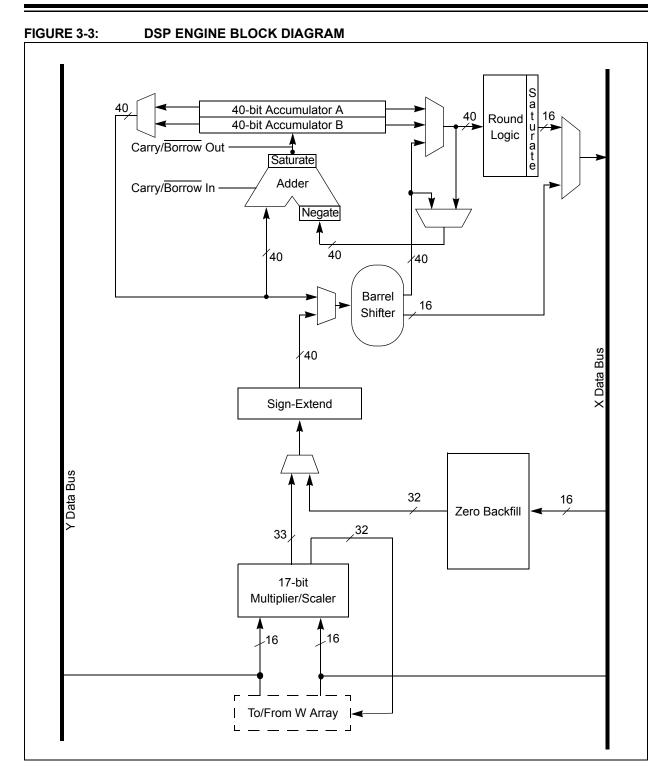


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp204-h-pt

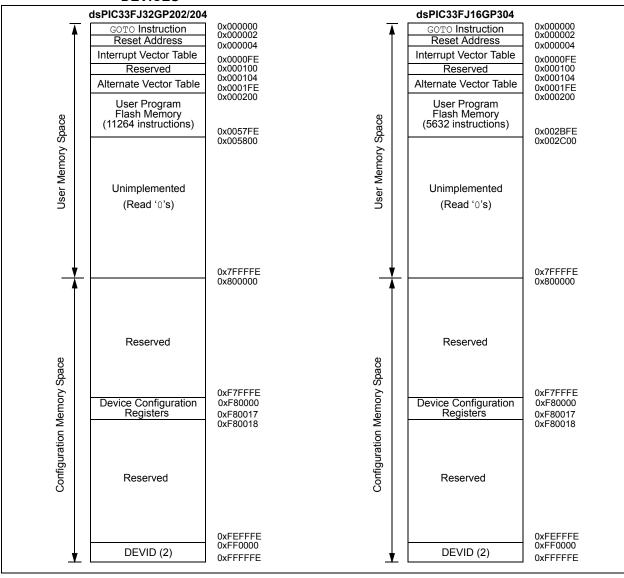
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features the dsPIC33FJ32GP202/204 of and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Memory" Section 4. "Program (DS70202) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.


4.1 Program Address Space

The program address memory space of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.8 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps for the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY FOR dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 DEVICES

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP

SFR NameSFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0All ResetsINTCON10080NSTDISOVAERROVBERCOVAERRCOVAERROVBEROVATEOVBTECOVTESTACERRDIVOERR-MATHERRADDRERRSTACERRSSCFAIL-0000INTCON20082ALTIVTDISI0000IFS00086AD11FU1TXIFU1RXIFSPI1EFT31FT21FOC21FIC21F-T11FOC11FIC11FINTOFP0000IFS40086AD11FU1TXIFU1RXIFSPI1EFT31FT21FOC21FIC21F-MI2C11FSI21F0000IFS40086AD11FU1TXIFSPI1EFSPI1EFT31ET21FOC21FIC21F-MI2C11FSI2C1F0000IFS40086AD11FU1TXIFSPI1EFSPI1EFT31ET21EOC21FIC21F-MI2C11FSI2C1F0000IEC40096INT21E-AD11EU1TXIFSPI1EFSPI1EFT31ET21EOC21EIC71E-INT1ECNIE-MI2C11FSI2C1F0000IEC40096 <td< th=""><th></th><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>					-	-													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	INTCON2	0082	ALTIVT	DISI	—	—	—	—	—	—	—	—	—	—	—	INT2EP	INT1EP	INT0EP	0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IFS0	0084	—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IFS1	0086	—	—	INT2IF	—	—	—	—	—	IC8IF	IC7IF	_	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IFS4	008C	—	—	—	_	—	—	—	—	-	—	—	—	—	—	U1EIF	_	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC0	0094	—	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC1	0096	—	—	INT2IE	_	—	—	—	—	IC8IE	IC7IE	—	INT1IE	CNIE	—	MI2C1IE	SI2C1IE	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC4	009C	—	—	—	_	—	—	—	—	-	—	—	—	—	—	U1EIE	_	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC0	00A4	—		T1IP<2:0>		—	(OC1IP<2:0)>	—		IC1IP<2:0>		—	11	VT0IP<2:0>	•	4444
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC1	00A6	—		T2IP<2:0>		—	(OC2IP<2:0)>	_		IC2IP<2:0>		—	—	—	_	4440
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC2	00A8	_	ι	J1RXIP<2:0)>	_	0,	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC5 00AE - IC8IP<2:0> - IC7IP<2:0> - - - - - - 4404 IPC7 00B2 - - - - - - - - - 4004 IPC7 00B2 - - - - - - - - 0040 IPC16 00C4 - - - - - - - 0040	IPC3	00AA	—	—	—	_	—	—	—	—	—		AD1IP<2:0>	>	—	U	1TXIP<2:0	>	0044
IPC7 00B2 - - - - - - INT2IP<2:0> - - - 0040 IPC16 00C4 - - - - - - - 0040	IPC4	00AC	—		CNIP<2:0>	•	—	—	—	—	-	I	MI2C1IP<2:0)>	—	SI	2C1IP<2:0	>	4044
IPC16 00C4 - - - - - U1EIP<2:0> - - - 0040	IPC5	00AE	—		IC8IP<2:0>	`	—		IC7IP<2:0	>	_	—	—	—	—	11	VT1IP<2:0>	•	4404
	IPC7	00B2	_	_	_	_	_	_	_	_	_		INT2IP<2:02	>	_	_	_	_	0040
INTTREG 00E0 ILR<3:0> - VECNUM<6:0> 0000	IPC16	00C4	—	—	—	—	—	—	—	_	—		U1EIP<2:0>	>	—	—	—		0040
	INTTREG	00E0	—	—	—	—		ILR<	3:0>		—			VE	CNUM<6:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

00000 = Input/2 (default)

- Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register is reset only on a Power-on Reset (POR).

9.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access									
	the product page using the link above,									
	enter this URL in your browser:									
	http://www.microchip.com/wwwproducts/									
	Devices.aspx?dDocName=en530331									

9.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

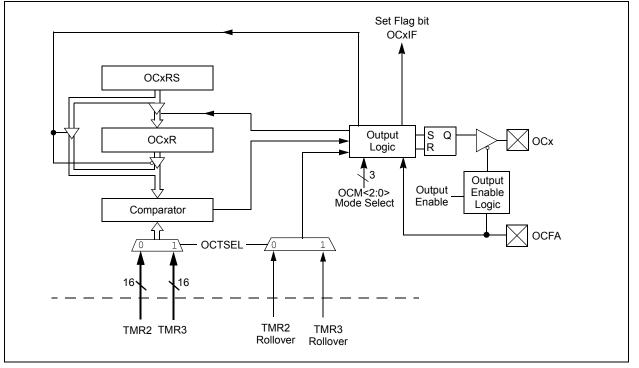
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾		TSIDL ⁽¹⁾	—			_	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS<	<1:0> ⁽²⁾		—	TCS ⁽²⁾	_
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkne	own
bit 15	TON: Timer3						
	1 = Starts 16- 0 = Stops 16-						
bit 14	•	ted: Read as '0	,				
bit 13	-	n Idle Mode bit					
bit 10		ue timer operati		rice enters Idle	mode		
		timer operation					
bit 12-7	Unimplemen	ted: Read as '0)'				
bit 6	TGATE: Time	er3 Gated Time	Accumulation	n Enable bit ⁽²⁾			
	When TCS =						
	This bit is igno When TCS =						
		e accumulation	enabled				
		e accumulation					
bit 5-4	TCKPS<1:0>	: Timer3 Input (Clock Presca	le Select bits ⁽²⁾			
	11 = 1:256 pr						
	10 = 1:64 pre 01 = 1:8 pres						
	00 = 1:1 pres						
bit 3-2	•	ted: Read as '0)'				
bit 1	TCS: Timer3	Clock Source S	elect bit ⁽²⁾				
	1 = External c	clock from T3Cl	<pin< td=""><td></td><td></td><td></td><td></td></pin<>				
	0 = Internal cl	lock (Fosc/2)					
	Unimplemen						

REGISTER 12-2: T3CON CONTROL REGISTER

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), these bits have no effect.

14.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

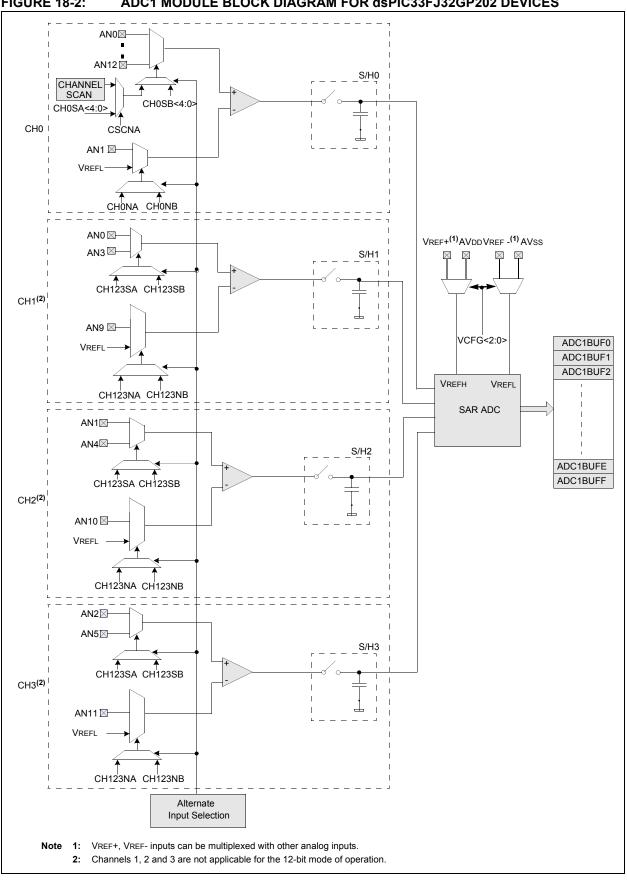
FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

15.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This	insures	that	the	first	fr	ame
	transr	nission a	after	initializa	ation	is	not
	shifte						

- 2. In non-framed 3-wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
- Note: This will insure that during power-up and initialization the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.
- 5. To avoid invalid slave read data to the master, the user's master software must guarantee enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI shift register and is empty once the data transmission begins.


15.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http:// www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en530331

15.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

FIGURE 18-2: ADC1 MODULE BLOCK DIAGRAM FOR dsPIC33FJ32GP202 DEVICES

ABLE 20-2:		INSTR	NSTRUCTION SET OVERVIEW (CONTINUED)										
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected						
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV						
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV						
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV						
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV						
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV						
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None						
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None						
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB						
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB						
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None						
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С						
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С						
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С						
38	GOTO	GOTO	Expr	Go to address	2	2	None						
		GOTO	Wn	Go to indirect	1	2	None						
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z						
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z						
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z						
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z						
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z						
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z						
41	IOR	IOR	f	f = f.IOR. WREG	1	1	N,Z						
	1010	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z						
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z						
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z						
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z						
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB						
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None						
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z						
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z						
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z						
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z						
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z						
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB						
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB						
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None						
		MOV	f	Move f to f	1	1	N,Z						
		MOV	f,WREG	Move f to WREG	1	1	None						
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None						
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None						
		MOV	Wn,f	Move Wn to f	1	1	None						
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None						
		MOV	WREG, f	Move WREG to f	1	1	None						
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None						
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None						
47	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB	Prefetch and store accumulator	1	1	None						
	-				1	1							

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ad	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51		NUT 00	AWB	(A/ad + 1)(A/ad) = aignod(A/b) * aignod(A/a)	4	1	Nono
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None None
		MUL.US MUL.UU	Wb,Ws,Wnd Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws) {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,2
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,2
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
64	DING	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f f WDDC	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
65	DDC	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f f WDEC	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG Ws,Wd	WREG = Rotate Right through Carry f Wd = Rotate Right through Carry Ws	1	1	C,N,Z C,N,Z

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

21.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit™ 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

21.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

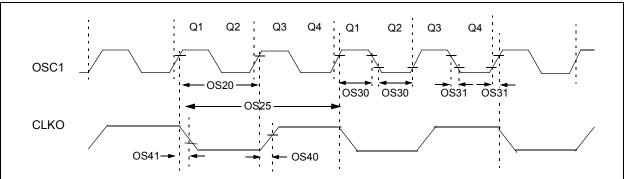

IADLE	22-4. 1	JC TEIVIPERATURE AND VOL	TAGE SP								
DC СН4	ARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions				
Operating Voltage											
DC10	Supply V	/oltage									
	Vdd		3.0		3.6	V	Industrial and Extended				
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8		—	V	_				
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_				
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s				

TABLE 22-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 22-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions			
OS10	FIN	External CLKI Frequency ⁽⁴⁾ (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC			
		Oscillator Crystal Frequency ⁽⁵⁾	3.5 10		10 40 33	MHz MHz kHz	XT HS SOSC			
OS20	Tosc	Tosc = 1/Fosc ⁽⁴⁾	12.5	_	DC	ns	—			
OS25	TCY	Instruction Cycle Time ^(2,4)	25		DC	ns	_			
OS30	TosL, TosH	External Clock in (OSC1) ⁽⁵⁾ High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) ⁽⁵⁾ Rise or Fall Time	—	_	20	ns	EC			
OS40	TckR	CLKO Rise Time ^(3,5)	_	5.2		ns	_			
OS41	TckF	CLKO Fall Time ^(3,5)	_	5.2	—	ns	—			
OS42	Gм	External Oscillator Transconductance ⁽⁶⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits can result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 40 MHz only.
- 5: These parameters are characterized by similarity, but are not tested in manufacturing.
- 6: Data for this parameter is preliminary. This parameter is characterized, but is not tested in manufacturing.

23.1 High Temperature DC Characteristics

TABLE 23-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temperature Range	Max MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304
HDC5	VBOR to 3.6V ⁽¹⁾	-40°C to +150°C	20

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 22-11 for the minimum and maximum BOR values.

TABLE 23-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	Pdmax	(Tj - Ta)/θja			W

TABLE 23-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	CTERISTIC	S	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature								
Parameter No. Symbol Characteristic			Min	Тур	Max	Units	Conditions				
Operating V	Voltage										
HDC10	Supply Vo	Supply Voltage									
VDD — 3.0 3.3 3.6 V -40°C to +150°C							-40°C to +150°C				

TABLE 23-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature			
Parameter No. Typical Max		Units	Conditions			
Power-Down Current (IPD) ⁽³⁾						
HDC60e	250	2000	μA	+150°C	3.3V	Base Power-Down Current ^(1,3)
HDC61c	3	5	μA	+150°C 3.3V Watchdog Timer Current: ΔIwDT ^(2,4)		

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 23-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			(unless other			3.6V °C for High Temperature
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions		tions
HDC20	19	35	mA	+150°C	3.3V	10 MIPS
HDC21	27	45	mA	+150°C	3.3V	16 MIPS
HDC22	33	55	mA	+150°C	3.3V	20 MIPS

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 23-6: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			(unless oth	erwise s	•		V or High Temperature
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions		
HDC72a	39	45	1:2	mA			
HDC72f	18	25	1:64	mA	+150°C	3.3V	20 MIPS
HDC72g	18	25	1:128	mA			

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

Section Name	Update Description
Section 14.0 "Serial Peripheral Interface (SPI)"	Removed the following sections, which are now available in the related section of the dsPIC33F/PIC24H Family Reference Manual:
	• 14.1 "Interrupts"
	14.2 "Receive Operations"
	14.3 "Transmit Operations"
	• 14.4 "SPI Setup" (retained Figure 14-1: SPI Module Block Diagram)
Section 15.0 "Inter-Integrated Circuit (I ² C™)"	Removed the following sections, which are now available in the related section of the dsPIC33F/PIC24H Family Reference Manual:
	• 15.3 "I ² C Interrupts"
	• 15.4 "Baud Rate Generator" (retained Figure 15-1: I ² C Block Diagram)
	 15.5 "I²C Module Addresses"
	 15.6 "Slave Address Masking"
	15.7 "IPMI Support"
	 15.8 "General Call Address Support"
	 15.9 "Automatic Clock Stretch"
	 15.10 "Software Controlled Clock Stretching (STREN = 1)"
	15.11 "Slope Control"
	15.12 "Clock Arbitration"
	• 15.13 "Multi-Master Communication, Bus Collision, and Bus Arbitration"
	 15.14 "Peripheral Pin Select Limitations"
Section 16.0 "Universal Asynchronous Receiver Transmitter	Removed the following sections, which are now available in the related section of the dsPIC33F/PIC24H Family Reference Manual:
(UART)"	 16.1 "UART Baud Rate Generator"
	 16.2 "Transmitting in 8-bit Data Mode"
	 16.3 "Transmitting in 9-bit Data Mode"
	 16.4 "Break and Sync Transmit Sequence"
	 16.5 "Receiving in 8-bit or 9-bit Data Mode"
	 16.6 "Flow Control Using UxCTS and UxRTS Pins"
	16.7 "Infrared Support"
	Removed IrDA references and Note 1, and updated the bit and bit value descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control Register (see Register 16-2).
Section 17.0 "10-bit/12-bit Analog- to-Digital Converter (ADC)"	Removed Equation 17-1: ADC Conversion Clock Period and Figure 17-2: ADC Transfer Function (10-Bit Example).
	Added ADC1 Module Block Diagram for dsPIC33FJ16GP304 and dsPIC33FJ32GP204 Devices (Figure 18-1) and ADC1 Module Block Diagram FOR dsPIC33FJ32GP202 Devices (Figure 17-2).
	Added Note 2 to Figure 17-3: ADC Conversion Clock Period Block Diagram.
	Added device-specific information to Note 1 in the ADC1 Input Scan Select Register Low (see Register 17-6), and updated the default bit value for bits 12-10 (CSS12-CSS10) from U-0 to R/W-0.
	Added device-specific information to Note 1 in the ADC1 Port Configuration Register Low (see Register 17-7), and updated the default bit value for bits 12-10 (PCFG12-PCFG10) from U-0 to R/W-0.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Revision C (December 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in the following table.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Updated all pin diagrams to denote the pin voltage tolerance (see " Pin Diagrams ").
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 10.0 "I/O Ports"	Updated 5V tolerant status for I/O pin RB4 from Yes to No (see Table 10-1).
Section 22.0 "Electrical Characteristics"	Removed the maximum value for parameter DC12 (RAM Data Retention Voltage) in Table 22-4.
	Updated typical values for Operating Current (IDD) and added Note 3 in Table 22-5.
	Updated typical and maximum values for Idle Current (IIDLE): Core OFF Clock ON Base Current and added Note 3 in Table 22-6.
	Updated typical and maximum values for Power Down Current (IPD) and added Note 5 in Table 22-7.
	Updated typical and maximum values for Doze Current (IDOZE) and added Note 2 in Table 22-8.
	Added Note 3 to Table 22-12.
	Updated minimum value for Internal Voltage Regulator Specifications in Table 22-13.
	Added parameter OS42 (GM) and Notes 4, 5, and 6 to Table 22-16.
	Added Notes 2 and 3 to Table 22-17.
	Added Note 2 to Table 22-20.
	Added Note 2 to Table 22-21.
	Added Note 2 to Table 22-22.
	Added Note 1 to Table 22-23.
	Added Note 1 to Table 22-24.
	Added Note 3 to Table 22-32.
	Added Note 2 to Table 22-33.
	Updated typical value for parameter AD08 (ADC in operation) and added Notes 2 and 3 in Table 22-34.
	Updated minimum, typical, and maximum values for parameters AD23a, AD24a, AD30a, AD32a, AD32a, and AD34a, and added Notes 2 and 3 in Table 22-35.
	Updated minimum, typical, and maximum values for parameters AD23b, AD24b, AD30b, AD32b, AD32b, and AD34b, and added Notes 2 and 3 in Table 22-36.

Section Name	Update Description
Section 22.0 "Electrical Characteristics"	Added the 28-pin SSOP Thermal Packaging Characteristics (see Table 22-3).
	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 22-4).
	Updated the maximum value for parameters DI18 and DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 22-9).
	Updated Note 3 in the PLL Clock Timing Specifications (see Table 22-17).
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 22-18).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 22-20).
	Updated <i>all</i> SPI specifications (see Table 22-28 through Table 22-35 and Figure 22-10 through Figure 22-16).
	Added Note 4 to the 12-bit mode ADC Module Specifications (see Table 22-39).
	Added Note 4 to the 10-bit mode ADC Module Specifications (see Table 22-40).
Section 23.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated Note 1 in the PLL Clock Timing Specifications (see Table 23-10).
	Added Note 3 to the 12-bit Mode ADC Module Specifications (see Table 23-17).
	Added Note 3 to the 10-bit Mode ADC Module Specifications (see Table 23-18).
"Product Identification System"	Added the "SS" definition for the SSOP package.

TABLE A-6: MAJOR SECTION UPDATES (CONTINUED)

Revision H (July 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-7:	MAJOR SECTION UPDATES

Section Name	Update Description
Section 19.0 "Special Features"	Added Note 3 to the Connections for the On-chip Voltage Regulator diagram (see Figure 19-1).
Section 22.0 "Electrical Characteristics"	Removed Note 3 and parameter DC10 (VCORE) from the DC Temperature and Voltage Specifications (see Table 22-4).
	Updated the Characteristics definition and Conditions for parameter BO10 in the Electrical Characteristics: BOR (see Table 22-11).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 22-13).

Revision J (June 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see **Section 8.2 "Oscillator Resources"** and **Section 18.3 "ADC Helpful Tips"**.

All other major changes are referenced by their respective section in the following table.

TABLE A-8: MAJOR SECTION UPDATES

Section Name	Update Description
Section 22.0 "Electrical Characteristics"	Added Note 1 to the Operating MIPS vs. Voltage (see Table 22-1).
	Updated the notes in the following tables:
	Operating Current (IDD) (see Table 22-5)
	Idle Current (IIDLE) (see Table 22-6)
	Power-Down Current (IPD) (see Table 22-7)
	Doze Current (IDOZE) (see Table 22-8)
	Updated the conditions for Program Memory parameters D136b, D137b, and D138b (TA = +150°C) (see Table 22-12).
Section 23.0 "High Temperature Electrical Characteristics"	Removed Table 23-8: DC Characteristics: Program Memory.
Section 24.0 "DC and AC Device Characteristics Graphs"	Added new chapter.