

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp304t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 Digital Signal Controller (DSC) devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table**".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

IABLE 4	4-13:	PERI	HERAL	- PIN SE	LECIO	JUIPUI	REGIS	IER M/	AP FOR	aspica	3FJ320	5P204 A	ND asP	1C33FJ	16GP30	4		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	—	_	_			RP1R<4:0>			_		—			RP0R<4:0>			0000
RPOR1	06C2	_		_			RP3R<4:0>			_		_			RP2R<4:0>			0000
RPOR2	06C4	_		_			RP5R<4:0>			_		_			RP4R<4:0>			0000
RPOR3	06C6	_		_			RP7R<4:0>			_		_			RP6R<4:0>			0000
RPOR4	06C8	_		_			RP9R<4:0>			_		_			RP8R<4:0>			0000
RPOR5	06CA	_	_	_		I	RP11R<4:0>	>		_	_	_			RP10R<4:0	>		0000
RPOR6	06CC	_	_	_		I	RP13R<4:0	>		_	_	_			RP12R<4:0	>		0000
RPOR7	06CE	_	_	_		I	RP15R<4:0	>		_	_	_			RP14R<4:0	>		0000
RPOR8	06D0	_	_	_		I	RP17R<4:0	>		_	_	_			RP16R<4:0	>		0000
RPOR9	06D2	_	_	_		I	RP19R<4:0	>		_	_	_			RP18R<4:0	>		0000
RPOR10	06D4	_	_	_		I	RP21R<4:0	>		_	_	_			RP20R<4:0	>		0000
RPOR11	06D6	_	_	_		I	RP23R<4:0	>		_	_	_			RP22R<4:0	>		0000
RPOR12	06D8	_	_			I	RP25R<4:0>	>		_		_			RP24R<4:0	>		0000

dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD),

ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device was in Idle mode
 0 = Device was not in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred
 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit

 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

15.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This insures		that	the	first	fra	ame
	transr	nission a	after	initializa	ation	is	not
	shifte	d or corru	pted.				

- 2. In non-framed 3-wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.
- 5. To avoid invalid slave read data to the master, the user's master software must guarantee enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI shift register and is empty once the data transmission begins.

15.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http:// www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en530331

15.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽	²⁾ CKP	MSTEN		SPRE<2:0> ⁽³⁾		PPRE	<1:0> ⁽³⁾
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'	
-n = Value	e at POR	'1' = Bit is set		ʻ0' = Bit is clea	red	x = Bit is unk	nown
bit 15-13	Unimpleme	nted: Read as '	0'				
bit 12	DISSCK: Dis	sable SCKx pin	。 bit (SPI Mast	er modes only)			
	1 = Internal S 0 = Internal S	SPI clock is disa SPI clock is ena	abled, pin fun Ibled	ctions as I/O			
bit 11	DISSDO: Dis	sable SDOx pin	bit				
	1 = SDOx pi 0 = SDOx pi	n is not used by n is controlled b	module; pin by the module	functions as I/O			
bit 10	MODE16: W 1 = Commur 0 = Commur	ord/Byte Comm nication is word- nication is byte-v	nunication Se wide (16 bits wide (8 bits)	lect bit)			
bit 9	SMP: SPIx E Master mode 1 = Input dat 0 = Input dat Slave mode: SMP must b	Data Input Samp <u>a</u> sampled at en a sampled at m e cleared when	ole Phase bit nd of data out iddle of data SPIx is used	tput time output time in Slave mode.			
bit 8	CKE: SPIx 0 1 = Serial ou 0 = Serial ou	Clock Edge Sele htput data chang htput data chang	ect bit ⁽¹⁾ jes on transiti jes on transiti	on from active cl on from Idle cloc	ock state to Id k state to activ	lle clock state (ve clock state (see bit 6) see bit 6)
bit 7	SSEN: Slave 1 = <u>SSx</u> pin 0 = SSx pin	e Select Enable used for Slave r not used by mo	bit (Slave mo mode dule. Pin cont	ode) ⁽²⁾ trolled by port fur	nction		
bit 6	CKP: Clock 1 = Idle state 0 = Idle state	Polarity Select I e for clock is a h e for clock is a lo	bit igh level; acti ow level; activ	ve state is a low ve state is a high	level level		
bit 5	MSTEN: Ma 1 = Master n 0 = Slave mo	ster Mode Enat node ode	ole bit				
Note 1:	The CKE bit is no (FRMEN = 1).	t used in the Fr	amed SPI mo	odes. Program th	is bit to '0' for	the Framed SF	PI modes

REGISTER 15-2: SPIxCON1: SPIx CONTROL REGISTER 1

- **2:** This bit must be cleared when FRMEN = 1.
- 3: Do not set both Primary and Secondary prescalers to a value of 1:1.

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7		·		•			bit 0
Legend:		U = Unimpler	nented bit, rea	d as '0'			
R = Readable	bit	W = Writable	bit	HS = Set in h	ardware	HC = Cleared	in hardware
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	12CEN: 12Cx 1	Enable bit					
	1 = Enables tl	he I2Cx modul	e and configur	es the SDAx a	and SCLx pins a	as serial port pir	าร
	0 = Disables t	the I2Cx modu	le. All I ² C pins	are controlled	by port function	ns	
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	I2CSIDL: Stop	p in Idle Mode	bit				
	1 = Discontinu	ue module ope	ration when de	evice enters a	n Idle mode		
hit 12			ntrol bit (whor		$I^2 \cap \mathbb{M}$ alove)		
DIT 12	1 = Release S			operating as	i C Slave)		
	0 = Hold SCL	x clock low (clo	ock stretch)				
	If STREN = 1	<u>:</u>					
	Bit is R/W (i.e	., software car	write '0' to ini	tiate stretch a	nd write '1' to re	elease clock). H	lardware clear
	at beginning o	of slave transm	ission. Hardwa	are clear at en	d of slave recep	otion.	
	$\frac{\text{If STREN = 0}}{\text{Bit is } R/S (i.e.)}$	<u>:</u> software can	only write '1' t	o release cloc	k) Hardware cl	ear at beginning	n of slave
	transmission.	, soltware can			it). Hardware er		g of slave
bit 11	IPMIEN: Intell	ligent Peripher	al Managemer	nt Interface (IP	MI) Enable bit		
	1 = IPMI mod	e is enabled; a	II addresses A	cknowledged	-		
	0 = IPMI mod	e disabled					
bit 10	A10M: 10-bit	Slave Address	bit				
	1 = I2CxADD	is a 10-bit slav	e address				
hit O		IS a 7-DIL SIAVE	Control hit				
DIL 9	1 - Slow rate	able Slew Rate					
	0 = Slew rate	control enable	d				
bit 8	SMEN: SMBu	is Input Levels	bit				
	1 = Enable I/C	D pin threshold	s compliant wi	ith SMBus spe	cification		
	0 = Disable S	MBus input thr	resholds				
bit 7	GCEN: Gener	ral Call Enable	bit (when ope	rating as I ² C s	slave)		
	1 = Enable in	terrupt when a	general call a	ddress is rece	eived in the I2C	RSR	
	(module i	is enabled for i	eception)				
bit 6		x Clock Stretch	Fnahle hit (w	hen onerating	as I ² C. slave)		
Situ	Used in coniu	nction with SC	IRFI bit	non operating	ao i o siave)		
	1 = Enable so	oftware or rece	ve clock stretc	ching			
	0 = Disable so	oftware or rece	ive clock stret	ching			

18.5 ADC Control Registers

REGISTER 18-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/\//_0	U_0	R/\//_0	11-0	U_0	R/W-0	R/W/-0	R/W/-0
	_		_		AD12R	FORM	<1.0>
hit 15		, DOIDE					hit 8
bit 15							bit 0
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
10110			00	1011 0		HC,HS	HC, HS
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE
bit 7						1	bit 0
Legend:		HC = Cleared I	oy hardware	HS = Set by h	nardware	C = Clea	r only bit
R = Readable	bit	W = Writable b	pit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	ADON: ADC	Operating Mode	e bit				
	1 = ADC mod	dule is operating	g				
	0 = ADC is o	ff					
bit 14	Unimplemen	ted: Read as '0)'				
bit 13	ADSIDL: Stop	p in Idle Mode b	bit				
	1 = Discontir 0 = Continue	nue module ope module operat	ration when d ion in Idle mod	evice enters Id le	le mode		
bit 12-11	Unimplemen	ted: Read as 'o)'				
bit 10	AD12B: 10-b	it or 12-bit Oper	ation Mode bi	t			
	1 = 12-bit, 1-	-channel ADC o	peration				
	0 = 10-bit, 4-	channel ADC o	peration				
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits				
	For 10-bit ope	eration:					
	11 = Signed f 10 = Fraction	al (Dout = ddd	sada adaa 1006 bbbb b	a aauu uuuu D 0000)	, where s = .NC	J1.d<9>)	
	01 = Signed i	nteger (DOUT =	ssss sssd	dddd dddd, w	/here ₅ = .NOT	.d<9>)	
	00 = Integer ((DOUT = 0000	00dd dddd o	dddd)			
	For 12-bit ope	eration:					
	11 = Signed f 10 = Fraction	al (Dout = ddd	sada adaa d dddd ddd	a aaaa 0000 4 0000)	, where s = .NC	J1.a<11>)	
	01 = Signed I	nteger (DOUT =	ssss sddd	dddd dddd, W	vhere s = .NOT	.d<11>)	
	00 = Integer ((DOUT = 0000	dddd dddd o	lddd)		,	
bit 7-5	SSRC<2:0>:	Sample Clock S	Source Select	bits			
	111 = Interna	I counter ends	sampling and	starts conversion	on (auto-conve	rt)	
	110 = Reserv 101 = Motor	rea Control PWM2 i	nterval ends s	ampling and st	arts conversior	ı	
	100 = Reserv	ved		aniping and ot			
	011 = Motor (Control PWM1 i	nterval ends s	ampling and st	arts conversior	ו	
	010 = GP tim	er 3 compare e	nds sampling	and starts conv	ersion		
	000 = Clearin	ig sample bit er	ids sampling a	and starts conve	ersion		
bit 4	Unimplemen	ted: Read as '0)'				
bit 3	SIMSAM: Sin	nultaneous Sam	ple Select bit	(applicable onl	y when CHPS<	<1:0> = 01 or 1	x)
	When AD12E	B = 1, SIMSAM	is: U-0, Unim	plemented, Re	ead as '0'		
	1 = Samples	CH0, CH1, CH	2, CH3 simulta	aneously (wher	n CHPS<1:0> =	= 1x); or	
	Samples	CHU and CH1		y (when CHPS)	<1:0> = 01)		
	0 - Samples	multiple channe	ere murviuually	in sequence			

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC		_			SAMC<4:0>	1)	
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	าดพท
				0 Dit 10 Oit			lowin
bit 15	ADRC: ADC	Conversion Clo	ck Source bit	t			
	1 = ADC inte	ernal RC clock					
	0 = Clock de	erived from syste	m clock				
bit 14-13	Unimpleme	nted: Read as '()'				
bit 12-8	SAMC<4:0>	: Auto Sample T	ïme bits ⁽¹⁾				
	11111 = 31	TAD					
	•						
	•						
	•						
	$00001 = 1 T_{0}$	AD					
	00000 = 0 I.	AD		(2)			
bit 7-0	ADCS<7:0>	: ADC Conversion	on Clock Sele	ect bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	•						
	01000000 =		7.0> + 1) = 6/	1 . Toy - Tap			
	•		.0~ (1) = 0=				
	•						
	•						
	00000010 =	TCY · (ADCS<7	7.0 > + 1) = 3	• TCY = TAD			
	00000001 =	TCY · (ADCS<7	7:0>+1)=2	\cdot TCY = TAD			
	00000000 =	TCY · (ADCS<7	7:0> + 1) = 1	• TCY = TAD			
Note 1. 7	This hit only used		5> (9900-0	·· ()>) = 111			
2 · 7	This hit is not use		15> (ADRC) :	= 1			
			(0.0)	±•			

REGISTER 18-3: AD1CON3: ADC1 CONTROL REGISTER 3

dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304

IADL	L 20-2.	INSTR					
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE	#3 1 1 0 m	Return from Interrupt	1	3 (2)	None
62	RETLW	RETLW	#11t10,Wn	Return from Subrouting	1	3 (Z)	None
63	RETURN	RETURN	£	f = Potato Loft through Carry f	1	3 (2)	
03	RLC	RLC	f NDEC	WPEG = Potete Loft through Carry f	1	1	
		RLC	Ne Wd	Wd = Rotate Left through Carry Ws	1	1	C N Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N 7
		RLNC	- f,WREG	WREG = Rotate Left (No Carry) f	1	1	N.Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N.Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CH/	ARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
Operati	ng Voltag	6							
DC10	Supply V	/oltage							
	Vdd		3.0	_	3.6	V	Industrial and Extended		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	—	V	—		
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	—	Vss	V	_		
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	—	—	V/ms	0-3.0V in 0.1s		

TABLE 22-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

			Standar	d Opera	ting Co	nditions	a: 3.0V to 3.6V
DC CHA	RACTER	ISTICS	Operatin	g tempe	erature	-40°C ⊴ -40°C ≤ -40°C ≤	≤Ta ≤+85°C for Industrial ≤Ta ≤+125°C for Extended
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	Iol ≤3 mA, Vdd = 3.3V
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	_	_	0.4	V	Iol ⊴6 mA, Vdd = 3.3V
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSCO, CLKO, RA3	_	_	0.4	V	Iol ≤10 mA, Vdd = 3.3V
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	$IOL \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB5, RB6, RB8, RB9, RB14	2.4	_	_	V	lo∟ ≥ -6 mA, Vdd = 3.3V
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSCO, CLKO, RA3	2.4	_	_	V	IOL ≥ -10 mA, VDD = 3.3V
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -6 mA, VDD = 3.3V See Note 1
		2x Source Driver Pins - All pins not defined by 4x or 8x driver	2.0	_	_	V	IOH ≥ -5 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage 4x Source Driver Pins - RA0,	1.5	_	_		IOH ≥ -12 mA, VDD = 3.3V See Note 1
DO20A	Voh1	RA1, RB5, RB6, RB8, RB9, RB14	2.0	—	_	V	IOH ≥ -11 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1
		Output High Voltage 8x Source Driver Pins - OSCO,	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1
		CLKO, RA3	2.0	_	_	v	IOH ≥ -12 mA, VDD = 3.3V See Note 1
			3.0	_	_		IoH ≥ -4 mA, VDD = 3.3V See Note 1

TABLE 22-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

АС СНА	RACTERIST	TICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions		
SP10	TscP	Maximum SCK Frequency	—	_	15	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	-		ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	-		ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	-		ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_		

TABLE 22-29: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

АС СНА	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	ng Condit stated) iture -40 -40	tions: 3.0)°C ≤TA ≤+)°C ≤TA ≤+	V to 3.6V 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characte	eristic ⁽³⁾	Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)		μs	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	—	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	—
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	40	_	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0		μs	_
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0.2	_	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	After this period the
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	—
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	_
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	_
		From Clock	400 kHz mode	—	1000	ns	—
			1 MHz mode ⁽²⁾	—	400	ns	—
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	—	μs	free before a new
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start
IM50	Св	Bus Capacitive L	oading	—	400	pF	—
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 4

TABLE 22-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: These parameters are characterized by similarity, but are not tested in manufacturing.

4: Typical value for this parameter is 130ns.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽³⁾											
AD20a	Nr	Resolution ⁽⁴⁾	12 data bits bits		bits	—					
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD23a	Gerr	Gain Error	—	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD24a	EOFF	Offset Error	-	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD25a	—	Monotonicity		_		—	Guaranteed ⁽¹⁾				
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF- ⁽³⁾											
AD20a	Nr	Resolution ⁽⁴⁾	12 data bits			bits	—				
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD23a	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD24a	EOFF	Offset Error	—	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD25a	—	Monotonicity	—	_		_	Guaranteed ⁽¹⁾				
Dynamic Performance (12-bit Mode) ⁽²⁾											
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	—				
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	_				
AD32a	SFDR	Spurious Free Dynamic Range	80	_	—	dB	_				
AD33a	Fnyq	Input Signal Bandwidth	_	—	250	kHz	_				
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits	_				

TABLE 22-39: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: These parameters are characterized, but are tested at 20 ksps only.

4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11