

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

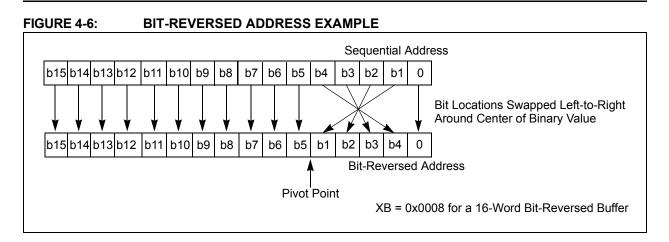
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp202-e-mm


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP

SFR NameSFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0All ResetsINTCON10080NSTDISOVAERROVBERCOVAERRCOVAERROVBEROVATEOVBTECOVTESTACERRDIVOERR-MATHERRADDRERRSTACERRSSCFAIL-0000INTCON20082ALTIVTDISI0000IFS00086AD11FU1TXIFU1RXIFSPI1EFT31FT21FOC21FIC21F-T11FOC11FIC11FINTOFP0000IFS40086AD11FU1TXIFU1RXIFSPI1EFT31FT21FOC21FIC21F-MI2C11FSI21F0000IFS40086AD11FU1TXIFSPI1EFSPI1EFT31ET21FOC21FIC21F-MI2C11FSI2C1F0000IFS40086AD11FU1TXIFSPI1EFSPI1EFT31ET21EOC21FIC21F-MI2C11FSI2C1F0000IEC40096INT21E-AD11EU1TXIFSPI1EFSPI1EFT31ET21EOC21EIC71E-INT1ECNIE-MI2C11FSI2C1F0000IEC40096 <td< th=""><th></th><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>					-	-													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	INTCON2	0082	ALTIVT	DISI	—	—	—	—	—	—	—	—	—	—	—	INT2EP	INT1EP	INT0EP	0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IFS0	0084	—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IFS1	0086	—	—	INT2IF	—	—	—	—	_	IC8IF	IC7IF	_	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IFS4	008C	—	—	—	_	—	—	—	—	-	—	—	—	—	—	U1EIF	_	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC0	0094	—	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC1	0096	—	—	INT2IE	_	—	—	—	—	IC8IE	IC7IE	—	INT1IE	CNIE	—	MI2C1IE	SI2C1IE	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC4	009C	—	—	—	_	—	—	—	—	-	—	—	—	—	—	U1EIE	_	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC0	00A4	—		T1IP<2:0>		—	(OC1IP<2:0)>	—		IC1IP<2:0>		—	11	VT0IP<2:0>	•	4444
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC1	00A6	—		T2IP<2:0>		—	(OC2IP<2:0)>	_		IC2IP<2:0>		—	—	—	_	4440
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC2	00A8	_	ι	J1RXIP<2:0)>	_	0,	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC5 00AE - IC8IP<2:0> - IC7IP<2:0> - - - - - - 4404 IPC7 00B2 - - - - - - - - - 4004 IPC7 00B2 - - - - - - - - 0040 IPC16 00C4 - - - - - - - 0040	IPC3	00AA	—	—	—	_	—	—	—	—	—		AD1IP<2:0>	>	—	U	1TXIP<2:0	>	0044
IPC7 00B2 - - - - - - INT2IP<2:0> - - - 0040 IPC16 00C4 - - - - - - - 0040	IPC4	00AC	—		CNIP<2:0>	•	—	—	—	—	-	I	MI2C1IP<2:0)>	—	SI	2C1IP<2:0	>	4044
IPC16 00C4 - - - - - U1EIP<2:0> - - - 0040	IPC5	00AE	—		IC8IP<2:0>	`	—		IC7IP<2:0	>	_	—	—	—	—	11	VT1IP<2:0>	•	4404
	IPC7	00B2	_	_	_	_	_	_	_	_	_		INT2IP<2:02	>	_	_	_	_	0040
INTTREG 00E0 ILR<3:0> - VECNUM<6:0> 0000	IPC16	00C4	—	—	—	—	—	—	—	_	—		U1EIP<2:0>	>	—	—	—		0040
	INTTREG	00E0	—	—	—	—		ILR<	3:0>		—			VE	CNUM<6:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	s			Bit-Rev	ersed Ac	Idress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

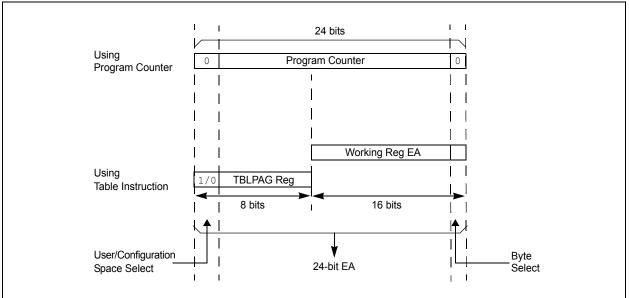
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD),

ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

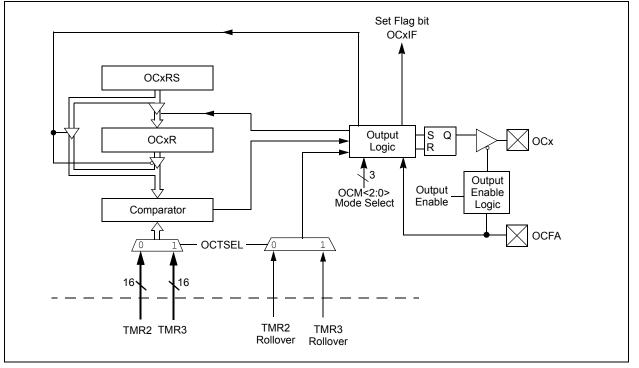
The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
_		INT2IF	—		—				
bit 15							bit 8		
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
IC8IF	IC7IF		INT1IF	CNIF		MI2C1IF	SI2C1IF		
bit 7							bit (
d.									
Legend:			L:4		nonted bit ve				
R = Readab		W = Writable	DIT	•	nented bit, rea				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN		
bit 15-14	Unimplemer	nted: Read as '	ז'						
bit 13	-	rnal Interrupt 2		it					
		request has occ	•						
		request has not							
bit 12-8	Unimplemer	nted: Read as ')'						
bit 7	IC8IF: Input	Capture Channe	el 8 Interrupt	Flag Status bit					
		request has occ							
	-	request has not							
bit 6	•	Capture Channe	•	Flag Status bit					
		request has occ							
bit 5		request has not nted: Read as '(
bit 4	•	rnal Interrupt 1		:+					
DIL 4		request has occ	•	п					
		request has not							
bit 3	•	Change Notifica		Flag Status bit					
	•	request has occ	•	- 3					
	0 = Interrupt	request has not	occurred						
bit 2	Unimplemer	nted: Read as ')'						
bit 1	MI2C1IF: 120	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit							
		request has occ							
	•	request has not							
bit 0		1 Slave Events		g Status bit					
		request has occur							
	0 = interrupt	request has not	occurred						

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

14.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

14.3 Output Compare Register

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	OCSIDL	—	—	_	—	_
bit 15		·					bit 8
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0
l egend:		HC = Cleared i	n Hardware	HS = Set in H	Hardware		

Legend:	HC = Cleared in Hardware	HS = Set in Hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	 1 = Output Compare x will halt in CPU Idle mode 0 = Output Compare x will continue to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111.)
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	 111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled

REGISTER 18-2: AD1CON2: ADC1 CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>		—	_	CSCNA	CHPS	S<1:0>
bit 15							bit 8
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	_		SMP	<3:0>		BUFM	ALTS
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits

bit 15-13	VCFG<2:0>: Converter Voltage Reference Configuration bits								
	ADREF+	ADREF-							
	000 Avdd	Avss							
	001 External VREF	Avss							
	010 AVDD								
	011 External VREF	External VREF-							
	1xx AVDD	Avss							
bit 12-11	Unimplemented: Read	as '0'							
bit 10	CSCNA: Scan Input Se	ections for CH0+ dur	ing Sample A bit						
	1 = Scan inputs								
	0 = Do not scan inputs								
bit 9-8	CHPS<1:0>: Select Ch								
			nplemented, Read as '0'						
	1x = Converts CH0, CH 01 = Converts CH0 and	,							
	00 = Converts CH0								
bit 7	BUFS: Buffer Fill Status	bit (valid only when	3UFM = 1)						
			ffer, user application should access data in the first half user application should access data in the second half						
bit 6	Unimplemented: Read	as '0'							
bit 5-2	SMPI<3:0>: Sample/Co	nvert Sequences Pe	Interrupt Selection bits						
			rsion for each 16th sample/convert sequence						
	1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence								
	•								
	•								
	0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence								
bit 1	BUFM: Buffer Fill Mode Select bit								
		 1 = Starts filling first half of buffer on first interrupt and the second half of buffer on next interrupt 0 = Always starts filling buffer from the beginning 							
bit 0	ALTS: Alternate Input S	ample Mode Select b	vit						
	 1 = Uses channel input 0 = Always uses channel 	•	on first sample and Sample B on next sample ample A						

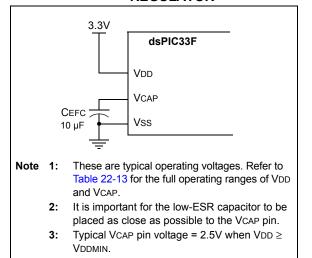
REGISTER 18-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits dsPIC33FJ32GP204 and dsPIC33FJ16GP304 devices only: 01100 = Channel 0 positive input is AN12
	00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0
	dsPIC33FJ32GP202 devices only: 01100 = Channel 0 positive input is AN12 • • 01000 = Reserved 00111 = Reserved 00110 = Reserved
	 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0

Bit Field	Register	RTSP Effect	Description
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 19-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

19.2 On-Chip Voltage Regulator


All of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 19-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 22-13 located in Section 22.1 "DC Characteristics".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 19-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

19.3 BOR: Brown-out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Parameter No.	Typical ⁽²⁾	Max	Doze Ratio	Units	Inits Conditions		
Doze Current (IDO	ze) ⁽¹⁾						
DC73a	41	51	1:2	mA			
DC73f	20	28	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	19	24	1:128	mA			
DC70a	40	46	1:2	mA			
DC70f	18	20	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	18	20	1:128	mA			
DC71a	40	46	1:2	mA			
DC71f	18	25	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	18	20	1:128	mA			
DC72a	39	55	1:2	mA		Ì	
DC72f	18	30	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	18	25	1:128	mA			

TABLE 22-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail with overshoot/undershoot < 250 mV
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while (1) statement
- JTAG is disabled
- **2:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 22-17:PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stateOperating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteris	tic	Min	Тур ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range ⁽²⁾		0.8		8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency ⁽³⁾		100	_	200	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time) ⁽³⁾		0.9	1.5	3.1	ms	—
OS53	DCLK	CLKO Stability (Jitter)	(3)	-3	0.5	3	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: These parameters are characterized by similarity, but are tested in manufacturing at 7.7 MHz input only.

3: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

TABLE 22-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for industrial -40°C ≤TA ≤+125°C for Extended							rial
Param No.	Characteristic	Min	Min Typ Max Units Conditions				lions
	Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ⁽¹⁾						
F20a	FRC	-2	_	+2	%	-40°C ≤TA ≤+85°C	VDD = 3.0-3.6V
F20b	FRC	-5	_	+5	%	-40°C ≤TA ≤+125°C	VDD = 3.0-3.6V

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 22-19: INTERNAL RC ACCURACY

AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise state Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							erwise stated)	
Param No.	Characteristic	Min Typ Max Units Conditions						
	LPRC @ 32.768 kHz ^(1,2)							
F21a	LPRC	-15	±6	+15	%	-40°C ≤TA ≤+85°C	VDD = 3.0-3.6V	
F21b	LPRC	-40	_	+40	%	-40°C ≤Ta ≤+125°C	VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC impacts the Watchdog Timer Time-out Period (TWDT1). See Section 19.4 "Watchdog Timer (WDT)" for more information.

TABLE 22-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SY10	ТмсL	MCLR Pulse-Width (low) ⁽¹⁾	2	_		μs	-40°C to +85°C	
SY11	TPWRT	Power-up Timer Period		2 4 16 32 64 128	_	ms	-40°C to +85°C User programmable	
SY12	TPOR	Power-on Reset Delay ⁽³⁾	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset ⁽¹⁾	0.68	0.72	1.2	μs	_	
SY20	Twdt1	Watchdog Timer Time-out Period ⁽¹⁾	_	—	—	ms	See Section 19.4 "Watchdog Timer (WDT)" and LPRC parameter F21a (Table 22-19).	
SY30	Тоѕт	Oscillator Start-up Time	—	1024 Tosc		—	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay ⁽¹⁾	_	500	900	μs	-40°C to +85°C	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: These parameters are characterized, but are not tested in manufacturing.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_	_	15	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns	_	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_	

TABLE 22-29: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

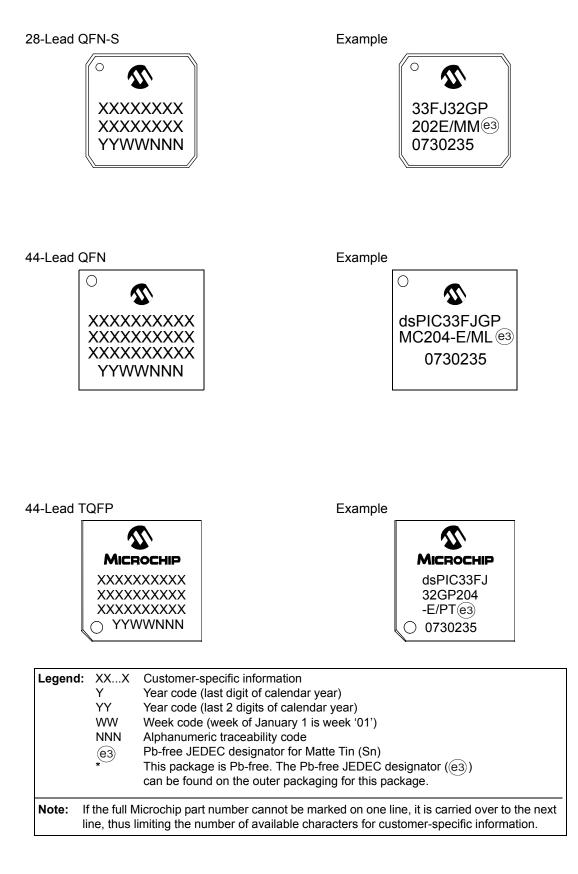
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

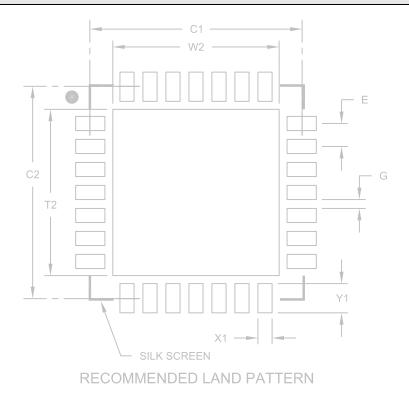
TABLE 22-32:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_		15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time		_		ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	—	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	—	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns	—	
SP51	TssH2doZ	SSx	10	—	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	—	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.


4: Assumes 50 pF load on all SPIx pins.

25.1 Package Marking Information (Continued)

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimens	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

APPENDIX A: REVISION HISTORY

Revision A (July 2007)

This is the initial released version of the document.

Revision B (June 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Added Extended Interrupts column to Remappable Peripherals in the Controller Families table and Note 2 (see Table 1).
	Added Note 1 to all pin diagrams, which references RPn pin usage by remappable peripherals (see " Pin Diagrams ").
Section 1.0 "Device Overview"	Changed PORTA pin name from RA15 to RA10 (see Table 1-1).
Section 3.0 "Memory Organization"	Added SFR definitions (ACCAL, ACCAH, ACCAU, ACCBL, ACCBH, and ACCBU) to the CPU Core Register Map (see Table 3-1).
	Updated Reset value for CORCON (see Table 3-1).
	Updated Reset values for the following SFRs: IPC1, IPC3-IPC5, IPC7, IPC16 and INTTREG (see Table 3-4).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 3-20).
Section 6.0 "Resets"	Entire section was replaced to maintain consistency with other dsPIC33F data sheets.
Section 7.0 "Oscillator Configuration"	Removed the first sentence of the third clock source item (External Clock) in Section 7.1.1.2 "Primary" .
	Updated the default bit values for DOZE and FRCDIV in the Clock Divisor Register (see Register 7-2).
	Added the center frequency in the OSCTUN register for the FRC Tuning bits (TUN<5:0>) value 011111 and updated the center frequency for bits value 011110 (see Register 7-4).
Section 8.0 "Power-Saving	Added the following two registers:
Features"	PMD1: Peripheral Module Disable Control Register 1PMD2: Peripheral Module Disable Control Register 2
Section 9.0 "I/O Ports"	Added paragraph and Table 9-1 to Section 9.1.1 "Open-Drain Configuration ", which provides details on I/O pins and their functionality.
	Removed the following sections, which are now available in the related section of the dsPIC33F/PIC24H Family Reference Manual:
	• 9.4.2 "Available Peripherals"
	• 9.4.3.3 "Mapping"
	9.4.5 "Considerations for Peripheral Pin Selection"
Section 13.0 "Output Compare"	Replaced sections 13.1, 13.2 and 13.3 and related figures and tables with entirely new content.

TABLE A-1: MAJOR SECTION UPDATES

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES: