

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Becano	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp204t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ABLE 4-5:	TIMER REGISTER MAP
-----------	--------------------

ABLE 4-5:	TIMER REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102		Period Register 1											FFFF				
T1CON	0104	TON	—	TSIDL	—	—	_	_	_	—	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
TMR2	0106		Timer2 Register										0000					
TMR3HLD	0108						Time	er3 Holding I	Register (for	32-bit time	operations	only)						XXXX
TMR3	010A								Timer3	Register								0000
PR2	010C								Period R	Register 2								FFFF
PR3	010E								Period R	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	—	—	_	_	_	—	TGATE	TCKP	S<1:0>	T32		TCS	—	0000
T3CON	0112	TON	_	TSIDL	—	_	_	_	—	_	TGATE	TCKP	S<1:0>	_	—	TCS	_	0000
Lanandi						L (al D		ore chours	2 . I	et al a d								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: **INPUT CAPTURE REGISTER MAP**

	•••••••••••••••••••••••••••••••••••••••																	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Cap	ture Registe	r							XXXX
IC1CON	0142	—	_	ICSIDL	_	—			—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144		Input 2 Capture Register							XXXX								
IC2CON	0146	—	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Cap	ture Registe	r							XXXX
IC7CON	015A	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8 Cap	ture Registe	r							XXXX
IC8CON	015E	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
1			_			d a fal D												

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

OUTPUT COMPARE REGISTER MAP TABLE 4-7:

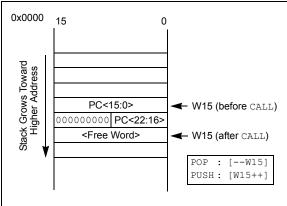
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output	Compare 1	Secondary I	Register							XXXX
OC1R	0182		Output Compare 1 Register							XXXX								
OC1CON	0184	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Output	Compare 2	Secondary I	Register							XXXX
OC2R	0188							0	utput Comp	are 2 Regist	er							XXXX
OC2CON	018A	—	_	OCSIDL	_	_	_	—	—	_		_	OCFLT	OCTSEL		OCM<2:0>		0000
Lawandi			Deed	- unimalar					in hereinder	line al								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.1 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	concatenates the SRL register to the MSB
	of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

When an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1000 in RAM, initialize the SPLIM with the value 0x0FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.4.2 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for Boot Segment) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-23 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2
where:

Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal.

The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site: (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

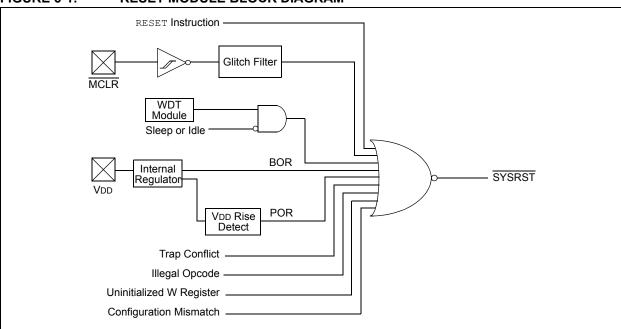
The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET MODULE BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—			
bit 15						•	bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
—	—	—	_	—	—	U1EIE	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-2	Unimplemen	ted: Read as ')'							
bit 1	1 = Interrupt r	1 Error Interrup equest enabled equest not ena	t							

REGISTER 7-10: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

bit 0 Unimplemented: Read as '0'

dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	_	_	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
11/00-0	10/00-0	10/00-1		V<7:0>	10/00-0	10,00-0	10/00-0
bit 7				V ~1.0P			bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unl	known
bit 15-9 bit 8-0	-	513		(also denoted	as 'M', PLL mul	tiplier)	

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

NOTES:

10.9 Peripheral Pin Select Registers

The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 devices implement 17 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (9)
- Output Remappable Peripheral Registers (8)

Note:	Input and Output Register values can only
	be changed if OSCCON[IOLOCK] = 0.
	See Section 10.6.3.1 "Control Register
	Lock" for a specific command sequence.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—			INT1R<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	_	—	_	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

 bit 12-8
 INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin

 11111 = Input tied to Vss

 11001 = Input tied to RP25

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

12.3 Timer2/3 Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON	—	TSIDL	—	—	—	—						
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
—	TGATE	TCKP	S<1:0>	T32	—	TCS						
bit 7							bit (
Legend:	la hit		L.1		anted bit rea	d aa (0)						
R = Readab -n = Value a		W = Writable '1' = Bit is set		U = Unimplem '0' = Bit is clea			0.4/0					
	IPUR				areu	x = Bit is unkn	OWIT					
bit 15	TON: Timer2	On hit										
	When T32 =											
	1 = Starts 32	-bit Timer2/3										
	•	0 = Stops 32-bit Timer2/3										
		$\frac{\text{When T32 = 0:}}{1 = \text{Starts 16-bit Timer2}}$										
	1 = Starts 16 0 = Stops 16											
bit 14	-		0'									
bit 13	-	Unimplemented: Read as '0' TSIDL: Stop in Idle Mode bit										
	=	1 = Discontinue module operation when device enters Idle mode										
	0 = Continue	module operat	tion in Idle mo	de								
bit 12-7	Unimplemer	nted: Read as '	0'									
bit 6		er2 Gated Time	e Accumulation	n Enable bit								
	When TCS =											
	This bit is ign											
		When TCS = 0: 1 = Gated time accumulation enabled										
		0 = Gated time accumulation disabled										
bit 5-4	TCKPS<1:0>	: Timer2 Input	Clock Presca	le Select bits								
	11 = 1:256											
	10 = 1:64											
	01 = 1.8 00 = 1:1	01 = 1:8 00 = 1:1										
bit 3	T32: 32-bit T	imer Mode Sele	ect bit									
	1 = Timer2 a	1 = Timer2 and Timer3 form a single 32-bit timer										
	0 = Timer2 a	nd Timer3 act a	as two 16-bit ti	imers								
bit 2	-	nted: Read as '										
bit 1		Clock Source										
		clock from pin	T2CK (on the	rising edge)								
1.1.0	0 = Internal o	llock (FCY) nted: Read as '	o.1									
bit 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII											

13.2 Input Capture Registers

REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	ICSIDL	-	—	—		—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:		HC = C	leared in hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit
	1 = Input capture module will halt in CPU Idle mode
	0 = Input capture module will continue to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture Timer Select bits
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	 01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture overflow occurred
	0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled)
	101 = Capture mode, every 16th rising edge
	100 = Capture mode, every 4th rising edge
	011 = Capture mode, every rising edge 010 = Capture mode, every falling edge
	001 = Capture mode, every edge (rising and falling)
	(ICI<1:0> bits do not control interrupt generation for this mode.)
	000 = Input capture module turned off

15.3 SPI Control Registers

REGISTER 15-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

_							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	—	SPISIDL	—	-	—	—	—
bit 15							bit 8
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
—	SPIROV	—	_	_	—	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

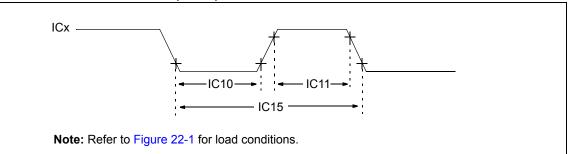
bit 15	SPIEN: SPIx Enable bit
	1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module
bit 14	Unimplemented: Read as '0'
bit 13	SPISIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	 SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register 0 = No overflow has occurred.
bit 5-2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence 0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware set or clear after reception of I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit complete, I2CxTRN is empty
	Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.


dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
CH0NB		_			CH0SB<4:0>									
bit 15							bit							
			DAMA	DAALO	DANO	D /// 0	D 444.0							
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
CHONA	—	—			CH0SA<4:0>									
bit 7							bit							
Legend:														
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'								
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	eared	x = Bit is unkr	nown							
bit 15	CH0NB: Ch	annel 0 Negativ	e Input Select	for Sample B b	bit									
		l 0 negative inpu												
	0 = Channel	l 0 negative inpu	it is VREF-											
bit 14-13	Unimpleme	nted: Read as '	0'											
bit 12-8	CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits													
			•	dsPIC33FJ32GP204 and dsPIC33FJ16GP304 devices only:										
	dsPIC33FJ3	32GP204 and d	sPIC33FJ16G		only:									
	dsPIC33FJ3		sPIC33FJ16G		only:									
	dsPIC33FJ3	32GP204 and d	sPIC33FJ16G		only:									
	dsPIC33FJ3	32GP204 and d	sPIC33FJ16G		only:									
	dsPIC33FJ3 01100 = Ch • •	32GP204 and data and a data annel 0 positive	sPIC33FJ16G input is AN12		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch	32GP204 and d	sPIC33FJ16G input is AN12 input is AN2		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch	32GP204 and d annel 0 positive annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch	32GP204 and d annel 0 positive annel 0 positive annel 0 positive annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3	32GP204 and de annel 0 positive annel 0 positive annel 0 positive annel 0 positive 32GP202 device	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only:		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3	32GP204 and d annel 0 positive annel 0 positive annel 0 positive annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only:		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3	32GP204 and de annel 0 positive annel 0 positive annel 0 positive annel 0 positive 32GP202 device	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only:		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3 01100 = Ch •	32GP204 and d annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only:		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3 01100 = Ch • • •	32GP204 and d annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only:		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3 01100 = Ch • • • •	32GP204 and d annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only:		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3 01100 = Ch • • •	32GP204 and d annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only:		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch 01100 = Ch • • • • • • • • • •	32GP204 and d annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only:		only:									
	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch 01100 = Ch • • • • • • • • • • • • • • • • • • •	32GP204 and d annel 0 positive annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only: input is AN12		only:									
	dsPIC33FJ3 01100 = Ch • • • • • • • • • • • • • • • • • • •	32GP204 and d annel 0 positive annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive eserved eserved eserved eserved	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only: input is AN12		only:									
	dsPIC33FJ3 01100 = Ch • • • • • • • • • • • • • • • • • • •	32GP204 and de annel 0 positive annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive eserved eserved eserved annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only: input is AN12		only:									
bit 7	dsPIC33FJ3 01100 = Ch • • 00010 = Ch 00001 = Ch 00000 = Ch • • 01000 = Re 00111 = Re 00110 = Re • • • • • • • • • • • • • • • • • • •	32GP204 and d annel 0 positive annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive served served served annel 0 positive annel 0 positive annel 0 positive	sPIC33FJ16G input is AN12 input is AN2 input is AN1 input is AN0 es only: input is AN12											
bit 7	dsPIC33FJ3 01100 = Ch 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3 01100 = Ch 01100 = Ch 00110 = Re 00111 = Re 00110 = Re 00110 = Ch 00000 = Ch 00000 = Ch	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive served served served annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive	sPIC33FJ16G input is AN12 input is AN12 input is AN1 input is AN0 es only: input is AN12 input is AN12 input is AN1 input is AN1 input is AN0 e Input Select											
bit 7	dsPIC33FJ3 01100 = Ch 00010 = Ch 00001 = Ch 00000 = Ch dsPIC33FJ3 01100 = Ch 01100 = Ch 00110 = Re 00111 = Re 00110 = Re 00110 = Ch 00000 = Ch 00000 = Ch 00000 = Ch 00000 = Ch	32GP204 and d annel 0 positive annel 0 positive annel 0 positive annel 0 positive 32GP202 device annel 0 positive served served served annel 0 positive annel 0 positive annel 0 positive	sPIC33FJ16G input is AN12 input is AN12 input is AN1 input is AN0 es only: input is AN12 input is AN12 input is AN1 input is AN0 e Input Select it is AN1											

REGISTER 18-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304

FIGURE 22-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

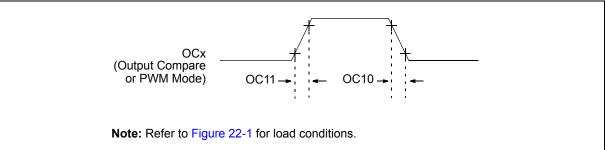


TABLE 22-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No. Symbol Character			ristic ⁽¹⁾	Min	Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	_	ns	—	
			With Prescaler	10	_	ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 TCY + 20	_	ns	—	
			With Prescaler	10		ns		
IC15	TccP	ICx Input Period	•	(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 22-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 22-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	_	—	ns	See parameter D032		
OC11	TccR	OCx Output Rise Time	— — ns See parameter D031						

Note 1: These parameters are characterized but not tested in manufacturing.

		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
	A	DC Accuracy (12-bit Mode)	– Measu	irements	s with ex	ternal V	REF+/VREF- ⁽³⁾	
AD20a	Nr	Resolution ⁽⁴⁾	1	2 data bi	its	bits	_	
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23a	Gerr	Gain Error	—	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24a	EOFF	Offset Error	_	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25a	—	Monotonicity	_	—	_	_	Guaranteed ⁽¹⁾	
	A	DC Accuracy (12-bit Mode)) – Meası	urement	s with in	ternal V	REF+/VREF- ⁽³⁾	
AD20a	Nr	Resolution ⁽⁴⁾	1	2 data bi	its	bits		
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6	
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6	
AD23a	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6	
AD24a	EOFF	Offset Error	—	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6	
AD25a	—	Monotonicity	—	—			Guaranteed ⁽¹⁾	
		Dynamic P	Performar	nce (12-l	bit Mode) ⁽²⁾		
AD30a	THD	Total Harmonic Distortion			-75	dB	_	
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB	_	
AD32a	SFDR	Spurious Free Dynamic Range	80	—	—	dB	_	
AD33a	Fnyq	Input Signal Bandwidth		_	250	kHz	_	
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits		

TABLE 22-39: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: These parameters are characterized, but are tested at 20 ksps only.

4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
	A	DC Accuracy (10-bit Mode)	– Measu	irements	s with ex	ternal V	REF+/VREF- ⁽³⁾	
AD20b	Nr	Resolution ⁽⁴⁾	1	0 data b	its	bits	—	
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	_	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	—	Monotonicity	—	—	—	_	Guaranteed ⁽¹⁾	
	Α	DC Accuracy (10-bit Mode)	– Meası	urement	s with in	ternal V	REF+/VREF- ⁽³⁾	
AD20b	Nr	Resolution ⁽⁴⁾	1	0 data bi	its	bits	—	
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	_	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	_	Monotonicity	_			_	Guaranteed ⁽¹⁾	
		Dynamic P	erformar	1ce (10-l	bit Mode) ⁽²⁾		
AD30b	THD	Total Harmonic Distortion	_		-64	dB	_	
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_	
AD32b	SFDR	Spurious Free Dynamic Range	72		—	dB	_	
AD33b	Fnyq	Input Signal Bandwidth			550	kHz	_	
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits		

TABLE 22-40: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: These parameters are characterized, but are tested at 20 ksps only.

4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 23-10: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	_	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 23-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_		
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	_	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		Clo	ck Parame	ters			
HAD50	Tad	ADC Clock Period ⁽¹⁾	147	_	_	ns	_
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾			400	Ksps	

TABLE 23-18: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 23-19: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions		
		Cloc	k Parame	ters					
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	—	_	ns	—		
	Conversion Rate								
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	_	800	Ksps	_		

Note 1: These parameters are characterized but not tested in manufacturing.

Revision D (October 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2.
- Changed all instances of PGCx/EMUCx and PGDx/EMUDx (where x = 1, 2 or 3) to PGECx and PGEDx.

Changed all instances of VDDCORE and VDDCORE/VCAP to VCAP/VDDCORE

All other major changes are referenced by their respective section in the following table.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 8.0 "Oscillator Configuration"	Updated the Oscillator System Diagram (see Figure 8-1).
	Added Note 1 to the Oscillator Tuning (OSCTUN) register (see Register 8-4).
Section 10.0 "I/O Ports"	Removed Table 10-1 and added reference to pin diagrams for I/O pin availability and functionality.
Section 15.0 "Serial Peripheral Interface (SPI)"	Added Note 2 to the SPIx Control Register 1 (see Register 15-2).
Section 17.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 17-2).
Section 22.0 "Electrical Characteristics"	Updated the Min value for parameter DC12 (RAM Retention Voltage) and added Note 4 to the DC Temperature and Voltage Specifications (see Table 22-4).
	Updated the Min value for parameter DI35 (see Table 22-20).
	Updated AD08 and added reference to Note 2 for parameters AD05a, AD06a and AD08a (see Table 22-34).

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11