Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | | | | Product Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit | | Speed | 40 MIPs | | Connectivity | I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DCI, DMA, I2S, POR, PWM, WDT | | Number of I/O | 21 | | Program Memory Size | 32KB (32K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 2K x 8 | | /oltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 10x10b/12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | 28-SSOP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp202-e-ss | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### **Referenced Sources** This device data sheet is based on the following individual chapters of the "dsPIC33F/PIC24H Family Reference Manual". These documents should be considered as the general reference for the operation of a particular module or device feature. Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ32GP204 product page of the Microchip web site (www.microchip.com). In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections. - Section 1. "Introduction" (DS70197) - Section 2. "CPU" (DS70204) - Section 3. "Data Memory" (DS70202) - Section 4. "Program Memory" (DS70202) - Section 5. "Flash Programming" (DS70191) - Section 6. "Interrupts (DS70184) - Section 7. "Oscillator" (DS70186) - Section 8. "Reset" (DS70192) - Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) - Section 10. "I/O Ports" (DS70193) - Section 11. "Timers" (DS70205) - Section 12. "Input Capture" (DS70198) - Section 13. "Output Compare" (DS70209) - Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) - Section 17. "UART" (DS70188) - Section 18. "Serial Peripheral Interface (SPI)" (DS70206) - Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) - Section 23. "CodeGuard™ Security" (DS70199) - Section 25. "Device Configuration" (DS70194) #### 3.4 CPU Resources Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en530331 #### 3.4.1 KEY RESOURCES - Section 2. "CPU" (DS70204) - · Code Samples - · Application Notes - · Software Libraries - Webinars - All related dsPIC33F/PIC24H Family Reference Manuals Sections - · Development Tools #### 3.5 CPU Control Registers #### REGISTER 3-1: SR: CPU STATUS REGISTER | R-0 | R-0 | R/C-0 | R/C-0 | R-0 | R/C-0 | R -0 | R/W-0 | |--------|-----|-------------------|-------------------|-----|-------|------|-------| | OA | ОВ | SA ⁽¹⁾ | SB ⁽¹⁾ | OAB | SAB | DA | DC | | bit 15 | | | | | | | bit 8 | | R/W-0 ⁽²⁾ | R/W-0 ⁽³⁾ | R/W-0 ⁽³⁾ | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |----------------------|-------------------------|----------------------|-----|-------|-------|-------|-------| | | IPL<2:0> ⁽²⁾ | | RA | N | OV | Z | С | | bit 7 | | | | | | | bit 0 | | Legend: | | | |--------------------|----------------------|------------------------------------| | C = Clear only bit | R = Readable bit | U = Unimplemented bit, read as '0' | | S = Set only bit | W = Writable bit | -n = Value at POR | | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15 OA: Accumulator A Overflow Status bit 1 = Accumulator A overflowed 0 = Accumulator A has not overflowed bit 14 **OB:** Accumulator B Overflow Status bit 1 = Accumulator B overflowed 0 = Accumulator B has not overflowed bit 13 **SA:** Accumulator A Saturation 'Sticky' Status bit (1) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated bit 12 SB: Accumulator B Saturation 'Sticky' Status bit (1) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed bit 10 SAB: SA | SB Combined Accumulator 'Sticky' Status bit 1 = Accumulators A or B are saturated or have been saturated at some time in the past 0 = Neither Accumulator A or B are saturated Note: This bit can be read or cleared (not set). Clearing this bit will clear SA and SB. bit 9 DA: DO Loop Active bit 1 = DO loop in progress 0 = DO loop not in progress bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred Note 1: This bit can be read or cleared (not set). 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPI <3> = 1 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>). TABLE 4-23: FUNDAMENTAL ADDRESSING MODES SUPPORTED | Addressing Mode | Description | |---|--| | File Register Direct | The address of the file register is specified explicitly. | | Register Direct | The contents of a register are accessed directly. | | Register Indirect | The contents of Wn forms the Effective Address (EA.) | | Register Indirect Post-Modified | The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. | | Register Indirect Pre-Modified | Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA. | | Register Indirect with Register Offset (Register Indexed) | The sum of Wn and Wb forms the EA. | | Register Indirect with Literal Offset | The sum of Wn and a literal forms the EA. | # 4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode. | Note: | For the MOV instructions, the addressing mode specified in the instruction can differ | |-------|---| | | for the source and destination EA. | | | However, the 4-bit Wb (Register Offset) | | | field is shared by both source and | | | destination (but typically only used by | | | one). | In summary, the following addressing modes are supported by move and accumulator instructions: - · Register Direct - · Register Indirect - · Register Indirect Post-modified - Register Indirect Pre-modified - · Register Indirect with Register Offset (Indexed) - · Register Indirect with Literal Offset - · 8-bit Literal - · 16-bit Literal | Note: | Not | all | instructions | support | all | the | | | | |-------|--|--|---------------|---------|-----|-----|--|--|--| | | addressing modes given above. Individual | | | | | | | | | | | instr | instructions may support different subsets | | | | | | | | | | of the | ese a | addressing mo | odes. | | | | | | #### 4.5.4 MAC INSTRUCTIONS The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables. The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11. | Note: | Register | Indirect | with | Register | Offset | | | | | |-------|--|-----------|---------|-----------|--------|--|--|--|--| | | Addressing mode is available only for W9 | | | | | | | | | | | (in X space | ce) and W | /11 (in | Y space). | | | | | | In summary, the following addressing modes are supported by the \mathtt{MAC} class of instructions: - · Register Indirect - · Register Indirect Post-Modified by 2 - · Register Indirect Post-Modified by 4 - · Register Indirect Post-Modified by 6 - · Register Indirect with Register Offset (Indexed) #### 4.5.5 OTHER INSTRUCTIONS Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands. #### 4.6 Modulo Addressing Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms. Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively. In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer. The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries). #### 4.6.1 START AND END ADDRESS The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1). Note: Y space Modulo Addressing EA calculations assume word sized data (LSB of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes). # 4.6.2 W ADDRESS REGISTER SELECTION The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing: - If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. - If YWM = 15, Y AGU Modulo Addressing is disabled. The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>. The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>. #### FIGURE 4-5: MODULO ADDRESSING OPERATION EXAMPLE #### 6.2 Reset Control Registers #### REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | |--------|--------|-----|-----|-----|-----|-------|-------| | TRAPR | IOPUWR | _ | _ | _ | _ | CM | VREGS | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-1 | R/W-1 | |-------|-------|-----------------------|-------|-------|-------|-------|-------| | EXTR | SWR | SWDTEN ⁽²⁾ | WDTO | SLEEP | IDLE | BOR | POR | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 **TRAPR:** Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred0 = A Trap Conflict Reset has not occurred bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an Address Pointer caused a Reset 0 = An illegal opcode or uninitialized W Reset has not occurred bit 13-10 **Unimplemented:** Read as '0' bit 9 **CM:** Configuration Mismatch Flag bit 1 = A Configuration Mismatch Reset has occurred0 = A Configuration Mismatch Reset has NOT occurred bit 8 **VREGS:** Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep bit 7 **EXTR:** External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software Reset (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed bit 5 **SWDTEN:** Software Enable/Disable of WDT bit⁽²⁾ 1 = WDT is enabled 0 = WDT is disabled bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset. 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting. #### REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | |--------|-----|--------|-----|-----|-----|-----|-------| | _ | _ | INT2IF | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | |-------|-------|-----|--------|-------|-----|---------|---------| | IC8IF | IC7IF | _ | INT1IF | CNIF | _ | MI2C1IF | SI2C1IF | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 INT2IF: External Interrupt 2 Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 12-8 Unimplemented: Read as '0' bit 7 IC8IF: Input Capture Channel 8 Interrupt Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 6 IC7IF: Input Capture Channel 7 Interrupt Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 5 **Unimplemented:** Read as '0' bit 4 INT1IF: External Interrupt 1 Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 3 CNIF: Input Change Notification Interrupt Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 2 **Unimplemented:** Read as '0' bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred #### 9.6 Power-Saving Control Registers #### REGISTER 9-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | |--------|-----|-------|-------|-------|-----|-----|-------| | _ | _ | T3MD | T2MD | T1MD | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | R/W-0 | U-0 | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0 | |--------|-----|-------|-----|--------|-----|-----|----------------------| | I2C1MD | _ | U1MD | _ | SPI1MD | _ | _ | AD1MD ⁽¹⁾ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 T3MD: Timer3 Module Disable bit 1 = Timer3 module is disabled 0 = Timer3 module is enabled bit 12 T2MD: Timer2 Module Disable bit 1 = Timer2 module is disabled 0 = Timer2 module is enabled bit 11 T1MD: Timer1 Module Disable bit 1 = Timer1 module is disabled 0 = Timer1 module is enabled bit 10-8 **Unimplemented:** Read as '0' bit 7 I2C1MD: I2C1 Module Disable bit 1 = I2C1 module is disabled 0 = I2C1 module is enabled bit 6 **Unimplemented:** Read as '0' bit 5 U1MD: UART1 Module Disable bit 1 = UART1 module is disabled 0 = UART1 module is enabled bit 4 **Unimplemented:** Read as '0' bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled 0 = SPI1 module is enabled bit 2-1 Unimplemented: Read as '0' bit 0 **AD1MD:** ADC1 Module Disable bit⁽¹⁾ 1 = ADC1 module is disabled 0 = ADC1 module is enabled **Note 1:** PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode. | dsPIC3 | 3FJ32G | PZUZ/Z | 204 and | aspic | 33FJ16 | GP304 | |--------|--------|--------|---------|-------|--------|-------| | NOTES: | TABLE 10-1: REMAPPABLE PERIPHERAL INPUTS⁽¹⁾ | Input Name | Function Name | Register | Configuration
Bits | |-------------------------|---------------|----------|-----------------------| | External Interrupt 1 | INT1 | RPINR0 | INT1R<4:0> | | External Interrupt 2 | INT2 | RPINR1 | INT2R<4:0> | | Timer2 External Clock | T2CK | RPINR3 | T2CKR<4:0> | | Timer3 External Clock | T3CK | RPINR3 | T3CKR<4:0> | | Input Capture 1 | IC1 | RPINR7 | IC1R<4:0> | | Input Capture 2 | IC2 | RPINR7 | IC2R<4:0> | | Input Capture 7 | IC7 | RPINR10 | IC7R<4:0> | | Input Capture 8 | IC8 | RPINR10 | IC8R<4:0> | | Output Compare Fault A | OCFA | RPINR11 | OCFAR<4:0> | | UART1 Receive | U1RX | RPINR18 | U1RXR<4:0> | | UART1 Clear To Send | U1CTS | RPINR18 | U1CTSR<4:0> | | SPI1 Data Input | SDI1 | RPINR20 | SDI1R<4:0> | | SPI1 Clock Input | SCK1IN | RPINR20 | SCK1R<4:0> | | SPI1 Slave Select Input | SS1IN | RPINR21 | SS1R<4:0> | Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers. #### 10.6.2.2 Output Mapping In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-10 through Register 10-22). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3). The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals. FIGURE 10-3: MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn #### 13.0 INPUT CAPTURE **Note 1:** This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) "dsPIC33F/PIC24H Family the Reference Manual", which is available the Microchip web (www.microchip.com). > 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information. The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices support up to eight input capture channels. The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories: - · Simple Capture Event modes: - Capture timer value on every falling edge of input at ICx pin - Capture timer value on every rising edge of input at ICx pin - · Capture timer value on every edge (rising and falling). - · Prescaler Capture Event modes: - Capture timer value on every 4th rising edge of input at ICx pin - Capture timer value on every 16th rising edge of input at ICx pin Each input capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock. Other operational features include: - · Device wake-up from capture pin during CPU Sleep and Idle modes - · Interrupt on input capture event - 4-word FIFO buffer for capture values - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled - · Use of input capture to provide additional sources of external interrupts **FIGURE 13-1:** INPUT CAPTURE BLOCK DIAGRAM # 18.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) **Note 1:** This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Analog-to-Digital Section 16. Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information. The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices have up to 13 Analog-to-Digital Conversion (ADC) module input channels. The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured as either a 10-bit, 4-sample-and-hold ADC (default configuration) or a 12-bit, 1-sample-and-hold ADC. **Note:** The ADC module must be disabled before the AD12B bit can be modified. #### 18.1 Key Features The 10-bit ADC configuration has the following key features: - Successive Approximation (SAR) conversion - · Conversion speeds of up to 1.1 Msps - · Up to 13 analog input pins - · External voltage reference input pins - Simultaneous sampling of up to four analog input pins - · Automatic Channel Scan mode - · Selectable conversion trigger source - · Selectable Buffer Fill modes - Four result alignment options (signed/unsigned, fractional/integer) - · Operation during CPU Sleep and Idle modes - · 16-word conversion result buffer The 12-bit ADC configuration supports all the above features, except: - In the 12-bit configuration, conversion speeds of up to 500 ksps are supported. - There is only one sample and hold (S/H) amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported. Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the specific device data sheet for further details. A block diagram of the ADC for the dsPIC33FJ16GP304 and dsPIC33FJ32GP204 devices is shown in Figure 18-1. A block diagram of the ADC for the dsPIC33FJ32GP202 device is shown in Figure 18-2. #### 18.2 ADC Initialization To configure the ADC module: - 1. Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>). - Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>). - Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>). - 4. Determine how many sample-and-hold channels will be used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>). - 5. Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>). - Select the way conversion results are presented in the buffer (AD1CON1<9:8>). - c) Turn on the ADC module (AD1CON1<15>). - 7. Configure ADC interrupt (if required): - a) Clear the AD1IF bit. - b) Select ADC interrupt priority. #### 18.5 ADC Control Registers #### REGISTER 18-1: AD1CON1: ADC1 CONTROL REGISTER 1 | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|--------|-----|-----|-------|-------|--------| | ADON | _ | ADSIDL | _ | _ | AD12B | FORM | 1<1:0> | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/C-0 | |-------|-----------|-------|-----|--------|-------|-------|--------| | | | | | | | HC,HS | HC, HS | | | SSRC<2:0> | | _ | SIMSAM | ASAM | SAMP | DONE | | bit 7 | | | | | | | bit 0 | | Legend: | HC = Cleared by hardware | HS = Set by hardware | C = Clear only bit | |-------------------|--------------------------|----------------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, rea | d as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15 ADON: ADC Operating Mode bit 1 = ADC module is operating 0 = ADC is off bit 14 **Unimplemented:** Read as '0' bit 13 **ADSIDL:** Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 **Unimplemented:** Read as '0' bit 10 AD12B: 10-bit or 12-bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 **FORM<1:0>:** Data Output Format bits For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd) For 12-bit operation: 11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = dddd dddd dddd 0000) 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Motor Control PWM2 interval ends sampling and starts conversion 100 = Reserved 011 = Motor Control PWM1 interval ends sampling and starts conversion 010 = GP timer 3 compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion bit 4 Unimplemented: Read as '0' bit 3 SIMSAM: Simultaneous Sample Select bit (applicable only when CHPS<1:0> = 01 or 1x) When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence Most instructions are a single word. Certain double-word instructions are designed to provide all of the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP. The double-word instructions execute in two instruction cycles. Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. Note: For more details on the instruction set, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157). TABLE 20-1: SYMBOLS USED IN OPCODE DESCRIPTIONS | Field | Description | | | | |-----------------|---|--|--|--| | #text | Means literal defined by "text" | | | | | (text) | Means "content of text" | | | | | [text] | Means "the location addressed by text" | | | | | { } | Optional field or operation | | | | | <n:m></n:m> | Register bit field | | | | | .b | Byte mode selection | | | | | .d | Double-Word mode selection | | | | | .S | Shadow register select | | | | | .w | Word mode selection (default) | | | | | Acc | One of two accumulators {A, B} | | | | | AWB | Accumulator write back destination address register ∈ {W13, [W13]+ = 2} | | | | | bit4 | 4-bit bit selection field (used in word addressed instructions) ∈ {015} | | | | | C, DC, N, OV, Z | MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero | | | | | Expr | Absolute address, label or expression (resolved by the linker) | | | | | f | File register address ∈ {0x00000x1FFF} | | | | | lit1 | 1-bit unsigned literal ∈ {0,1} | | | | | lit4 | 4-bit unsigned literal ∈ {015} | | | | | lit5 | 5-bit unsigned literal ∈ {031} | | | | | lit8 | 8-bit unsigned literal ∈ {0255} | | | | | lit10 | 10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode | | | | | lit14 | 14-bit unsigned literal ∈ {016384} | | | | | lit16 | 16-bit unsigned literal ∈ {065535} | | | | | lit23 | 23-bit unsigned literal ∈ {08388608}; LSb must be '0' | | | | | None | Field does not require an entry, may be blank | | | | | OA, OB, SA, SB | DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate | | | | | PC | Program Counter | | | | | Slit10 | 10-bit signed literal ∈ {-512511} | | | | | Slit16 | 16-bit signed literal ∈ {-3276832767} | | | | | Slit6 | 6-bit signed literal ∈ {-1616} | | | | | Wb | Base W register ∈ {W0W15} | | | | | Wd | Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] } | | | | | Wdo | Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] } | | | | | Wm,Wn | Dividend, Divisor working register pair (direct addressing) | | | | TABLE 22-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) | DC CHARACT | ERISTICS | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended | | | | | | |---------------------------------|---------------------------|-----|--|------------|-------|------------------------|--|--| | Parameter
No. ⁽²⁾ | Typical ⁽³⁾ | Max | Units | Conditions | | | | | | Operating Cur | rent (IDD) ⁽¹⁾ | | | | | | | | | DC20d | 20 | 30 | mA | -40°C | | | | | | DC20a | 19 | 22 | mA | +25°C | 3.3V | 10 MIPS ⁽³⁾ | | | | DC20b | 19 | 25 | mA | +85°C | 3.34 | 10 MILES, | | | | DC20c | 19 | 30 | mA | +125°C | | | | | | DC21d | 28 | 40 | mA | -40°C | | | | | | DC21a | 27 | 30 | mA | +25°C | 3.3V | 16 MIPS ⁽³⁾ | | | | DC21b | 27 | 32 | mA | +85°C | 3.30 | 10 MIPS | | | | DC21c | 27 | 36 | mA | +125°C | | | | | | DC22d | 33 | 50 | mA | -40°C | | 20 MIPS ⁽³⁾ | | | | DC22a | 33 | 40 | mA | +25°C | 3.3V | | | | | DC22b | 33 | 40 | mA | +85°C | 3.30 | 20 WIPS(*) | | | | DC22c | 33 | 50 | mA | +125°C | | | | | | DC23d | 44 | 60 | mA | -40°C | | | | | | DC23a | 43 | 50 | mA | +25°C | 2.21/ | 30 MIPS ⁽³⁾ | | | | DC23b | 42 | 55 | mA | +85°C | 3.3V | 30 MIPS(*) | | | | DC23c | 41 | 65 | mA | +125°C | 1 | | | | | DC24d | 55 | 75 | mA | -40°C | | | | | | DC24a | 54 | 65 | mA | +25°C | 2 2)/ | 40 MIDS | | | | DC24b | 52 | 70 | mA | +85°C | 3.3V | 40 MIPS | | | | DC24c | 51 | 80 | mA | +125°C | | | | | - Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: - Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) - · CLKO is configured as an I/O input pin in the Configuration Word - All I/O pins are configured as inputs and pulled to Vss - MCLR = VDD, WDT and FSCM are disabled - CPU, SRAM, program memory and data memory are operational - No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one) - CPU executing while (1) statement - · JTAG is disabled - 2: These parameters are characterized but not tested in manufacturing. - 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. TABLE 22-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) | DC CHARACT | ERISTICS | | (unless otl | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Uperating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended | | | | | | | |---|------------------------|-----|-------------|--|------|--|--|--|--|--| | Parameter
No. ⁽⁵⁾ | Typical ⁽²⁾ | Max | Units | ts Conditions | | | | | | | | Power-Down Current (IPD) ⁽¹⁾ | | | | | | | | | | | | DC60d | 55 | 500 | μΑ | -40°C | | | | | | | | DC60a | 63 | 300 | μΑ | +25°C | 3.3V | Base Power-Down Current ^(3,4) | | | | | | DC60b | 85 | 350 | μΑ | +85°C | 3.3V | Base Power-Down Current | | | | | | DC60c | 146 | 600 | μΑ | +125°C | | | | | | | | DC61d | 8 | 15 | μΑ | -40°C | | | | | | | | DC61a | 2 | 3 | μΑ | +25°C | 3.3V | Watchdog Timer Current: ∆IWDT ^(3,5) | | | | | | DC61b | 2 | 2 | μΑ | +85°C | 3.31 | Watchdog Timer Current. Alworks | | | | | | DC61c | 3 | 5 | μΑ | +125°C | | | | | | | Note 1: IPD (Sleep) current is measured as follows: - CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) - CLKO is configured as an I/O input pin in the Configuration Word - · All I/O pins are configured as inputs and pulled to Vss - MCLR = VDD, WDT and FSCM are disabled, all peripheral modules are disabled (PMDx bits are all ones) - VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode) - · RTCC is disabled. - · JTAG is disabled - 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. - **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current. - 4: These currents are measured on the device containing the most memory in this family. - **5:** These parameters are characterized, but are not tested in manufacturing. # 22.2 AC Characteristics and Timing Parameters The information contained in this section defines dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 AC characteristics and timing parameters. TABLE 22-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) | |--------------------|---| | AC CHARACTERISTICS | Operating temperature -40°C ≤TA ≤+85°C for Industrial | | | -40°C ≤TA ≤+125°C for Extended | | | Operating voltage VDD range as described in Table 22-1. | #### FIGURE 22-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS TABLE 22-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS | Param
No. | Symbol | Characteristic | Min | Тур | Max | Units | Conditions | |--------------|--------|-----------------------|-----|-----|-----|-------|--| | DO50 | Cosc2 | OSC2/SOSC2 pin | _ | _ | 15 | pF | In XT and HS modes when external clock is used to drive OSC1 | | DO56 | Сю | All I/O pins and OSC2 | _ | _ | 50 | pF | EC mode | | DO58 | Св | SCLx, SDAx | _ | _ | 400 | pF | In I ² C™ mode | #### TABLE 23-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) | DC CHARACTERISTICS | | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature | | | | | |---|---------|------|---|------------|------|--|--| | Parameter
No. | Typical | Max | Units | Conditions | | | | | Power-Down Current (IPD) ⁽³⁾ | | | | | | | | | HDC60e | 250 | 2000 | μΑ | +150°C | 3.3V | Base Power-Down Current ^(1,3) | | | HDC61c | 3 | 5 | μΑ | +150°C | 3.3V | Watchdog Timer Current: ∆lwDT ^(2,4) | | - **Note 1:** Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1. - 2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. - 3: These currents are measured on the device containing the most memory in this family. - **4:** These parameters are characterized, but are not tested in manufacturing. #### TABLE 23-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) | DC CHARA | CTERISTICS | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature | | | | |---------------|------------------------|-----|---|------------|------|---------| | Parameter No. | Typical ⁽¹⁾ | Max | Units | Conditions | | | | HDC20 | 19 | 35 | mA | +150°C | 3.3V | 10 MIPS | | HDC21 | 27 | 45 | mA | +150°C | 3.3V | 16 MIPS | | HDC22 | 33 | 55 | mA | +150°C | 3.3V | 20 MIPS | Note 1: These parameters are characterized, but are not tested in manufacturing. #### TABLE 23-6: DC CHARACTERISTICS: DOZE CURRENT (IDOZE) | 17.5522 20 0. 50 011/10/1001 5022 00/11/2/11 (15022) | | | | | | | | |--|------------------------|-----|---|-------|------------|------|---------| | DC CHARACTERISTICS | | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature | | | | | | Parameter No. | Typical ⁽¹⁾ | Max | Doze
Ratio | Units | Conditions | | | | HDC72a | 39 | 45 | 1:2 | mA | | | | | HDC72f | 18 | 25 | 1:64 | mA | +150°C | 3.3V | 20 MIPS | | HDC72g | 18 | 25 | 1:128 | mA | | | | **Note 1:** Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing. # 28-Lead Plastic Quad Flat, No Lead Package (MM) -6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |----------------------------|-------------|------|----------|------| | Dimension | MIN | NOM | MAX | | | Contact Pitch | | | 0.65 BSC | | | Optional Center Pad Width | W2 | | | 4.70 | | Optional Center Pad Length | T2 | | | 4.70 | | Contact Pad Spacing | C1 | | 6.00 | | | Contact Pad Spacing | C2 | | 6.00 | | | Contact Pad Width (X28) | X1 | | | 0.40 | | Contact Pad Length (X28) | Y1 | | | 0.85 | | Distance Between Pads | G | 0.25 | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2124A TABLE A-1: MAJOR SECTION UPDATES (CONTINUED) | Section Name | Update Description | |---|--| | Section 18.0 "Special Features" | Added FICD register information for address 0xF8000E in the Device Configuration Register Map (see Table 18-1). | | | Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 Configuration Bits Description (see Table 18-2). | | | Added a note regarding the placement of low-ESR capacitors, after the second paragraph of Section 18.2 "On-Chip Voltage Regulator" and to Figure 18-1. | | | Removed the words "if enabled" from the second sentence in the fifth paragraph of Section 18.3 "BOR: Brown-out Reset". | | Section 21.0 "Electrical Characteristics" | Updated Max MIPS value for -40°C to +125°C temperature range in Operating MIPS vs. Voltage (see Table 21-1). | | | Removed Typ value for parameter DC12 (see Table 22-4). | | | Updated MIPS conditions for parameters DC24c, DC44c, DC72a, DC72f and DC72g (see Table 21-5, Table 21-6 and Table 21-8). | | | Added Note 4 (reference to new table containing digital-only and analog pin information to I/O Pin Input Specifications (see Table 21-9). | | | Updated Typ, Min, and Max values for Program Memory parameters D136, D137, and D138 (see Table 21-12). | | | Updated Max value for Internal RC Accuracy parameter F21 for -40°C ≤TA ≤ +125°C condition and added Note 2 (see Table 21-19). | | | Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer parameter SY20 and updated conditions, which now refers to Section 18.4 "Watchdog Timer (WDT)" and LPRC parameter F21a (see Table 21-21). | | | Updated Min and Typ values for parameters AD60, AD61, AD62 and AD63 and removed Note 3 (see Table 21-37). | | | Updated Min and Typ values for parameters AD60, AD61, AD62 and AD63 and removed Note 3 (see Table 21-38). |