

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp202-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ32GP204 product page of the Microchip web site (www.microchip.com).

> In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70202)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 25. "Device Configuration" (DS70194)

3.6 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

Refer to the "*dsPIC30F/33F Programmer's Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

3.6.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.6.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m+1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.7 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for AccA (SATA), AccB (SATB) and writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACC-SAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	-	—	-	_	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{XXXX} (1)
OSCCON	0742	—	(COSC<2:0>	>	—	1	NOSC<2:0	>	CLKLOCK	IOLOCK	LOCK		CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI		DOZE<2:0>	>	DOZEN	F	RCDIV<2:0)>	PLLPOS	ST<1:0>	_			PLLPRE<4	:0>		3040
PLLFBD	0746	—	—	—		—		—				l	PLLDIV<8:)>				0030
OSCTUN	0748	_	_	_	_	_	_	_		_	_			TUT	V<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-21: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	—	—	—	—	ERASE	—	—		NVMO	P<3:0>		₀₀₀₀ (1)
NVMKEY	0766	_	_	_	_	_	_	_	_				NVMKE	Y<7:0>				0000

Legend:

id: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-22: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	—	T3MD	T2MD	T1MD	—	_	—	I2C1MD	—	U1MD	—	SPI1MD	_	—	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	_	_	_	_	IC2MD	IC1MD	_	_	_	_	_	_	OC2MD	OC1MD	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA.)
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-23: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY . N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.8.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

• TBLRDL (Table Read Low): In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

• TBLRDH (Table Read High): In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, as in the TBLRDL instruction. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-8: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming operation	ati	ions
	MOV	#UX4UU1, WU	;	
	MOV	WU, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program r	ner	nory location to be written
;	program memo:	ry selected, and writes end	ab	led
	MOV	#0x0000, W0	;	
	MOV	WO, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	IBLWT instructions to write	e t	the latches
;	Oth_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T1IP<2:0>		—		OC1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	11-0	R/W-1	R/W-0	R/W-0
-		IC1IP<2:0>	10000			INT0IP<2:0>	10000
bit 7		10111 2.0					bit 0
Legend:	. 1. 11						
R = Readable		vv = vvritable i	DIT		nented bit, rea		
-n = value at	POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as '()'				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Prioritv bits				
	111 = Interr	upt is priority 7 (h	nighest prior	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0)'				
bit 10-8	OC1IP<2:0>	Output Compa	re Channel	1 Interrupt Prior	ity bits		
	111 = Interr	upt is priority 7 (ł	nighest prior	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	IC1IP<2:0>:	Input Capture C	Channel 1 Int	errupt Priority b	its		
	•	upt is priority 7 (r	nignest prior	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1	ahlad				
hit 3		nted: Read as '	ableu l'				
bit 2_0		- Evternal Interr		/ hits			
Dit 2-0	111 = Intern	upt is priority 7 (h	niahest prior	itv interrupt)			
	•	apt io pilolity i (i	g. eet p. e.				
	•						
	• 001 = Intern	unt is priority 1					
	000 = Intern	upt source is disa	abled				
		•					

REGISTER 7-11: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		U1RXIP<2:0>				SPI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SPI1EIP<2:0>				T3IP<2:0>	
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	U1RXIP<2:	0>: UART1 Rece	eiver Interrup	t Priority bits			
	111 = Inter	rupt is priority 7 (I	highest priori	ity interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1	abled				
hit 11		ented: Read as '	abica n'				
bit 10-8	SPI1IP<2.0	> SPI1 Event In	o terrunt Priori	ty hits			
	111 = Inter	rupt is priority 7 (I	highest priori	ity interrupt)			
	•		0 1	, I,			
	•						
	• 001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-4	SPI1EIP<2	:0>: SPI1 Error Ir	nterrupt Prior	ity bits			
	111 = Inter	rupt is priority 7 (I	highest priori	ity interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits				
	111 = Inter	rupt is priority 7 (I	highest priori	ity interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					

REGISTER 7-13: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

NOTES:

REGISTER 10-14: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP9R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP8R<4:0>		
bit 7	·	•					bit 0
<u>.</u>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin (see Table 10-2 for peripheral function numbers)

REGISTER 10-15: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—			RP11R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0	>	
bit 7		· · · · ·					bit 0
Legend:							
R = Readable bit W = Writable b			oit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as 'o)'				
bit 12-8	bit 12-8 RP11R<4:0>: Peripheral Output Function is Assigned to RP11 Output Pin (see Table 10-2 for peripheral function numbers)						0-2 for periph-

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin (see Table 10-2 for peripheral function numbers)

11.2 Timer1 Control Register

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	_	—	—	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS	<1:0>	_	TSYNC	TCS	—
bit 7							bit 0
Legend:	L:4		.:.		nonted bit mean	L == (0'	
R = Readable		vv = vvritable t	DIC	U = Unimpler	nented bit, read		0.11/2
	OR	i = bit is set			areu		IOWIT
bit 15	TON: Timer1	On hit					
bit 10	1 = Starts 16-	bit Timer1					
	0 = Stops 16-	bit Timer1					
bit 14	Unimplemen	ted: Read as 'o)'				
bit 13	TSIDL: Stop i	n Idle Mode bit					
	1 = Discontinu	ue module oper	ation when de	evice enters Id	lle mode		
	0 = Continue	module operation	on in Idle mod	de			
bit 12-7	Unimplemen	ted: Read as '0)' • • ···				
bit 6	IGAIE: lime	ar1 Gated Time	Accumulation	Enable bit			
	This bit is igno	<u>⊥.</u> ored.					
	When TCS =	0:					
	1 = Gated tim	e accumulation	enabled				
	0 = Gated tim	e accumulation	disabled	0 1 1 1			
DIT 5-4	10KPS<1:0>	Timer1 Input C	lock Prescale	e Select Dits			
	10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as '0)'				
bit 2	TSYNC: Time	er1 External Clo	ck Input Sync	chronization Se	elect bit		
	<u>$1 = Synchroni$</u>	<u>1:</u> ize external clo	ck input				
	0 = Do not sy	nchronize exter	nal clock inpu	ut			
	When TCS =	0:					
	This bit is igno	ored.					
bit 1	TCS: Timer1	Clock Source S	elect bit				
	1 = External c 0 = Internal cl	clock from pin T lock (FCY)	1CK (on the r	ising edge)			
bit 0	Unimplemented: Read as '0'						

NOTES:

17.3 UART Control Registers

REGISTER 17-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>	
bit 15				•		-	bit 8	
R/W-0 HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	
bit 7					•		bit 0	
Legend:		HC = Hardwa	re Clearable					
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	UARTEN: UA	ARTx Enable bit	(1)					
	1 = UARTx is	s enabled; all U	ARTx pins ar	e controlled by	UARTx as def	ined by UEN<1	:0>	
	0 = UARTx is	disabled; all UA	RTx pins are	controlled by po	ort latches; UAR	Tx power consur	mption minimal	
bit 14	Unimplemen	ted: Read as ')'					
bit 13	USIDL: Stop	in Idle Mode bit						
	1 = Discontin	nue module ope	ration when o	device enters lo	dle mode			
	0 = Continue	module operat	ion in Idle mo	ode				
bit 12	IREN: IrDA®	Encoder and D	ecoder Enabl	e bit ⁽²⁾				
	$1 = IrDA^{\otimes} en$	coder and deco	oder enabled					
bit 11		louer and uecc		.i+				
	$1 = \frac{1}{1 \times PTS}$ n	ie Selection for	UXRIS FILL	л				
	0 = UxRTS p	oin in Flow Cont	rol mode					
bit 10	Unimplemen	ted: Read as ')'					
bit 9-8	UEN<1:0>: U	IARTx Enable b	oits					
	11 = UxTX,	UxRX and BCL	K pins are en	abled and use	d; UxCTS pin c	ontrolled by po	rt latches	
	10 = UxTX,	UxRX, UxCTS	and UxRTS p	ins are enable	d and used			
	$01 = \mathbf{U}\mathbf{x}\mathbf{T}\mathbf{X},$	UxRX and UxR	TS pins are e	enabled and us	ed; UxCTS pin	controlled by p	ort latches	
	00 = UXIXa	ches	are enabled a	and used; UxC	IS and UXRIS	BULK pins con	trolled by	
bit 7	WAKE: Wake	e-up on Start bit	Detect Durin	a Sleep Mode	Enable bit			
	1 = UARTx w	vill continue to s	ample the U	KRX pin; interru	upt generated o	n falling edge; I	bit cleared	
	in hardwa	are on following	rising edge	1 /		0 0 /		
	0 = No wake	-up enabled						
bit 6	LPBACK: UA	ARTx Loopback	Mode Select	bit				
	1 = Enable L	oopback mode	le d					
6.4 <i>6</i>		K mode is disab						
C JIU	ABAUD: Auto	D-Baud Enable	UII	o povt charact	tor requires -	opontion of a C	upo field (EEL)	
	I = Enable badd rate measurement on the next character – requires reception of a Sync field (55n) before other data; cleared in bardware upon completion							
	0 = Baud rate measurement disabled or completed							
Note 1: Ret	fer to Section 1	1 7. "UART" (DS	670188) in the	e "dsPIC33F/P	IC24H Family I	Reference Manı	<i>ual"</i> for	
info	ormation on ena	abling the UART	module for r	eceive or trans	smit operation.			

2: This feature is only available for the 16x BRG mode (BRGH = 0).

			-				
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	—	—			CH0SB<4:0>		
bit 15							bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA					CH0SA<4:0>		
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable I	Dit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
					••		
DIT 15		nnel U Negative		for Sample B b	it		
	1 = Channel 0 0 = Channel 0) negative input	t is An I				
bit 14-13	Unimplemen	ted: Read as ')'				
bit 12-8	CH0SB<4:0>	: Channel 0 Po	sitive Input Se	elect for Sample	e B bits		
	dsPIC33FJ32	GP204 and ds	PIC33FJ16G	P304 devices	only:		
	01100 = Cha	nnel 0 positive	input is AN12		-		
	•						
	•						
	00010 = Cha	nnel 0 positive	input is AN2				
	00001 = Cha	nnel 0 positive	input is AN1				
	00000 = Cha	nnel 0 positive	input is AN0				
	dsPIC33FJ32	GP202 device	s only:				
	01100 = Cha	nnel 0 positive	input is AN12				
	•						
	•						
	01000 = Res	erved					
	00111 = Res	erved					
	00110 = Res	erved					
	•						
	•						
	00010 = Cha	nnel 0 positive	input is AN2				
	00001 = Cha	nnel 0 positive	input is AN1				
b # 7				for Consult A 1	:4		
		nner u negative		ior Sample A b	art (
	1 = Channel () negative input	t is VREF-				
bit 6-5	Unimplement	ted: Read as '()'				
	r						

REGISTER 18-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

NOTES:

DC CHA	RACTER	ISTICS	Standar (unless Operatin	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
	licl	Input Low Injection Current						
DI60a			0	_	₋₅ (5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB14	
	Іісн	Input High Injection Current						
DI60b			0	_	+5(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB14, and digital 5V-tolerant designated pins	
	∑ІІСТ	Total Input Injection Current						
D160c		(sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 22-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of digital-only and analog pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5V or devices with USB, "D+" and "D-" VIH source > (VUSB + 0.3). Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

22.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 AC characteristics and timing parameters.

TABLE 22-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature -40°C ≤TA ≤+85°C for Industrial				
	-40°C ≤TA ≤+125°C for Extended				
	Operating voltage VDD range as described in Table 22-1.				

FIGURE 22-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 22-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

FIGURE 22-11: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 22-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	—	—	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From	1' Nama	
11011		
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Woul	ld you like a reply? Y N	
Devi	ce: dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304	Literature Number: DS70290J
Ques	stions:	
1. V	What are the best features of this document?	
-		
2. H	How does this document meet your hardware and software de	evelopment needs?
-		
3. E	Do you find the organization of this document easy to follow?	If not, why?
-		
4. V	What additions to the document do you think would enhance t	he structure and subject?
_		
5. V	What deletions from the document could be made without affe	ecting the overall usefulness?
_		
6. I	Is there any incorrect or misleading information (what and whe	ere)?
_		
7. H	How would you improve this document?	
-		