

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Active
dsPIC
16-Bit
40 MIPs
I ² C, IrDA, LINbus, SPI, UART/USART
Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
35
32KB (32K x 8)
FLASH
-
2K x 8
3V ~ 3.6V
A/D 13x10b/12b
Internal
-40°C ~ 85°C (TA)
Surface Mount
44-TQFP
44-TQFP (10x10)
https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp204-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en530331

3.4.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

3.5 CPU Control Registers

REGISTER	R 3-1: SR: C	PU STATUS	REGISTER				
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽²⁾) R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
-	IPL<2:0> ⁽²⁾		RA	N	OV	Z	C
bit 7							bit 0
Legend:							
C = Clear c	only bit	R = Readable	e bit	U = Unimplei	mented bit, read	l as '0'	
S = Set onl	y bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is s	set	'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15	OA: Accumu	lator A Overflow	w Status bit				
	1 = Accumul	ator A overflow	ed				
bit 14		lator B Overflov	v Status bit				
DIL 14		ator B overflow	ed				
	0 = Accumul	ator B has not o	overflowed				
bit 13	SA: Accumu	lator A Saturati	on 'Sticky' Sta	itus bit ⁽¹⁾			
	1 = Accumul	ator A is satura ator A is not sa	ted or has be turated	en saturated at	some time		
bit 12	SB: Accumu	lator B Saturati	on 'Sticky' Sta	atus bit ⁽¹⁾			
	1 = Accumul 0 = Accumul	ator B is satura ator B is not sa	ted or has be turated	en saturated at	some time		
bit 11	0AB: 0A 0	OB Combined A	Accumulator C	Overflow Status	bit		
	1 = Accumula	ators A or B ha	ve overflowed	 orflowed			
bit 10		R Combined A	or Briave ov	ticky' Status bit			
	1 = Accumula	ators A or B are	e saturated or	have been sat	urated at some	time in the past	ŀ
	0 = Neither A	Accumulator A c	or B are satura	ated			•
	Note: This bi	it can be read c	r cleared (not	set). Clearing	this bit will clear	SA and SB.	
bit 9	DA: DO Loop	Active bit					
	1 = DO loop i	n progress					
	0 = DO loop r	not in progress					
bit 8	DC: MCU AL	U Half Carry/B	orrow bit				
	1 = A carry-o	out from the 4th	low-order bit	(for byte sized of	data) or 8th low-	order bit (for wo	ord sized data)
	0 = No carry data) of	-out from the 4 the result occur	Ith low-order rred	bit (for byte siz	ed data) or 8th	low-order bit (f	or word sized
Note 1:	This bit can be rea	ad or cleared (r	not set).				
2:	The IPL<2:0> bits Level (IPL). The v IPL<3> = 1.	are concatena alue in parenth	ted with the If eses indicate	PL<3> bit (COF s the IPL if IPL [.]	RCON<3>) to for <3> = 1. User in	rm the CPU Intention interrupts are dis	errupt Priority abled when
3:	The IPL<2:0> Sta	tus bits are rea	d only when N	ISTDIS = 1 (IN	TCON1<15>).		

TABLE 4-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	-	-	-	-	-	-	—	Receive Register						0000		
I2C1TRN	0202	_	_	_	_	_	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Ra	te Generato	r Register				0000
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_		—	_	_						Address	Register					0000
I2C1MSK	020C	—		—	—	—	-		Address Mask Register 00						0000			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	-	_	_				UART	Transmit Re	gister				XXXX
U1RXREG	0226	_	_	_	_	-	_	_	UART Receive Register						0000			
U1BRG	0228	Baud Rate Generator Prescaler								0000								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	—	_	—	—	SPIROV	—	_	_	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248	SPI1 Transmit and Receive Buffer Register										0000						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site: (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET MODULE BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
	_		g				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL	
bit /							bit 0
l ecend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
	-		·				-
bit 15	NSTDIS: Inte	rrupt Nesting [Disable bit				
	1 = Interrupt i	nesting is disal	bled				
	0 = Interrupt I	nesting is enab	led				
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit			
	1 = Trap was 0 = Trap was	not caused by ove	overflow of Accur	cumulator A			
bit 13	OVBERR: Ad	cumulator B C	verflow Trap F	lag bit			
	1 = Trap was	caused by ove	erflow of Accur	nulator B			
	0 = Trap was	not caused by	overflow of Ac	ccumulator B			
bit 12	COVAERR: A	Accumulator A	Catastrophic C	Overflow Trap F	lag bit		
	1 = Irap was 0 = Trap was	caused by cat	astrophic over catastrophic c	tiow of Accumu	ulator A umulator A		
bit 11	COVBERR: /	Accumulator B	Catastrophic C	Overflow Trap F	Flag bit		
	1 = Trap was	caused by cat	astrophic over	flow of Accumu	lator B		
	0 = Trap was	not caused by	catastrophic c	overflow of Acc	umulator B		
bit 10	OVATE: Accu	umulator A Ove	erflow Trap Ena	able bit			
	1 = Trap over 0 = Trap disa	flow of Accum bled	ulator A				
bit 9	OVBTE: Accu	umulator B Ove	erflow Trap En	able bit			
	1 = Trap over 0 = Trap disa	flow of Accum bled	ulator B				
bit 8	COVTE: Cata	astrophic Overf	low Trap Enab	ole bit			
	1 = Trap on c 0 = Trap disa	atastrophic ove	erflow of Accur	mulator A or B	enabled		
bit 7	SFTACERR:	Shift Accumula	ator Error Statu	us bit			
	1 = Math erro 0 = Math erro	or trap was cau or trap was not	sed by an inva caused by an	ilid accumulato invalid accumu	r shift Ilator shift		
bit 6	DIV0ERR: Ar	ithmetic Error	Status bit				
	1 = Math erro 0 = Math erro	or trap was cau or trap was not	sed by a divide caused by a d	e by zero ivide by zero			
bit 5	Unimplemen	ted: Read as '	0'	·			
bit 4	MATHERR: A	Arithmetic Erro	Status bit				
	1 = Math erro	or trap has occu	urred				
h # 0	0 = Math erro	or trap has not					
dit 3		Address Error	rap Status bit				
	1 = Address e 0 = Address e	error trap has r	not occurred				

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit

- 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

INTOIF: External Interrupt 0 Flag Status bit

bit 0

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
		INT2IF	_	_			_
bit 15		•					bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF		INT1IF	CNIF	—	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	INT2IF: Exter	nal Interrupt 2 I	Flag Status bi	t			
	1 = Interrupt r	equest has occ	curred				
h# 10.0		equest has not	occurred				
		ted: Read as) N. O. Jantowa unt l				
DIL 7		apture Channe	er 8 interrupt i	-lag Status bit			
	1 = Interrupt r0 = Interrupt r	request has occ	occurred				
bit 6	IC7IF: Input C	Capture Channe	el 7 Interrupt I	-lag Status bit			
	1 = Interrupt r	equest has occ	urred .	U			
	0 = Interrupt r	equest has not	occurred				
bit 5	Unimplemen	ted: Read as ')'				
bit 4	INT1IF: Exter	nal Interrupt 1 I	Flag Status bi	t			
	1 = Interrupt r	equest has occ	curred				
1	0 = Interrupt r	request has not	occurred				
bit 3	CNIF: Input C	Change Notifica		Flag Status bit			
	\perp = Interrupt r	equest has occ	occurred				
bit 2	Unimplemen	ted: Read as ')'				
bit 1	MI2C1IF: 12C	1 Master Event	s Interrupt Fla	ad Status bit			
2	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 0	SI2C1IF: 12C	1 Slave Events	Interrupt Flag	g Status bit			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	request has not	occurred				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware set or clear after reception of I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit complete, I2CxTRN is empty
	Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

17.3 UART Control Registers

REGISTER 17-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>
bit 15						-	bit 8
R/W-0 HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL
bit 7	•						bit 0
Legend:		HC = Hardwa	e Clearable				
R = Readable	e bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	UARTEN: UA	RTx Enable bit	(1)				
	1 = UARTx is	s enabled; all U	ARTx pins ar	e controlled by	UARTx as defi	ined by UEN<1	:0>
	0 = UARTx is	disabled; all UA	RTx pins are	controlled by po	ort latches; UAR	Tx power consur	mption minimal
bit 14	Unimplemen	ted: Read as ')'				
bit 13	USIDL: Stop	in Idle Mode bit					
	1 = Discontin	ue module ope	ration when o	device enters lo	dle mode		
	0 = Continue	module operat	ion in Idle mo	ode (2)			
bit 12	IREN: IrDA®	Encoder and D	ecoder Enabl	e bit ⁽²⁾			
	$1 = IrDA^{\otimes} en$	coder and deco	der enabled				
hit 11				.:+			
		ie Selection Ior	UXRIS PILLU Vodo	л			
	$0 = \frac{0xRTS}{0xRTS}p$	in in Flow Cont	rol mode				
bit 10	Unimplemen	ted: Read as ')'				
bit 9-8	UEN<1:0>: U	ARTx Enable b	its				
	11 = UxTX.	UxRX and BCL	K pins are en	abled and use	d: UxCTS pin c	ontrolled by por	rt latches
	10 = $UxTX$,	UxRX, UxCTS	and UxRTS p	ins are enable	d and used		
	$01 = \mathbf{U}\mathbf{x}\mathbf{T}\mathbf{X},$	UxRX and UxR	TS pins are e	nabled an <u>d us</u>	ed; UxCTS pin	controlled by p	ort latches
	s XIXU = 00	and UXRX pins a	are enabled a	and used; UxC	IS and UXRIS	BCLK pins con	trolled by
bit 7	WAKE: Wake	-un on Start hit	Detect Durin	a Sleen Mode	Enable bit		
Sit 7	1 = UARTx w	vill continue to s	ample the Ux	RX pin: interru	int generated o	n falling edge: l	bit cleared
	in hardwa	are on following	rising edge		spr generated e	in raining eage, i	
	0 = No wake	-up enabled					
bit 6	LPBACK: UA	RTx Loopback	Mode Select	bit			
	1 = Enable L	oopback mode					
	0 = Loopbac	k mode is disab	led				
bit 5	ABAUD: Auto	p-Baud Enable	bit				
	1 = Enable b	aud rate measu	urement on th	ne next charact	ter – requires re	eception of a Sy	ync field (55h)
	0 = Baud rate	e measurement	disabled or o	e upon comple completed			
	Budu luk						
Note 1: Re	fer to Section 1	7. "UART" (DS	670188) in the	e "dsPIC33F/P	IC24H Family F	Reference Mani	ual" for
info	ormation on ena	bling the UART	- module for r	eceive or trans	mit operation.		

2: This feature is only available for the 16x BRG mode (BRGH = 0).

19.4 Watchdog Timer (WDT)

For dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

19.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TwDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

All Device Resets Transition to New Clock Source Exit Sleep or Idle Mode PWRSAV Instruction CLEWDT Instruction Watchdog Timer Sleep/Idle WDTPRE WDTPOST<3:0> SWDTEN WDT Wake-up FWDTEN Prescaler Postscaler WDT LPRC Clock (divide by N1) (divide by N2) Reset WDT Window Select WINDIS CLRWDT Instruction

FIGURE 19-2: WDT BLOCK DIAGRAM

19.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

19.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

19.5 JTAG Interface

dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of the document.

19.6 Code Protection and CodeGuard™ Security

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 product families offer the intermediate implementation of CodeGuard™ Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and

TABLE 19-3:CODE FLASH SECURITY
SEGMENT SIZES FOR
32 KBYTE DEVICES

CONFIG BITS		
	VS = 256 IW	0x000000 0x0001FE
BSS<2:0>=x11 0K	GS = 11008 IW	0x000200 0x0007FE 0x000800 0x001FFE 0x002000 0x003FFE 0x004000
		0x0057FE
	VS = 256 IW	0x000000 0x0001FE
BSS<2:0>=x10	BS = 768 IW	0x000200 0x0007FE
256		0x001FFE 0x002000 0x003FFE 0x004000
	GS = 10240 IW	0x0057FE
	VS = 256 IW	0x000000 0x0001FE
BSS<2:0>=x01	BS = 3840 IW	0x000200 0x0007FE 0x000800 0x001FFE
768	GS = 7168 IW	0x002000 0x003FFE 0x004000
		_0x0057FE
	VS = 256 IW	0x000000 0x0001FE
BSS<2:0>=x00	BS = 7936 IW	0x0007FE 0x000800 0x001FFE
1792		0x002000 0x003FFE
	GS = 3072 IW	0x004000 0x0057FE

peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, Code-Guard[™] Security can be used to securely update Flash even when multiple IPs reside on the single chip.

The code protection features are controlled by the Configuration registers: FBS and FGS. The Secure segment and RAM is not implemented.

Note:	Refer to Section 23. "CodeGuard	тм
	Security" (DS70199) in t	he
	"dsPIC33F/PIC24H Family Referen	се
	Manual" for further information	on
	usage, configuration and operation	of
	CodeGuard Security.	

TABLE 19-4: CODE FLASH SECURITY SEGMENT SIZES FOR 16 KBYTE DEVICES

CONFIG BITS		
	-	
	VS = 256 IW	0x000000
		0x000200
BSS<2:0>=x11		0x000800
0K		0x001FFE 0x002000
UN	GS = 5376 IW	
	VS = 256 IW	0x0000000 0x0001FE
BSS-2-05-v10	BS = 768 IW	0x000200 0x0007FE
B33~2.0/-X10		0x000800 0x001FFE
256		0x002000
	00 4000 1144	
	GS = 4608 IV	0x002BFE
		0x000000
	VS = 256 IVV	0x0001FE
BSS<2:0>=x01	BS = 3840 IW	0x0007FE
		0x000800
768		0x002000
	GS = 1536 IW	
		0x002BFE
	VS = 256 IW	0x000000
		0x000200
BSS<2:0>=x00	BS = 5376 IW	0x0007FE
1702		0x001FFE 0x002000
1/92		
		_0x002BFE

20.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- · DSP operations
- Control operations

Table 20-1shows the general symbols used indescribing the instructions.

The dsPIC33F instruction set summary in Table 20-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The $\ensuremath{\mathtt{MAC}}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- · The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- · The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected				
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None				
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None				
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	(2 or 3)	None				
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	(2 or 3)	None				
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z				
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С				
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z				
		BTST C	Ws.Wb	Bit Test Ws <wb> to C</wb>	1	1					
		BTST Z	Ws Wb	Bit Test Ws <wb> to 7</wb>	1	1	7				
13	BTSTS	BTSTS	f #bi+4	Bit Test then Set f	1	1	7				
10	D1010	DIGIG	We #bit4	Bit Test We to C, then Set	1	1	<u> </u>				
		DIGIG.C	Wa #bit4	Bit Test We to 7, then Set	1	1	7				
14	CALL	DISIS.4	WS,#D104		2	2	Nono				
14	CALL	CALL	11t23		2	2	None				
45		CALL	Wn		1	2	None				
15	CLR	CLR	Í		1	1	None				
		CLR	WREG	WREG = 0x0000	1	1	None				
		CLR	Ws	Ws = 0x0000	1	1	None				
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB				
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep				
17	COM	COM	f	f = f	1	1	N,Z				
		COM	f,WREG	WREG = f	1	1	N,Z				
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z				
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z				
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z				
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z				
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z				
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z				
20	CPB	CPB	f	Compare f with WREG with Borrow	1	1	C.DC.N.OV.Z				
		CPB	Wb.#lit5	Compare Wb with lit5 with Borrow	1	1					
		CPB	Wb Ws	Compare Wb with Ws with Borrow	1	1					
04		015		(Wb - Ws - C)			0,20,11,01,2				
21	CPSEQ	CPSEQ	Wb, Wn	Compare vvb with vvn, skip if =	1	1 (2 or 3)	None				
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None				
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None				
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None				
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С				
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z				
		DEC	f,WREG	WREG = f - 1	1	1	C.DC.N.OV.7				
		DEC	Ws.Wd	Wd = Ws - 1	1	1	C.DC.N OV 7				
27	DEC2	DEC2	f	f = f - 2	1	1	C DC N OV 7				
		DEC2	- f.WREG	WREG = f - 2	1	1	C DC N OV 7				
		DEC2	Ws.Wd	Wd = Ws - 2	1	1	C DC N OV 7				
28	DIST	DIST	#1i+14	Disable Interrupts for k instruction cycles	1	1	None				
	2101	DISI #11t14 Disable interrupts for K instruction cy			1 1	1 1	110110				

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

22.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 AC characteristics and timing parameters.

TABLE 22-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature -40°C ≤TA ≤+85°C for Industrial				
	-40°C ≤TA ≤+125°C for Extended				
	Operating voltage VDD range as described in Table 22-1.				

FIGURE 22-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 22-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

TABLE 22-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic	Min	Conditions			
OS10	FIN	External CLKI Frequency ⁽⁴⁾ (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC
		Oscillator Crystal Frequency ⁽⁵⁾	3.5 10	_	10 40	MHz MHz	XT HS
			10	—	33	kHz	SOSC
OS20	Tosc	Tosc = 1/Fosc ⁽⁴⁾	12.5	_	DC	ns	—
OS25	TCY	Instruction Cycle Time ^(2,4)	25		DC	ns	_
OS30	TosL, TosH	External Clock in (OSC1) ⁽⁵⁾ High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) ⁽⁵⁾ Rise or Fall Time	—	_	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,5)		5.2		ns	—
OS41	TckF	CLKO Fall Time ^(3,5)	—	5.2	—	ns	—
OS42	Gм	External Oscillator Transconductance ⁽⁶⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits can result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 40 MHz only.
- 5: These parameters are characterized by similarity, but are not tested in manufacturing.
- 6: Data for this parameter is preliminary. This parameter is characterized, but is not tested in manufacturing.

FIGURE 22-12: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 22-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS		Standard (unless o Operating	Operatin therwise temperat	g Conditi stated) ture -40°	ons: 3.0\ °C ≤Ta ≤+8	/ to 3.6V 85°C for Industrial	
				· · ·	-40	°C ≤Ta ≤+	125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditi				
SP10	TscP	Maximum SCK Frequency		—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time				ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	Dimension Limits			MAX	
Number of Pins	Ν	44			
Pitch	е		0.65 BSC		
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00 0.02 0.0			
Contact Thickness A3 0.20 REF			0.20 REF	-	
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30 6.45 6.80			
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30 6.45 6.			
Contact Width	b 0.25 0.30			0.38	
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	K	0.20 – –			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B