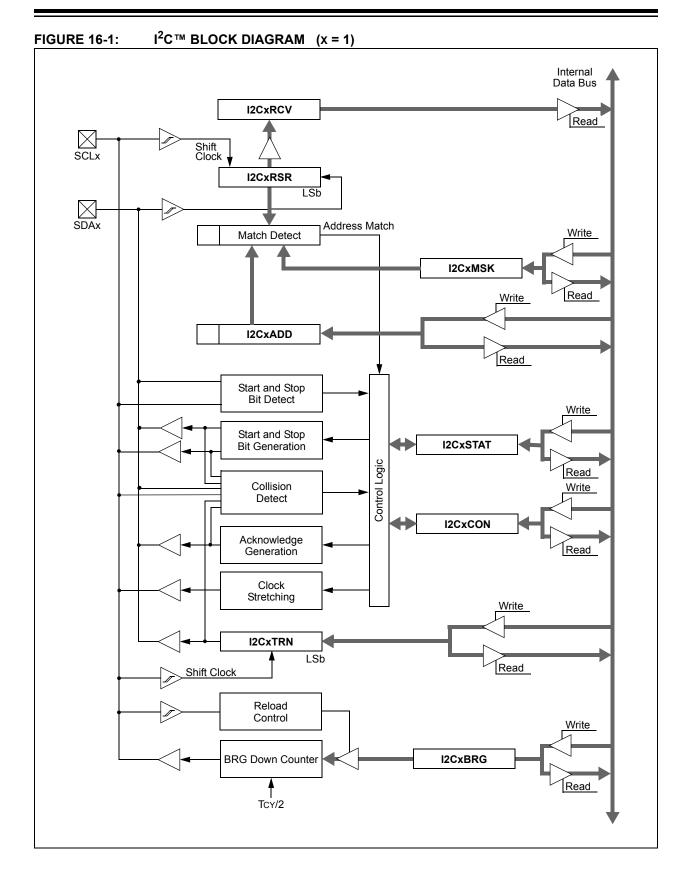
001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 INT0IP<2:0>: External Interrupt 0 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)


•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

<u> </u>)F332GF	202/20	74 allu (<u> </u>	7304
NOTES:					

TABLE 19-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 19-2:	CONFIGUR	KATION BI	TS DESCRIPTION (CONTINUED)
Bit Field	Register	RTSP Effect	Description
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits $1x = \text{Clock}$ switching is disabled, Fail-Safe Clock Monitor is disabled $01 = \text{Clock}$ switching is enabled, Fail-Safe Clock Monitor is disabled $00 = \text{Clock}$ switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	FWDT	Immediate	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384
ALTI2C	FPOR	Immediate	Alternate I^2C^{TM} pins 1 = I^2C mapped to SDA1/SCL1 pins 0 = I^2C mapped to ASDA1/ASCL1 pins
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
JTAGEN	FICD	Immediate	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled

Note:

19.5 JTAG Interface

dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of the document.

19.6 Code Protection and CodeGuard™ Security

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 product families offer the intermediate implementation of CodeGuard ™ Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and

TABLE 19-3: CODE FLASH SECURITY SEGMENT SIZES FOR 32 KBYTE DEVICES

CONFIG BITS		
BSS<2:0>=x11 0K	VS = 256 IW GS = 11008 IW	0x000000 0x0001FE 0x000220 0x0007FE 0x00800 0x001FFE 0x002000 0x003FFE 0x004000
		0x0057FE
	VS = 256 IW BS = 768 IW	0x000000 0x0001FE 0x000200
BSS<2:0>=x10 256	GS = 10240 IW	0x0007FE 0x000800 0x001FFE 0x002000 0x003FFE 0x004000
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0x0057FE 0x000000
BSS<2:0>=x01	VS = 256 IW BS = 3840 IW	0x0001FE 0x000200 0x0007FE 0x000800 0x001FFE
768	GS = 7168 IW	0x002000 0x003FFE 0x004000 0x0057FE
	VS = 256 IW	0x000000 0x0001FE
BSS<2:0>=x00	BS = 7936 IW	0x000200 0x0007FE 0x000800 0x001FFE 0x002000 0x003FFE
	GS = 3072 IW	0x004000 0x0057FE

peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, Code-Guard™ Security can be used to securely update Flash even when multiple IPs reside on the single chip.

The code protection features are controlled by the Configuration registers: FBS and FGS. The Secure segment and RAM is not implemented.

Refer to Section 23. "CodeGuard™ Security" (DS70199) in the "dsPIC33F/PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

TABLE 19-4: CODE FLASH SECURITY SEGMENT SIZES FOR 16 KBYTE DEVICES

CONFIG BITS		
BSS<2:0>=x11	VS = 256 IW	0x000000 0x0001FE 0x000200 0x0007FE 0x000800 0x001FFE 0x002000
U.V.	GS = 5376 IW	0x002BFE
	VS = 256 IW	0x000000 0x0001FE
BSS<2:0>=x10	BS = 768 IW	0x000200 0x0007FE
256		0x000800 0x001FFE 0x002000
	GS = 4608 IW	0x002BFE
	VS = 256 IW	0x000000 0x0001FE
BSS<2:0>=x01	BS = 3840 IW	0x000200 0x0007FE 0x000800 0x001FFE
768		0x002000
	GS = 1536 IW	0x002BFE
	VS = 256 IW	0x000000 0x0001FE
BSS<2:0>=x00	BS = 5376 IW	0x000200 0x0007FE 0x000800 0x001FFE
1792		0x002000
		0x002BFE

TABLE 20-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}

TABLE 22-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Parameter No.	Typical ⁽²⁾	Max	Doze Ratio	Units	Conditions		
Doze Current (IDC)ZE) ⁽¹⁾						
DC73a	41	51	1:2	mA			
DC73f	20	28	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	19	24	1:128	mA			
DC70a	40	46	1:2	mA			
DC70f	18	20	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	18	20	1:128	mA			
DC71a	40	46	1:2	mA			
DC71f	18	25	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	18	20	1:128	mA			
DC72a	39	55	1:2	mA			
DC72f	18	30	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	18	25	1:128	mA			

- **Note 1:** IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:
 - Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail with overshoot/undershoot < 250 mV
 - $\bullet\,$ CLKO is configured as an I/O input pin in the Configuration Word
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD, WDT and FSCM are disabled
 - CPU, SRAM, program memory and data memory are operational
 - No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
 - CPU executing while (1) statement
 - · JTAG is disabled
 - 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

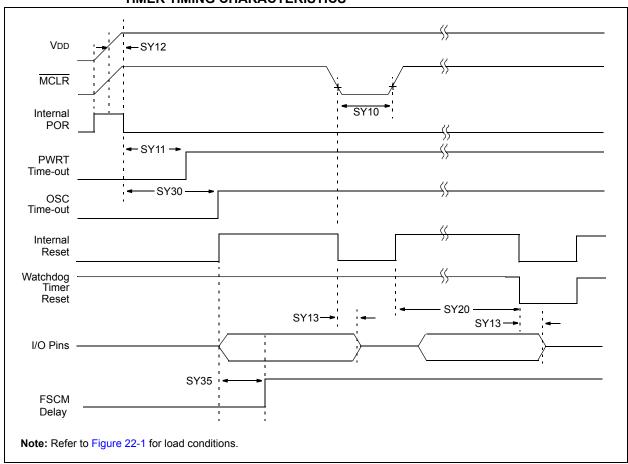


FIGURE 22-13: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 22-14: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

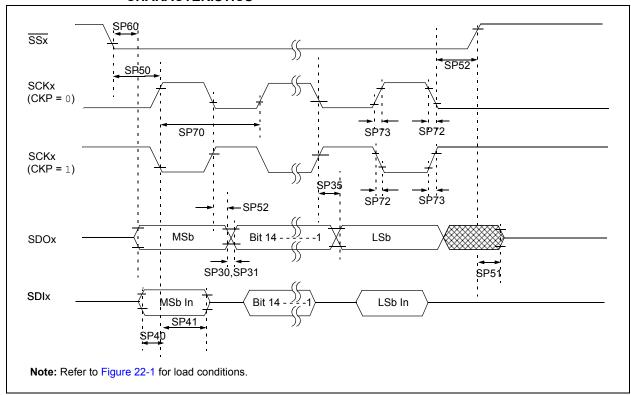


FIGURE 22-22: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)

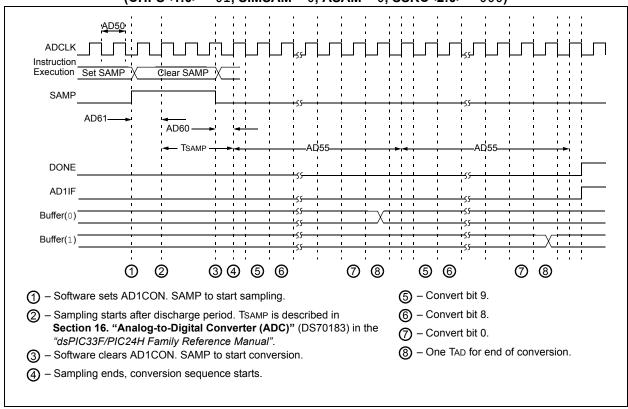


FIGURE 22-23: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

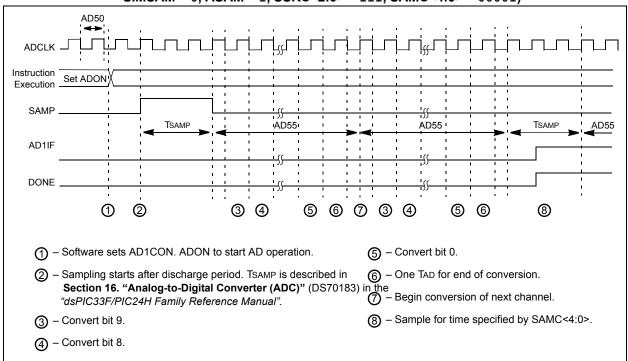


TABLE 23-7: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHA	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for High Temperature						
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	VoL	Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IoL ≤1.8 mA, VDD = 3.3V See Note 1
		Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	_	_	0.4	V	IOL ≤3.6 mA, VDD = 3.3V See Note 1
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSCO, CLKO, RA3	_		0.4	V	IoL ⊴6 mA, VDD = 3.3V See Note 1
DO20	Vон	Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	>	IOL ≥ -1.8 mA, V _{DD} = 3.3V See Note 1
		Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	2.4	_	_	٧	IoL ≥ -3 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSCO, CLKO, RA3	2.4	_	_	V	IOL ≥ -6 mA, VDD = 3.3V See Note 1
	Mand	Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	1.5	_	_	V	IOH ≥ -1.9 mA, VDD = 3.3V See Note 1
			2.0	_	_		IOH ≥ -1.85 mA, VDD = 3.3V See Note 1
			3.0		_		IOH ≥ -1.4 mA, VDD = 3.3V See Note 1
DO20A		Output High Voltage 4x Source Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	1.5	_	_	V	IOH ≥ -3.9 mA, VDD = 3.3V See Note 1
			2.0	_	_		IOH ≥ -3.7 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage 8x Source Driver Pins -OSCO, CLKO, RA3	1.5	_	_	V	IOH ≥ -7.5 mA, VDD = 3.3V See Note 1
			2.0	_	_		IOH ≥ -6.8 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1

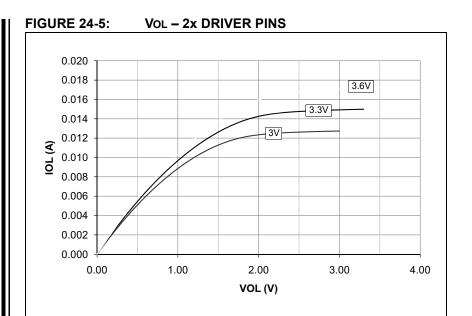
Note 1: Parameters are characterized, but not tested.

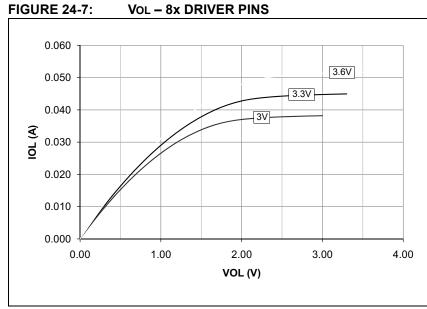
TABLE 23-15: ADC MODULE SPECIFICATIONS

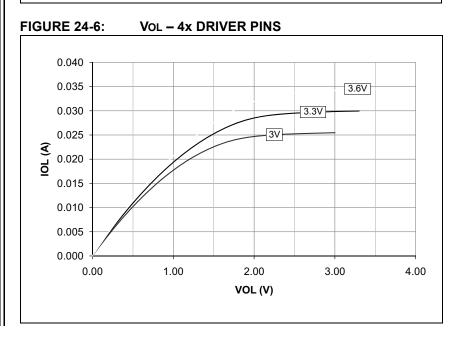
AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature							
Param No. Symbol		Characteristic	Min	Тур	Max	Units	Conditions		
Reference Inputs									
HAD08 IREF C		Current Drain	_	250 —	600 50	μ Α μ Α	ADC operating, See Note 1 ADC off, See Note 1		

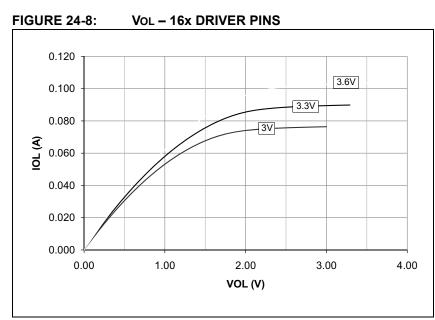
Note 1: These parameters are not characterized or tested in manufacturing.

TABLE 23-16: ADC MODULE SPECIFICATIONS (12-BIT MODE)(3)

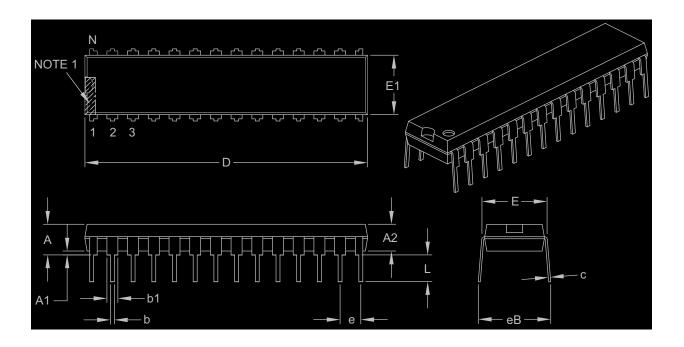

TABLE 20-10. ABO MODULE OF CONTINUES (12-DT MODE)										
AC		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)								
CHARACTERISTICS		Operating temperature -40°C ≤TA ≤+150°C for High Temperature								
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾										
HAD20a	Nr	Resolution ⁽³⁾	12 data bits			bits				
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD23a	GERR	Gain Error	-2	_	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD24a	EOFF	Offset Error	-3	_	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
ADC Accuracy (12-bit Mode) – Measurements with Internal VREF+/VREF-(1)										
HAD20a	Nr	Resolution ⁽³⁾	12 data bits			bits	_			
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
HAD23a	GERR	Gain Error	2	_	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
HAD24a	EOFF	Offset Error	2	_	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
Dynamic Performance (12-bit Mode) ⁽²⁾										
HAD33a	FNYQ	Input Signal Bandwidth	_	_	200	kHz	_			


Note 1: These parameters are characterized, but are tested at 20 ksps only.


^{2:} These parameters are characterized, but are not tested in manufacturing.


^{2:} These parameters are characterized by similarity, but are not tested in manufacturing.

^{3:} Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.



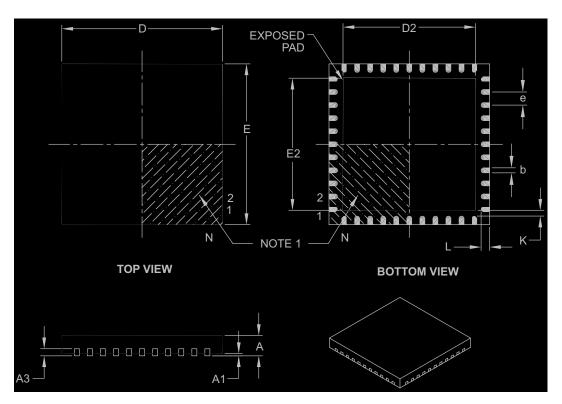
25.2 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimension	Dimension Limits			MAX			
Number of Pins	N		28				
Pitch	е	.100 BSC					
Top to Seating Plane	Α	_	_	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	_	_			
Shoulder to Shoulder Width	Е	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eВ	_	-	.430			

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

ote: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimens	MIN	NOM	MAX				
Number of Pins	N	44					
Pitch	е	0.65 BSC					
Overall Height	А	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Width	E	8.00 BSC					
Exposed Pad Width	E2	6.30	6.45	6.80			
Overall Length	D	8.00 BSC					
Exposed Pad Length	D2	6.30	6.45	6.80			
Contact Width	b	0.25	0.30	0.38			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	_	_			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62076-334-6

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.